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Length segregation in mixtures of spherocylinders
induced by imposed topological defects

Elshad Allahyarov †*abc and Hartmut Löwend

We explore length segregation in binary mixtures of spherocylinders of lengths L1 and L2 which are

tangentially confined on a spherical surface of radius R. The orientation of the spherocylinders is

constrained along an externally imposed direction field on the sphere which is either along the

longitude or the latitude lines of the sphere. In both situations, integer orientational defects at the poles

are imposed. Using computer simulations we show that these topological defects induce a complex

segregation picture also depending on the length ratio factor g = L2/L1 and the total packing fraction Z

of the spherocylinders. When the binary mixture is aligned along the longitude lines of the sphere,

shorter rods tend to accumulate at the topological defects of the polar caps whereas longer rods

occupy the central equatorial area of the spherical surface. In the reverse case of latitude ordering, a

new state can emerge where longer rods are predominantly both in the cap and in the equatorial areas

and shorter rods are localized in between. As a reference situation, we consider a defect-free situation

in the flat plane and do not find any length segregation there at similar g and Z; hence, the segregation

is purely induced by the imposed topological defects. We also develop an Onsager-like density

functional theory which is capable of predicting length segregation in ordered mixtures. At low density,

the results of this theory are in good agreement with the simulation data.

1 Introduction

In binary soft matter systems, segregation of different sorts of
particles can occur upon a change of the thermodynamic or
environmental conditions. The equivalent in bulk equilibrium
thermodynamics is the phenomenon called phase separation
or demixing which implies a two-phase coexistence. Whether or
not phase separation occurs in the bulk for classical particles
depends largely on the interactions between the particle species
as well as on the temperature and the partial densities. One
simple ‘‘athermal’’ interaction is an excluded volume (or steric)
interaction between two hard bodies where temperature scales
out as it only trivially sets the energy unit kBT. Phase separation
in binary mixtures of hard particles of different shape occurs
for various combinations of shapes (see, e.g. ref. 1). One
important and traditional example is a hard sphere mixture2,3

which does demix for certain size asymmetries. A further

example is a hard rod-like particle mixture which has been
recently considered in various situations4–11 and exhibits also
bulk segregation.12–14 Rod-like particles are more complex than
spheres since they possess an additional orientational degree of
freedom.

When particles are confined on a curved manifold, the
segregation and phase separation are strongly affected by
the underlying curvature of the configuration space. In fact,
the influence of curvature on phase separation has been
explored in different contexts including the crystallization
transition of spheres15–18 and segregation in two-component
vesicles.19 Phase separation was studied in curved bilayer
membranes.20,21 A systematic analysis of the impact of curvature
on phase separation was performed by computer simulations of
the Widom–Rowlinson model22 and a theoretical Ginzburg–
Landau approach on the sphere.23

For rod-like particles tangentially confined to a sphere, there
is not only a pure curvature effect but there are also more
complex options by constraining the orientations along an
imposed director field. Due to the compact topology of the
sphere, a tangential director field is never defect-free but has to
exhibit topological defects of the orientation.24–30 The two
simplest cases arise if the orientation field is prescribed either
along the longitude or the latitude lines of the sphere, see
Fig. 1. Then, in both cases, two integer topological defects arise
at the two poles. An interesting question concerns the impact of
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topological defects in the constrained director field on length
segregation. This is important both from a fundamental point
of view since it links topology and thermodynamics and for
actual applications as it enables tailoring of the segregated
states on demand31,32 by imprinting an orientational field
externally.33

In this paper we explore the impact of imposed topological
defects on segregation in binary mixtures of hard rods of
different lengths by using Monte Carlo computer simulations.
We confine the particles tangentially on a spherical surface
and align their orientation along certain prescribed directions
which possess two integer-defects at the poles. The one-
component case was studied previously both at high packings34

and intermediate densities35 and can be used here as a reference
situation. In the current study we focus on the demixing of the
binary mixture on a curved surface into short-rod rich and long-
rod rich zones. To our knowledge, this was never addressed in
previous studies. In fact, we found that the presence of imposed
defects can induce length segregation at particular values of the
length ratio g = L2/L1 and the total packing fraction Z of the
spherocylinders. When the mixture is aligned along the longitude
lines of the sphere, see Fig. 1(a), shorter rods in the mixture
accumulate at the polar caps of the sphere around the defects
whereas longer rods occupy the equatorial area of the spherical
surface. In the reverse case, when the alignment is along the
latitude lines of the sphere, see Fig. 1(b), the segregation behavior
becomes even richer involving in particular a state where longer
rods predominantly are both in the caps around the defects and
in the equatorial area, and shorter rods are localized in between.
Conversely, in a reference situation of a flat plane without any

defects, there is no length segregation at similar g and Z, proving
that the segregation is purely induced by the imposed topological
defects.

