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ABSTRACT: The article explores the ion flux response of a
capacitor configuration to an alternating voltage. The model
system comprises a symmetric binary electrolyte confined
between plan-parallel capacitor plates. The alternating current
response is investigated for the sparsely studied albeit
practically important case of a large amplitude voltage applied
across a narrow capacitive device, with the distance between
the two plates amounting to a few ion diameters. Dynamic
density functional theory is employed to solve for the
spatiotemporal ion density distribution as well as the transient
ion flux and complex impedance of the system. The analysis of
these properties reveals a hitherto hidden impedance resonance. A single ion analogue of the capacitor, which is equivalent to
neglecting all interactions between the ions, is employed for a physical interpretation of this phenomenon. It explains the
resonance as a consequence of field-induced ion condensation at the capacitor plates and coherent motion of condensed ions in
response to the field variation.

■ INTRODUCTION
There is a growing interest in understanding capacitive
phenomena in narrowly confined ionic systems.1−4 Obviously,
the topic is of fundamental importance in electrochemistry.
Besides, it is of practical utility for analyzing the dynamic
response of charged colloidal systems5−7 as well as nano-
electrochemical systems8,9 to a varying electric field, as
encountered for instance in electroactuators10,11 or capacitive
deionization systems.12−14 The size of ions in relation to the
size of the confining systems is a crucial consideration in such
systems. Specifically, for ionic systems confined to lengths on
the order of the ion diameter, steric effects become important.
The archetypal capacitive system consists of a liquid

electrolyte or ionic liquid that is confined by rigid walls
made of a metallic conductor insulated against the electrolyte,
as depicted in Figure 1. The model system used here is infinite
in lateral direction, rendering the problem effectively one-
dimensional. Note that there is thus no bulk from which ions
are taken or to which ions can leave nor are charges transferred
from the ions to the walls. Ions only move back and forth
within the gap. The primordial scientific interest lies in
understanding the response of such a system to a modulation
of the applied metal-phase potential, which is a topic of central
interest in physical chemistry. The response function in
question is the result of a complex interplay between variations
in metal surface charge density, electrolyte potential, and ion
density distribution.
In this work, classical dynamic density functional theory

(DDFT)15−18 is used to study the ion dynamics in a narrow
electrolyte slab, whose thickness equals a few ionic diameters.

The ionic system is exposed to a dynamic voltage between the
capacitor plates with harmonic (sinusoidal) time dependence
determined by the angular frequency ω and the amplitude ΔU.
The motivation to study this model is threefold: first of all,

the model is best applied to the mesoscopic scale for
oppositely charged colloids.5,6 Using organic solvents, these
can be prepared even at low concentrations of dissolved ionic
countercharges such that the microion concentration is
small.19 These dispersions have been exposed to direct
current20 and alternating current (AC)21 electric fields that
gave rise to strong spatiotemporal responses. The presented
model system resembles the configuration considered in ref 21
though in our case the electrolyte-filled slit between the walls is
only a few colloidal layers wide. Apparent issues in applying
our model to colloids lie in ignoring the residual microion
concentration, which however can be kept to small (micro-
molar) concentrations in organic solvents, and neglecting the
hydrodynamic interactions mediated by the solvent, which can
be justified by using particles whose hydrodynamic radius is
much smaller than their interaction radius, as is the case for
solvent-permeable particles.22,23 The mentioned problems are
also mitigated by the fact that the responses of the microions
and solvent molecules on the one hand and the colloidal ions
on the other hand are separated in the frequency domain. The
colloidal system can of course be scaled down in size toward
charged micelles and nanocolloids.
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Secondly, one can think about a molecular realization in
nanogap electrodes with the capacitor walls electrically isolated
from the electrolyte in order to prevent any ion oxidation at
the walls. The peculiar geometry has not yet been exploited
experimentally but is in principle feasible.24 It should be noted
though that applying our model to this case implies neglecting
any specific solvent contributions to the AC electric field
response as well as any structural details of the walls.25

Thirdly, the considered model logically extends basic model
studies of capacitor configurations that can be traced back to
classical works of Gouy (1910)26 and Chapman (1913).27

From these early works, problems of electrified interfaces and
confined electrolytes were approached using continuum
theories based on Poisson−Boltzmann and Poisson−Nernst−
Planck (PNP) equations. Later on, these continuum theories
were modified to account for steric effects induced by finite ion
size28−36 and specific solvent polarization effects.37