We also propose a low-density density functional theory
which is capable of predicting length segregation in ordered
binary mixtures. This Onsager-like theory takes into account
the excluded volumes of a rod pair in the pole area and in the
equatorial area of the sphere. The difference between these
excluded volumes leads to rod segregation near the poles in
good agreement with our simulation data at low densities.

The remainder of this paper is structured as follows. The
details of our simulation method for the spherocylinders
anchored on a spherical surface are given in Section 2. Our
density functional theory is described in Section 3. In Section 4
we discuss simulation results for the length segregation in
binary mixtures of spherocylinders with prescribed longitude
ordering. The segregation process in binary mixtures aligned
along the latitude lines is analyzed in Section 5. In Section 6 we
show the disappearance of the length segregation in relaxed
binary mixtures. We conclude in Section 7.

2 The model

An equimolar binary mixture of hard-core spherocylinders
consisting of N/2 rods of length L1 and N/2 rods of length L2

is anchored on a spherical surface S2 of radius R. All rods have
the same diameter s. The end-to-end length of the sphero-
cylinder is Li + s (i = 1, 2), where s accounts for the hemi-
spherical caps at the ends of the rod, see Fig. 1(d). The rods
interact through a hard-core potential

uijð~Ri; ~Rj ;~ni;~njÞ ¼
1 if i and j overlap;

0 otherwise:

(
(1)

where the tangential unit vectors -
ni and -

nj denote the orienta-
tions of the rods i and j with anchoring positions

-

Ri and
-

Rj. The
anchoring vector points from the center of the host sphere to
the geometrical center of the spherocylinder, and the tangential
orientation vector is directed along the long axis of the
spherocylinder. These vectors are schematically shown for a
single rod in Fig. 1(e). The anchoring and orientation of the ith
rod are imposed by maintaining |

-

Ri| = R + s/2 and -
ni�

-

Ri = 0.
We consider two basic preordered configurations referred to

as the longitude and latitude orderings, see Fig. 1(a) and (b).
In the longitudinally ordered system, the orientation vectors -

nj

of all rods are aligned along the longitudinal lines and hence
they obey

-
nj�

-
eyj

= 1, -
eyj

=
-

Rj � (-ez �
-

Rj) (2)

where -
eyj

is the unit polar angle vector and -
ez is the unit vector

along the z-axis. In a similar way, for latitude ordering, the
rod orientations are fixed along the latitudinal directions in
accordance with

-
nj�

-
ejj

= 1, -
ejj

= (-ez �
-

Rj) (3)

Fig. 1 Schematic pictures explaining the model. (a) A system of rods with
prescribed longitude ordering; (b) a system of rods with prescribed latitude
ordering; (c) a relaxed system with freely rotating rods; (d) a shorter
spherocylinder of length L1 and diameter s, and a longer spherocylinder
of length L2 and the same diameter; (e) a spherocylinder with index i is
shown as tangentially confined on a spherical surface, a spherocylinder
with index j is shown to explain its orientation vector n~j, and unit polar (e~yj

)
and azimuthal (e~jj

) angle vectors, and a spherocylinder with index l is
shown to illustrate the translational unit vectors e~>l

and e~8j
. The unit vector

along the z-axis is denoted as e~z.
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where -
ejj

is the unit azimuthal angle vector of the j rod.
All these unit vectors are schematically shown in Fig. 1(e).

As a reference situation, we also consider the case of free
orientation of the rods in the absence of any further constraints
except for the fact that the orientations are tangential to the
spherical surface.

The total particle number density is conveniently expressed
by a dimensionless areal packing fraction Z. This is the ratio of
all overlap-free projected rod areas (see the blue shadows in
Fig. 1(e)) with respect to the full available sphere surface 4pR2.

Monte-Carlo moves were implemented for the translation
and rotational moves of the rods on the spherical surface.
The details of the Monte-Carlo moves are described in
Appendix A.

In our calculations the packing fraction Z was changed
between 0.3 and 0.85, the length rate factor g = L2/L1 varied
between 1 and 4, and the rod length Li was considered between
4s and 24s. In all simulations, the length of the shorter rod was
fixed either to L1 = 4s or to L1 = 6s. For the radius of the host
sphere we consider R = 70s. For these parameters the total
number of particles N takes values between 103 for low density
simulations and 104 for high density simulations.

3 Onsager-like theory for length
segregation in a binary mixture

For low packing fractions, we propose a simple density func-
tional theory to predict possible length segregation similar in
mind to the approach Onsager used for the isotropic–nematic
transition of a one-component rod system.36 We split the full
area S2 of the sphere into two planar areas AI and AII, the former
is an area enclosing the imprinted defects, and the latter is an
area close to the equator where we approximate the orienta-
tional field to be constant. In order to keep the theory simple,
we neglect curvature in the shape of the areas AI and AII, which
is expected to work well for radii of the host sphere much larger

than the rod lengths. The linear extension
ffiffiffiffiffiffi
AI

p
of the area AI

around the defects is governed by the correlation length in the
fluid at the defects which is of the order of the particle lengths
while conversely the area AII scales with the square of the host
sphere radius R. Because of the defects, the excluded volume
area B(I)

ij of a pair of rods i and j in AI will be different from the
excluded volume area B(II)

ij in AII. Exact expressions for B(I)
ij and

B(II)
ij are given in Appendix B.

The areas B(I)
ij for L1 = 6s and L2 = 12s are shown in Fig. 2 and

3 for longitude and latitude ordering, respectively. The area
B(I)

ij shows a strong dependence on the ordering direction of the
rods and on the choice of which rod is placed at the pole.
However, the important factor here is how the areas B(I)

ij and
B(II)

ij differ from each other. The latter is given by the relation

B(II)
ij = 2s(Li + Lj) + ps2 (4)

The ratio factor Gij = B(I)
ij /B(II)

ij for longitude ordering with
shorter rod length 6s and g changed from 1 to 4 is always
larger than one, 2.1 r Gij r 9.7. For latitude ordering, for the

same binary mixture, the parameter Gij takes values
1.2 r Gij r 2.8. Thus, in both cases the excluded volume
area B(I)

ij of the rods near the poles is larger than B(II)
ij . This

finding has two consequences. First, in general, rods will
avoid the pole area relative to the equatorial area. Second,
the fact that G22 4 G11 implies that longer rods will tend to
avoid the pole area AI more than the shorter rods, which leads
to length segregation.

Fig. 2 The excluded volume area B(I)
ij for the two longitudinally ordered

rods corresponds to the area enclosed by the red line. A mixture with
L1 = 6s and L2 = 12s (g = 2) is considered. The inscriptions i� j (i, j = 6, 12) in
the left top corner of the pictures indicate that the rod with length Li is
placed exactly at the pole. The red line corresponds to the distance from
the pole to the center of the neighboring rod Lj. Green lines represent the
possible orientations of the rod Lj. Yellow dots represent the geometrical
centers of the rods. The coordinates are shown in units of s. The ratio
factor Gij has the following values: G6 6 = 2.95, G6 12 = 5.13, G12 6 = 2.53, and
G12 12 = 4.44.

Fig. 3 Same as in Fig. 2, but now for latitude ordering. The ratio factor
Gij has the following values: G6 6 = 1.76, G6 12 = 1.22, G12 6 = 3.11, and
G12 12 = 2.7.
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More quantitatively we now construct a density functional
theory from this point of view. Assuming a scaling for AI as
l22B(I)

22 per pole (l22 is defined later) such that

AI = 2l22B(I)
22 (5)

AII = 4pR2 � 2l22B(I)
22 (6)

we consider the full system to split into two areas with densities
rI,i and rII,i (i = 1, 2). The total density of the rods is fixed to

ri ¼
rI;iAI þ rII;iAII

AI þ AII
(7)

The total grand canonical free energy in the Onsager-like
approach is then

O
kBT

¼
X2
i¼1

rI;iAI ln rI;iLi
2

� �
� 1� mi

� ��

þ rII;iAII ln rII;iLi
2

� �
� 1� mi

� ��

þ 1

2

X2
i; j¼1

AIB
ðIÞ
ij rI;irI; j þ AIIB

ðIIÞ
ij rII;irII; j

� �
(8)

The first two terms describe the translational entropy of the
rods and the last term describes repulsive interactions between
the rods on the second virial coefficient level which becomes
correct for low densities. Li is the irrelevant thermal wave
length and mi is the chemical potential to fix the prescribed
density ri.

Expressing rII,i from eqn (7) as

rII;i ¼ ðri AI þ AIIð Þ � rI;iAIÞ
1

AII
(9)

and minimizing O with respect to the remaining rI,i, we obtain
the necessary condition qO/qrI,1 = qO/qrI,2 = 0, or explicitly

0 ¼ AI ln rI; j � AI ln rII; j þ AIB
ðIÞ
jj rI; j

þ 1

2
AI B

ðIÞ
j‘ þ B

ðIÞ
‘j

� �
rI;‘

� AIB
ðIIÞ
jj rII; j �

1

2
AI B

ðIIÞ
j‘ þ B

ðIIÞ
‘j

� �
rII;‘

(10)

for j = 1, 2, where c is the complementary index to j (c = 1 for
j = 2 and c = 2 for j = 1). The two equations (10) can be solved
numerically resulting in the segregation densities rI,1 and rI,2

at the polar area, and rII,1 and rII,2 (through eqn (7)) in the
equator area. Note that the diameter of the host sphere enters
to the DFT via eqn (6).

The values of the area parameter l22 in eqn (5) and (6) are
independent on the host sphere radius R and are fixed to 10.
This corresponds to a reasonable correlation length.