Our model system is similar to those considered in recent
theoretical studies by Beunis et al.,38 Olesen et al.,39 and Feicht
et al.40 However, in contrast to those works, we consider a case
of more narrow ion confinement, wherein the width of the
electrolyte slab, L, is on the order of several ion diameters, σ,
that is, σ ≤ L ≤ 4σ, and we focus entirely on the limit of large
electric fields. We employ classical dynamic density functional
theory15−18 (DDFT), including the steric repulsion between
the ions. A similar model has been used before in refs 35, 36 to
consider the charging kinetics of an electric double layer in
response to a voltage step.
Here, we apply this approach to study the capacitive

response of the ionic system to a transient electric field. Our
system is smaller than the one that was considered in refs 35,
36, and we are interested in the ion flux response to an AC
voltage signal with large amplitude. This response function
should be amenable to experimental study by electrochemical
impedance spectroscopy.

DDFT is known to be computationally highly efficient and it
allows geometric parameters like ion diameter and slab
thickness to be tuned widely. With DDFT, the system
response can be studied under large amplitude, ΔU ≫ UT,
with the thermal voltage UT = kBT/q, where kB is the
Boltzmann constant, T is the temperature, and q is the ion
charge, and over a wide range of ω. It is thus an ideal tool to
explore ion dynamics in a capacitor configuration in the limit
of strong ion confinement1−4 where the full interplay of steric
correlation effects, electrostatic interactions, as well as ion
transport by diffusion and migration unfolds.
In the following section, we introduce the model system and

describe the physical-computational methodology based on
dynamic density functional theory. Equations are non-
dimensionalized and typical parameter sets are discussed. In
the results section, we analyze and discuss the dynamic density
profiles of ions and the impedance response of the microscopic
model system. A single-ion capacitor model is presented to
explain the observed resonance effect in the impedance.

■ MODEL
An electroneutral mixture of colloidal cations and anions with
equal charge magnitude q and equal diameter σ is kept in a
stagnant fluid with dielectric constant ε. This ionic
system30,41−49 is confined between two infinitely extended
plan-parallel capacitor plates;38−40,50−56 see Figure 1. The
plates are polarized with an external alternating voltage U(t)
that creates an oscillating electric field E(t) across the
electrolyte slab. The ions are modeled within the restricted
primitive model57−66 as hard charged spheres of diameter σ
interacting via steric and Coulomb interactions. The capacitor
plates are introduced as hard insulating walls leading to a no-
flow condition for the ions. The outermost possible position of
the ion centers is then situated at a distance σ/2 away from the
physical walls. L denotes the accessible width perpendicular to
the capacitor plates. The system is considered in the highly
confined limit where L is on the order of σ.
We solve the model for the time- and space-dependent

densities of the two ion species using DDFT,15−18 which is the
time-dependent variant of classical DFT.67−79 From the
densities, we also obtain the charge flux in the system. The
linear response part of the current is used to further calculate a
quantity that is analogous to a local impedance of the capacitor
configuration. Subsequently, we will therefore refer to it as the
local impedance.

Theory. Dynamic Density Functional Theory (DDFT).
Dynamic density functional theory relates the time evolution of
the density to the functional derivative of the free energy of the
system in the form

ρ
β ρ

δ ρ ρ
δρ
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where ρ±(r,⃗ t) stands for the density of the ions with either
positive ρ+ or negative charge ρ− as a function of position r ⃗ and
time t; β = 1/kBT is the inverse thermal energy, and D is the
diffusion coefficient of the ions, which, for simplicity, is taken
to be the same for both ion species D+ = D− ≡ D. denotes
the free energy of the system, which is a functional of the two
densities ρ+ and ρ−, and

δ
δρ±

is the functional derivative80,81

with respect to the density. By connecting the time derivative

Figure 1. Sketch of the system. Balanced numbers of equally sized
ions with diameter σ and charge q± = ±q are kept in a slab between
two plan-parallel insulating capacitor plates in an electrolyte of relative
dielectric constant ε. The width L denotes the accessible length in z-
direction. For simplicity, the system is assumed to be infinitely
extended in xy-direction. An alternating external voltage U(t) with
amplitude ΔU produces an oscillating electric field E(t) acting on the
ions.
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of the density to the functional derivative of the system’s

energy, DDFT shifts the problem of determining the time

evolution of the densities to the problem of knowing the

energy of the system for any given density distribution. If we

know the energy of all states, we can determine the time

evolution of the system from this knowledge. Thus, we first

need to construct an expression for the energy of the system.