4 Demixing in a binary mixture with
longitudinal ordering

We first start with the binary mixture aligned along the longi-
tude lines of the spherical surface S2, see Fig. 1(a). The state

diagram of the simulated structures corresponding to this
ordering with representative snapshots and schematic pictures
are shown in Fig. 4 and 5. In the latter, shorter rods are colored
blue, while the coloring of longer rods depends on the nematic
ordering in their surroundings. Yellow colored longer rods have
less nematic ordering than dark red colored rods. Corres-
ponding plots for the normalized polar densities of rods

riðyÞ ¼
2

N

niðyÞ
cosðyÞ � cosðyþ DyÞ (11)

where i = 1, 2 for shorter and longer rods, respectively, are
shown in Fig. 6. Here ni(y) is the number of rods inside the strip
area enclosed by the latitude lines y and y + Dy, and a bin width
Dy = p/20 was used in simulations.

The state diagram in Fig. 4 distinguishes five different states
possible for the binary mixture of rods as a function of Z and g. For
the monodisperse system, the stable low-density nematic phase
N is followed by a medium-density nematic phase N0 with a
depleted density in the equatorial zones and a high-density
smectic phase S. These states were discussed in ref. 35 and are
just shown here as a reference case, see black lines in Fig. 6.

Obviously, for the mixture, at low-density a nematic phase N
is stable. A representative snapshot and schematic picture for
this state are provided in the third row of Fig. 5. In this state the
distribution of the shorter rods for all g is almost homogeneous
on S2, r1(y) E 1. For larger gZ 2 cases a clustering in the longer
particles develops. Comparison of r1(y) and r2(y) for this state
does not show any robust demixing except a slight deficiency of
longer rods at the poles. This is schematically depicted in the
third row of Fig. 5.

Upon increasing the density there are two further states in
Fig. 4, denoted as M0 for medium density and M1 for high density
mixtures, which show clear length segregation properties. The
letter M in these notations refers to the rod alignment in the
segregated states along the ‘meridian’-lines of the host sphere.
In both states the shorter rods are accumulating near the poles
followed by a zone enriched with longer rods, see the yellow and

Fig. 4 State diagram for the binary mixture of rods with prescribed
longitude ordering. Black lines are guides for the eye to separate smectic
S and nematic N0 states from the segregation structures M1, M0. The
nematic state N shows very weak segregation behavior.
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cyan colored areas in Fig. 5. The difference between M0 and M1 is
that there are void-like spaces in the equatorial area for M0 which
gradually vanish for M1. The formation of the different zones is
visible and quantified in plots of the partial densities in Fig. 6. In
particular, the longer particles exhibit a double maximum on S2.
The segregation strength is higher at Z = 0.5 for the medium-
density M0 state as compared to the high-density state M1. At the
same time, below Z o 0.4 the segregation also weakens.

Finally, it should be noted that the length segregation in the
M1 and M0 states stems exclusively from the topological defects
imposed on the host surface S2. This is proved by the inability
of a planar defect-free surface to keep the initially segregated
structure of the mixture intact, see the results of our additional
simulations presented in Appendix C.

We now compare simulation results against our density
functional theory (DFT) for low densities where the DFT is

expected to perform well. Due to the division of areas into two
parts, the partial density profiles are simple sharp-kink func-
tions. Fig. 7a reveals that the DFT predictions are in agreement
with the simulation data both qualitatively and quantitatively
for the low density Z = 0.1, and L1 = 6s, g = 3. In particular, the
density of rods is lower at the poles than in the equatorial area
and longer rods are more depleted around the poles. Hence the
theory describes the segregation behavior pretty well.

A direct comparison between the simulated rod densities,
averaged over the area Ak (k = I, II),

rk;i ¼
1

Yk

ð
Yk

riðyÞdy (12)

and the DFT results is given in Fig. 7b. Fig. 7b shows that the
segregation trend as a function of length ratio g is correctly
reproduced by the theory.

Fig. 5 Simulation snapshots and schematic pictures for the three repre-
sentative structures from Fig. 4. In the snapshots shorter rods are colored
blue. The coloring of longer rods, from yellow to dark red, corresponds to
the strength of nematic ordering in their surroundings. In the right column,
the places preferably occupied by one sort of rod are colored differently.
Moreover, for the polar area a yellow color, for the central area a green
color, and for the area in between a cyan color are used. In the M0 and M1

states, the yellow and cyan colored areas correspond to the shorter rod
rich and longer rod rich areas, respectively. The empty green colored area
in M0 corresponds to the void-like spaces. In the states M1, M0, and N the
same colored area filled with shorter and longer rods corresponds to a
homogeneous distribution of partial densities.

Fig. 6 Longitude ordered binary mixture with the shorter rod length
L1 = 6s. Cases (a), (c) and (e): normalized polar density r1(y) for the shorter
rods. Cases (b), (d) and (f): normalized polar density r2(y) for the longer
rods. Black line with symbols – g = 1, blue line – g = 2, red line – g = 3,
pink line – g = 4. The corresponding packing fractions Z and the states of
the mixture from Fig. 4 are given as insets in the figures.
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5 Demixing in a binary mixture with
latitude ordering

Now we turn to latitudinal ordering. The state diagram, repre-
sentative snapshots and schematic pictures are presented in
Fig. 8 and 9. Corresponding plots for the polar particle den-
sities r1(y) and r2(y) are shown in Fig. 10.

A length segregated structure E0 is shown schematically in
the first row of Fig. 9. The letter E in this notation refers to the
rod alignment along the ‘equator’-lines of the host sphere. In
this state shorter rods accumulate near the edges of the empty
cap, and the longer rods occupy the central area of S2. The blue,
red, and pink lines in the first row pictures, and the blue and
red lines on the second row pictures of Fig. 10 correspond to
the particle densities of this state.

The occurrence of bald polar patches in E0 is basically
associated with the higher bending energy of the nematic

director near the poles. This energy is proportional to
Li/(R sin(y)) (i = 1, 2) and thus is larger near the poles where
sin(y) is very small. For this reason both the shorter and longer
rods avoid the poles but the deficiency is more pronounced for
longer rods.

At high packing fractions the E0 segregation state transfers
either to a weakly segregated state E1 at low g, or to a

Fig. 7 Rod densities for longitudinal ordering with Z = 0.1, L1 = 6s and
different g. (a) g = 3, red line with circles – simulation data for the density
r1(y) of shorter rods, blue line with squares – simulation data for the
density r2(y) of longer rods, pink full line – DFT prediction for the density
r1(y) of shorter rods, black full line – DFT prediction for the density r2(y) of
longer rods. (b) g is changed from 1 to 4, the curves correspond to the
partial rod densities rj,i of species i = 1, 2 in the areas Aj ( j = I, II). All data for
AI (AII) are below (above) the unity line. Red lines with circles – simulation
data for shorter rods, blue lines with squares – simulation data for longer
rods, pink lines – DFT prediction for shorter rods, black lines – DFT
prediction for longer rods.

Fig. 8 State diagram for a binary mixture of rods with prescribed latitude
ordering. Data for a one-component system with g = 1 are given as a
reference. Black lines separate smectic S and S0, and the nematic N states
from the segregated structures.

Fig. 9 Same as Fig. 5 but now for latitude ordering: simulation snapshots
and schematic pictures for the four representative structures from Fig. 8. In
the state E0 the yellow color corresponds to an empty area, the cyan color
corresponds to the area mostly occupied by shorter rods, and the green
color corresponds to the area where the longer rods prevail. In the state E1

the green color covering the entire surface S2 exhibits the homogeneous
distribution of all rods. In the state E2 the yellow color corresponds to the
area mostly occupied by shorter rods, and the green color corresponds to
the area where longer rods prevail. In the state E3 the yellow color
corresponds to the area where longer rods prevail, the cyan color
corresponds to the area mostly occupied by shorter rods, and the green
color in the central area points to the abundance of longer rods there.
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moderately segregated state E2 at the moderate values of g, or to
a strongly segregated state E3 at the high values of g.

The weakly segregated state E1, shown in the second row of
Fig. 9, has a weak avoidance of poles for both species as seen
from the blue curves in Fig. 10(e) and (f). This effect can be also
explained by the higher values of the bending energy at
the poles. Although there are slightly more shorter rods at the
poles compared to the longer rods, in the schematic picture of
this state in Fig. 9 we show a homogeneous distribution for
the rods.

In the moderately segregated state E2, shown in the third row of
Fig. 9, more shorter rods accumulate at the poles and more longer
rods fill in the central area of S2. This is evident from the red lines
in the third row picture of Fig. 10. Again, qualitatively, this picture
can be explained by the higher bending values for longer rods
compared to the bending energy of shorter rods.

The most intriguing state in the latitude ordered mixture is the
segregated state E3 which is shown in the fourth line of Fig. 9.

In this state the longer rods mostly exhibit a double occupation
tendency: they outnumber the shorter rods at the poles and
in the central area of S2. As a result, the shorter rods are
sandwiched between these areas. This unique segregation
picture appears only at high packing fractions Z Z 0.6 and
high values of length ratio factor g Z 3.5. The prevalence of
longer rods in the polar region can be understood in the
following manner. As can be seen from the top view snapshot
picture in Fig. 11 for the mixture with L1 = 6s, g = 4 and Z = 0.8,
the longer rods form a big cluster across the pole. If we assume
that the cluster accommodates N2 longer rods, it is obvious
to expect that N1 = gN2 shorter rods will be needed otherwise
to cover the same area. However, because of the ordering
constraint, the shorter rods will have a mismatch between their
mutual orientations in this area. The more angular mismatches
there are between the rods, the less the packing of the polar
zone by the rods. Therefore, longer rods, which are capable of
building larger and ordered clusters across the pole without
violating their prescribed ordering, will be more effective to
pack the polar area.