We consider a free energy functional of the form

∫ ρ= + + + ⃗ ⃗ ⃗± ±r r t V r td ( , ) ( , )id HS Coul
ext,

(2)

The ideal part id gives the free energy of an ideal gas. The

remaining terms describe the interaction of the particles due to

steric hard-sphere HS and charge effects Coul (Coulomb) as

well as the effect of the external potential Vext,±(r,⃗ t) =

−q±E(t)z with the electric field

ω=E t E t( ) cos( )0 (3)

The amplitude E0 is related to the voltage amplitude ΔU and

the accessible system length L by

= ΔE U L/0 (4)

The ideal part id is known exactly, the hard-sphere (HS) part

is described by fundamental measure theory (FMT),14,82−86

introduced in the next paragraph, while the Coulomb

interaction is taken into account with a mean-field

approach,56,85 such that for the ions within a volume V we

obtain

∫

∫ ∫
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with charge density ρc(r,⃗ t) = q(ρ+(r,⃗ t) − ρ−(r,⃗ t)). ε0 denotes

the vacuum and ε denotes the relative permittivity. Λ is the de

Broglie wavelength. As a remark, an extension of this functional

to account for short-range electrostatic correlations between

the ions was recently derived in ref 74.
Fundamental Measure Theory (FMT). We use the White

Bear II version of the fundamental measure theory in tensor87

form84,85 to write the hard-sphere contribution to the free

energy functional as

∫= ⃗Φ { }αr nd ( )
V

FMT
(6)

where Φ = Φ1 + Φ2 + Φ3 is the free energy density with
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using the functions
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These expressions are solely dependent on a set of functions
nα, referred to as weighted densities, which are obtained from
convolutions of the particle density ρ with weight functions
ω(α) such that

∫ ρ ω⃗ = ′⃗ ⃗ − ′⃗ ′⃗α
αn r t r t r r r( , ) ( , ) ( )d

V
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are the weights in the case of spherical particles. Here, R = σ/2
denotes the hard-sphere radius. δ is the Dirac delta function, θ
is the heavyside step function, r ⃗t is the transpose of the vector r,⃗
and  ⃡ is the unit matrix. Arrows indicate vectors, while the
double-headed arrow denotes a matrix. Tr in eq 7 is the trace
of the matrix, that is, the sum of its diagonal elements. In
particular, the weighted density n3(r,⃗ t) gives the number of
particles within a sphere of radius $R$ around r ⃗ at time t. Term
Φ1 of eq 7 ensures, via divergence of the logarithm, that this
value does not become unphysical, that is, larger than one, thus
accounting for the particle size.

System Parameters and Nondimensionalization. We
will present parameterizations for the model on two different
length scales. For a microscale realization, we consider low-
charged colloidal particles of charge q = |q±| = 5e, where e is the
elementary charge, and of diameter σ = 2.61 μm, which serves
as the length scale. We further assume the ions to be partially
solvent permeable with a hydrodynamic radius of = σRh 20

.

The relative permittivity of the organic electrolyte is assumed
as ε = 2.3, corresponding for instance to the relative
permittivity of a decalin−tetrachloroethylene mixture as
discussed in ref 88. The energy scale is set by the thermal
energy at standard temperature (T = 298 K), kBT = 4.11 ×
10−21 J, that can be used to define a thermal voltage UT = kBT/
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q = 5.14 mV. The viscosity of the electrolyte at room
temperature is η = 1.29 × 10−3 Pa s, such that the diffusion

constant of macroions is = = ×
πη

− −D 1.30 10 m sk T
R0 6

12 2 1B

h
.

We define a characteristic time scale τ0 = σ2/D0 = 5.25 s that
corresponds to a characteristic angular frequency
ω = =π

τ
−1.20 s .0

2 1
0

On the other hand, a nanoscale system of monovalent ions
at the same temperature with q = e, σ = 2, Rh = 3 nm, ε = 80,
and UT = kBT/q = 25.7 mV leads to the same reduced system
parameters. With the viscosity of water at room temperature,
ηwater = 8.9 × 10−4 Pa s, the diffusion coefficient in this case is
D0 = 1.63 × 10−10 m2 s−1 and the time and frequency scales are
now given by τ0 = 5.5 × 10−8 s and ω0 = 1.14 × 108 s−1,
respectively. The following calculation can thus be considered
in either of these cases. A summary of the system parameters
can be found in Table 1.
The dimensionless amplitude of the applied voltage is given

by

* = Δ
U

U
UT (11)