Finally we compare again our DFT to the simulation data
at low density with Z = 0.1, L1 = 6s, and g = 3, see Fig. 12.
Similar as for latitude ordering, the partial density profiles
compare well with the simulation data and all trends are
reproduced except for an ordered shell in the density profile
(visible in the simulation data in Fig. 12a) which arises from
finite density.

In Fig. 12b we directly compare the averaged rod densities
rk,i with the theoretical predictions, k = I, II and i = 1, 2. Here,
again, the lines below (above) the unity line correspond to the
rod densities in the area AI (AII). In total, Fig. 12b strongly
resembles Fig. 7b: the angular and length segregation effects
become stronger at higher values of g, and the DFT theory
prediction overestimates these effects in the binary mixture.
However, compared to the longitude ordered case considered
in Fig. 7b, now the DFT theory provides quite good agreement
with the simulations, especially at higher g.

Fig. 10 Latitude ordered binary mixture with the shorter rod length
L1 = 6s. Cases (a), (c) and (e): normalized polar density r1(y) for the shorter
rods. Cases (b), (d) and (f): normalized polar density r2(y) for the longer
rods. Black line with symbols – g = 1, blue line – g = 2, red line – g = 3, pink
line – g = 4. The corresponding packing fractions Z and the states of the
mixture from Fig. 8 are given as insets in the figures.

Fig. 11 Top view snapshot corresponding to the state E3 for latitude
ordering with parameters L1 = 6s, g = 4 and Z = 0.8. Clearly the polar
region is basically occupied by longer rods.
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6 Loss of segregation in freely rotating
binary mixtures

When the angular constraints are taken off and the rods are
given the freedom to rotate around their radius vectors

-

Ri, the
length segregation ability of the states is lost completely for the
cases when g o 4. This can be evidenced from the snapshot
pictures shown in Fig. 13 where the relaxed states of the
initially longitude and latitude ordered configurations are
examined. The left column pictures in this figure correspond
to the ordered state, whereas the right column pictures are for
the freely rotated state. Whereas the imposed defects at the pole
are lost, few other topological defects on the particle scale

emerge elsewhere on S2. As a consequence, the length segrega-
tion effect in the mixture is completely destroyed.

Furthermore, our simulations reveal that the total equili-
bration of freely rotated systems with g = 4 and Z 4 0.5 suffers
from the jamming of longer rods. Interestingly, if the binary
mixture is replaced by a monodisperse system consisting of
only the longer rods, no such jamming issue is encountered.
For example, a system with L1 = L2 = 24s and Z = 0.7 will quickly
lose its initial orientation when the prescribed ordering field is
taken off, see Appendix D for details. Thus, the free rotation of
shorter rods creates an additional obstacle to the relaxation of
longer rods in the binary mixture.

7 Conclusions

In conclusion, we report on the length segregation in an
aligned binary mixture of monodisperse spherocylinders
induced by orientational topological defects imposed on the
host surface. We have shown that an ordered binary mixture on
a curved host surface is inclined to demix into short-rod rich
and long-rod rich zones depending on the length ratio para-
meter g and the packing fraction Z of the spherocylinders. In
longitudinally aligned binary mixtures, shorter rods are in
abundance at the polar caps of the sphere whereas longer rods
accumulate in the equatorial area of the spherical surface. For the
binary mixture with prescribed latitude ordering the segregation
becomes more complex. We detected a process when longer rods
are predominant both in the cap and in the equatorial areas and
shorter rods are localized in between.

Our simulations also show that the length segregation is
only possible in the preordered states and completely dis-
appears in the freely rotated state. Moreover, all simulations
reported here were limited to symmetrical mixtures with the
mixing ratio N1/N2 = 1. This choice is dictated by our aim to
focus on the role played by the length ratio parameter g in the
segregation of binary mixtures but similar segregation scenarios
are expected for mixtures which are not exactly equimolar.

An interesting question to answer will be how the segrega-
tion process depends on the radius of the host surface, or, more
specifically, on the aspect ratios L1/R and L2/R. On the one
hand, for smaller radius R of the S2 the segregation is expected
to become stronger, however, in this case the density fluctua-
tions in the mixture with a low number of particles will blur the
segregation picture. In fact, our test simulations for a smaller
sphere with radius R = 40s confirmed that the observed segregation
picture is qualitatively similar to the results discussed here, how-
ever the noise in the density fluctuations obscures the details of the
segregation. On the other hand, for larger R, in the limit of
approaching the flat surface case, no length segregation is expected
as seen from Appendix C except near the poles.

We believe that our study will attract more refined density
functional theories valid at higher densities. Fundamental
measure density functional theory is one of the promising
tools for such microscopic theories as it was applied to hard
spherocylinders and rectangles confined on two-dimensional

Fig. 12 Comparison between theory (DFT) and simulation results for
latitude ordering with Z = 0.1, L1 = 6s and different g. All line descriptions
are the same as in Fig. 7.

Fig. 13 Case (a): a state with longitude ordering for L1 = 6s, g = 3 and
Z = 0.85 corresponding to the segregation structure M1; case (b): corres-
ponding freely rotated state with no angular constraints. Case (c): a state
with latitude ordering for L1 = 6s, g = 2 and Z = 0.7 corresponding to the
segregation structure E0; case (d): corresponding freely rotated state with
no angular constraints.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
9 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
by

 H
ei

nr
ic

h 
H

ei
ne

 U
ni

ve
rs

ity
 o

f 
D

ue
ss

el
do

rf
 o

n 
11

/3
0/

20
18

 2
:4

6:
27

 P
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm01790e


8970 | Soft Matter, 2018, 14, 8962--8973 This journal is©The Royal Society of Chemistry 2018

flat and curved manifolds even with orientational constraints.37,38

Moreover it would be interesting to see how stable the segregation
effect will be if the simulation model is changed in terms of
interactions and set-ups.16,39–43 Last it is worth pointing out that
active particles have been studied on the sphere revealing
phenomena like swarm winding,44–46 aging47 and topological
sound creation48 but length segregation is still unexplored in
active systems in the presence of defects.

Finally we emphasize that the segregation behavior predicted by
our simulations can in principle be verified with experiments using
smectic shells of molecular crystals49–58 or Pickering emulsion
droplets covered with rod-like colloids.59–64 Another option is layers
of silica rods which have been recently studied under various
constraints,65,66 aspherical surfactants67 or ellipsoidal colloids
bound to curved fluid–fluid interfaces.68 Even living and motile
‘‘particles’’ like cells41 and rod-like fly embryos69 were recently
studied on spheres. An orientational constraint can be imprinted
by using external fields or a molecular liquid crystal which pre-
scribes the orientational ordering of larger colloidal rods.33
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Appendix
A Monte-Carlo moves for the rods on spherical surface

Monte-Carlo translational displacements were done by ran-
domly choosing a rod j, j = 1,. . .N, and attempting to move it
from its current position

-

Rj to a new position
-

Rnew
j on the host

sphere. These moves are then followed by the rotational moves
of the rod orientations. For the preordered configurations the
rotational move is done to keep the particle orientation fixed
according the angular constraints given by eqn (2) and (3). For
the freely rotated state without angular constraints for the rod
orientation, the rotational moves consist of randomly choosing
a rod orientation. In order to speed up the system equilibration,
the Monte-Carlo translational moves are carried within a
spherical cap around the particle position

-

Rj with angular
opening c and, therefore, with maximal displacement length
dMC = (R + s/2)c fixed to dMC = 3s.

For generating a new position
-

Rnew
j for the jth rod, the

following three steps are taken in a consecutive manner. First,
a random point -

a1 is generated around the north pole of the
unit sphere within a cap with angular opening c. The compo-
nents of -

a1 are defined as

x = 2pz1

w = arccos(1 � (1 � cosc)z2)

a1x = sin w cos x

a1y = sin w sin x

a1z = cos w (A1)

where z1 and z2 denote random numbers uniformly distributed
in the interval [0,1]. Second, the vector -

a1 rotated around the
axis -x by the azimuthal angle yj of rod j. The resulting position
-
a2 is given as

a2x = a1x

a2y = a1y cos yj � a1z sin yj

a2z = a1y sin yj + a1z cos yj (A2)

Third, the vector -a2 rotated around the axis -z by the polar angle
jj of rod j. The components of the resulting position -

a3 are

a3x = a2x cosjj � a2y sinjj

a3y = a2x sinjj + a2y cosjj

a3z = a2z (A3)

Finally, the position (R + s/2)-a3 is taken as the new displace-
ment point

-

Rnew
j for the rod j. Obviously,

-

Rnew
j lies within a

spherical cap with opening c around the rod position
-

Rj.
After the jth rod’s Monte-Carlo translational displacement,

its orientation -
nj is adjusted in order to fulfill the preordered

longitude or latitude conditions at the new position according
to eqn (2) and (3), respectively.

After the translational and orientational steps, the new
position for the jth rod is accepted if there is no mutual overlap
of rods.70 In the opposite case, the particle is kept at its old
anchoring position

-

Rj.
The system is equilibrated during 107–108 Monte-Carlo steps

per particle comprising translational moves followed by the
adjusting steps to -

nj for the system particles j = 1,. . .,N. In the
following the same number of simulation steps was used to
gather statistics for the production phase.