As a baseline parameter for this amplitude, we use U* = 38.9.
In addition to the ion diffusion and self-diffusion time,

τ = L
Ddiff

2

0
and τ = σ

D0
2

0
, respectively, we introduce the ion

transit time, τtr, which corresponds to the time that an ion
needs to cross the thickness of the device when the electric
field is not screened. The latter is given by the ratio of the
system length L and the mean velocity of the particles in the

unscreened case, ∫ ω̅ = =
γ π−

*
v t td cos( )qE

T T

T U D
L

2
/4

/4 2 , as

τ = = π

̅ Δ
L
v

U
U

L
Dtr 2

T
2

0
. All time scales are normalized to the self-

diffusion time τ0, such that the dimensionless ion transit time

becomes

τ
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0

2

2
(12)

and the dimensionless diffusion time of ions in the electrolyte

is

τ
τ σ

= Ldiff

0

2

2
(13)

The corresponding dimensionless angular frequencies are

given by

ω
ω π

σ= *U
L

2tr

0

2

2
(14)

and

ω
ω

σ=
L

diff

0

2

2
(15)

The free parameters of the model, varied in simulations, are

ΔU and L.
The dimensionless thickness L/σ should be evaluated in

relation to two common characteristic length scales of ionic

systems: Bjerrum length λB and Debye length λD, which are

given in the dimensionless form as

Table 1. Summary of the System Parametersa

dimensional property symbol definition normalized value typical value nanoscale typical value microscale

ion diameter σ 1 3 nm 2.61 μm
accessible system length L L/σ 10 nm 8.70 μm
Bjerrum length λB q2/(4πεε0kBT) q2/(4πεε0kBTσ) 0.70 nm 0.61 μm

Debye length λD
σ σ

λ ϕ2
1

6B

σ
λ ϕ

1
2

1
6B

2.07 nm 1.80 μm

self-diffusion time τ0 σ2/D0 1 5.50 × 10−8 s 5.25 s
driving period T TD0/σ

2

transit time τtr πL2kBT/(2qUD0) πL2/(2σ2U*) 2.47 × 10−9 s 2.35 s
diffusion time τdiff L2/D0 L2/σ2 6.12 × 10−7 s 58.3 s

self-diffusion frequency ω0 π σD2 /0
2 2π 1.14 × 108 s−1 1.20 s−1

driving frequency ω ωσ2/2πD0

transit frequency ωtr 4qUD0/(L
2kBT) 4σ2U*/L2 2.54 × 109 s−1 2.67 s−1

diffusion frequency ωdiff 2πD0/L
2 2πσ2/L2 1.03 × 108 s−1 0.11 s−1

current scale j0 q/(σ2τ0) 1 3.23 × 105 A m−2 2.24×10−8 A m−2

current harmonics jn ∫ ⃗ ω
−

−t j r td ( , ) e
T T

T n t2
/2

/2 i jn/j0

thermal voltage UT kBT/q 1 25.7 mV 5.14 mV
external voltage ΔU ΔU = E0L ΔU/UT = U* 1 V 0.2 V
impedance scale Z0 kBTτ0/q

2 1 8.8 × 109 Ω 3.36 × 1016 Ω
impedance Z U/(j1σ

2) U*j0/j1
relative permittivity ϵ 80 2.3
particle charge q q/e 1e 5e

aTypical values are given for the two possible realizations constituted by a system of relatively large monovalent ions (nanoscale) with L = 10 nm, σ
= 3 nm, q = e, D0 = 1.63 × 10−10 m2 s−1, kBT = 4.11 × 10−21 J, and ΔU = 1.0 V and a system of low-charged partially solvent-permeable colloidal
particles (microscale) where L = 8.70 μm, σ = 2.61 μm, q = 5e, D0 = 1.30 × 10−12 m2 s−1, kBT = 4.11 × 10−21 J, and ΔU = 0.2 V, both leading to the
same normalized system parameters.
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where n± and n− is the number density of cations and anions,
respectively, and ϕ σ= +π

+ −n n( )
6

3 is the volume fraction

occupied by ions, each defined on the accessible region of
width L. We fix ϕ = 0.375 such that we obtain λB/σ = 0.23 and
λD/σ = 0.69 for the (macro-)ions. Thus, both of the lengths, λB
and λD, are smaller than the particle diameter σ, and a strong
effect of the hard-sphere interactions is expected.
Quantities of Interest. At the start, the system is

equilibrated without applied potential to reach a steady state,
at which point the transverse oscillating voltage U(t) is
introduced. The latter causes an electric field E(t) and thus an
ion flux in z-direction. The resulting ion flux density jp⃗,±(r,⃗ t) is
a periodic function in time and can easily be derived from eq 1

together with the continuity equation = −∇· ⃗ ⃗
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The ionic current density in z-direction is then given as