Each initial configuration with packing fraction Z was
created by one-by-one insertion of rods (for the two species)
at random positions on S2 under the imposed angular con-
straint for their orientation. At the random insertion point

-

Rj,
the corresponding angular vectors -

eyj
and -

ejj
were defined to

get the correct orientation for the jth rod. If the inserted jth rod
overlaps with one of the j � 1 rods successfully inserted before
it, more insertion attempts are done for the jth rod until its
insertion is successful. Starting from Z 4 0.35, however, the
insertion step becomes less productive because of the increased
rate of overlappings with the rods inserted on S2 before. This
issue is effectively solved by allowing all other j � 1 particles to
take Monte-Carlo moves on S2.35 During these moves each rod
i, 1 r i r j � 1, first takes a translational move followed by the
adjustment step to its orientation -

ni to fulfill the preordering
conditions, eqn (2) and (3) for the longitude and latitude
orderings, respectively.

Finally, initial configurations for the freely oriented con-
figurations were obtained by relaxing the completed simulations
for the preordered mixtures, i.e. by lifting the imposed angular
restriction. This gives each particle i, 1 r i r N, the ability to
freely rotate around its radius-vectors

-

Ri, see Fig. 1(c).
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B Excluded volume of ordered and binary rods B(I)
ij at the pole

The excluded volume area BI
ij for a pair of rods with longitude

ordering in the polar region AI can be calculated as the area
enclosed by the parametric curve

xðbÞ ¼ Li

2
þ s cosðkðbÞÞ þ Lj

2
cosðbÞ

jyðbÞj ¼ s sinðkðbÞÞ þ Lj

2
sinðbÞ

(B1)

for 0 r b r bmin and p � bmin r b r p, and

xðbÞ ¼ s
tanðbÞ þ

Lj

2
cosðbÞ

jyðbÞj ¼ sþ Lj

2
sinðbÞ

(B2)

for bmin o bo p� bmin, where bmin depends on the length Li of
the rod i, bmin = 2s/Li. Here the angle k(b) depends on the
parametric angle b through the transcendental equation

tanðbÞ ¼ 2s sinðkðbÞÞ
Li þ 2s cosðkðbÞÞ (B3)

eqn (B1) and (B2) are derived for the case when the rod i
is placed at the pole and is surrounded by the rods j.
The coordinates (x(b),y(b)) of the parametric curve define the

distance rðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðbÞ2 þ yðbÞ2

p
between the centers of the rods

i and j.
The corresponding parametric curve for the excluded

volume area BI
ij of latitude ordered rods in the polar region AI

are described as

xðbÞ ¼ sþ Li

2
cosðbÞ

� �
cosðbÞ

jyðbÞj ¼ sþ Li

2
cosðbÞ

� �
sinðbÞ

(B4)

for 0 r b r bmin and p � bmin r b r p, and

xðbÞ ¼ sþ Lj

2
cosðbÞ

� �
cosðbÞ
sinðbÞ

jyðbÞj ¼ sþ Lj

2
cosðbÞ

(B5)

for bmin o b o p � bmin. Here bmin depends on the lengths of
both rods, Li and Lj, and is defined as the solution of the
following transcendental equation,

Lj cos(bmin) + 2s = sin(bmin)(Li cos(bmin) + 2s) (B6)

and eqn (B4) and (B5) are derived for the case when the rod i is
placed at the pole and is surrounded by the rods j. Here again
the coordinates (x(b),y(b)) of the parametric curve define the
distance rðbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðbÞ2 þ yðbÞ2

p
between the centers of the rods

i and j.
Once the coordinates x(b) and y(b) of the parametric curve

are established, the excluded volume area BI
ij in the region AI

can be calculated as the area under the parametric curve,

BI
ij ¼ 2

ðp
0

yðbÞdxðbÞ
db

db (B7)

Equivalently, the area under the parametric curve can be
calculated numerically.

C Oriented binary mixture on a flat surface

In order to show that the length segregation in the aligned
binary mixture is only possible on curved surfaces, we ran three
additional simulations with different length ratios on a flat
surface with initially segregated mixtures. The snapshots for
the fully segregated mixtures at the simulation time t = 0 with
the length ratio factors g = 2, 3, and 4 at the mixture composi-
tion 0.5 and the packing fraction Z = 0.7 are shown in the left
column of Fig. 14. The completely mixed configurations shown
in the right column correspond to the simulation results after
106 Monte-Carlo steps. The linear densities of the shorter and
longer rods along any direction show a homogeneous distribu-
tion of particles with no length segregation.

Fig. 14 Simulations of the ordered binary mixture on a flat surface. Left
column – initial configuration with sharply segregated state. Right
column – equilibrated state in which the initial segregation is lost. The
system parameters are: L1 = 6s, Z = 0.7. First row – g = 2. Second row – g = 3.
Third row – g = 4.
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D Loss of ordering in a one-component system of longer rods

We ran a one-component (monodisperse) L1 = L2 = 24s system
simulation at Z = 0.7 without the shorter rods. The snapshots
presented in Fig. 15 indicate that the system loses its initial
ordering in the freely rotated state.
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P.-A. Albouy, D. Lévy and M.-H. Li, Faraday Discuss., 2009,
143, 235–250.
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