∑⃗ = ⃗ ⃗ · ̂
±

± ±j r t q j r t e( , ) ( , )p z,
(18)

Analogously, we can define contributions to the ion flux
density that stem from different energy terms
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where k ∈ {id, HS, Coul, ext} and the ionic current density
contribution is then again given by eq 18 replacing jp⃗,± with
jp⃗,±
k . Note that considering the contributions due to the external
potential, ext, and the ideal term, id, the equation is
identical to the Nernst−Planck equation. Adding also the
Coulomb interaction term, Coul, we obtain the Poisson−
Nernst−Planck (PNP) description. The additional hard-sphere
interaction term, HS, is a nontrivial extension to this model
accounting for the finite ion size, an essential contribution due
to the small system width.
The current response is nondimensionalized relative to j0 =

e/σ2τ0 and can, due to its periodicity, be decomposed into
different harmonic contributions of amplitude jn with n = 1, 2,
3, ... The harmonics are obtained as

∫⃗ = ⃗ ω

−

−j r
T

t j r t( )
2

d ( , ) en T

T
n t

/2

/2
i

(20)

with T = 2π/ω. Plots of the current will always show j while we
use j1, the amplitude of the first harmonic of the current
density, to define the complex impedance Z given by

= * ϕ ϕ−Z
Z

U
j

j
e

0

0

1

i( )U j1

(21)

The scale of this quantity is set by z0 = kBTτ0/e
2. Higher

harmonic contributions to the current (jn with n ≥ 2) will be
discussed in the Supporting Information.

■ RESULTS AND DISCUSSION
Density Profiles and Current Response. First, we

investigate the effect of the system width on the density
distribution and current induced in the system. In Figure 2, the

effect of the hard-sphere interaction is reflected in the
increased values of the particle densities at the walls and at
multiples of σ. Counterion accumulation at the walls is
enhanced with the application of a finite voltage difference and
for larger system widths, when ions are attracted to walls of
opposite charge. The effect is preserved but weakens as the
frequency increases. Thus, lower frequencies correspond to
higher amounts of localized ions at the walls. Further, while at
high frequencies the current is harmonic and in phase with the
driving voltage, the low-frequency current shows anharmo-
nicity and a phase shift; see Figure 3. For a stronger electric
field (smaller system width), the current becomes increasingly

Figure 2. Mean density distribution ρ̅ ≡ ρ̅+ = ρ̅− averaged over one
period for different widths, L/σ = 1, L/σ = 2, L/σ = 3, and L/σ = 4.
Layering at the walls and at multiples of σ is observed. The effect is
stronger for smaller frequencies.

Figure 3. Time dependence of current density at the center position
(z = L/2) at small frequency (ω/ω0 = 0.01). The resulting current
shows strong anharmonicity and a phase shift with respect to the
driving voltage U(t), which is also plotted for reference (purple dash-
dot line).

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b05559
J. Phys. Chem. C 2018, 122, 21724−21734

21728

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.8b05559/suppl_file/jp8b05559_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.8b05559


peaked and the system response is nonlinear. The effect of
short-range electrostatic correlations on the density profile
based on the usage of the more sophisticated density
functional from ref 74 is discussed in the Supporting
Information.
Impedance Response. To examine the effect of the hard-

sphere character of the ions, eq 1 was solved, for reference,
with and without hard-sphere (HS) and Coulomb (Coul)
interaction terms, and the impedance corresponding to the ion
flux at the capacitor midplane was calculated; see Figure 4.
Hard-sphere interactions lead to a large increment of this
impedance at medium and high frequencies, whereas the effect
of Coulomb interactions in determining the impedance is
much less pronounced.
The hard-sphere contribution is responsible for a maximum

in the impedance at ω > ωtr. This feature vanishes when the
hard-sphere contribution is switched off. We conjecture that
the maximum is thus related to the additional structure in the
density distribution induced by hard-sphere interactions.
Another peculiar feature in Figure 4 is the impedance

minimum seen at ω ≈ ω0. This feature is independent of the
hard-sphere character of ions and also independent of their
Coulomb interaction. It represents a resonance phenomenon
that should be common to all systems of confined ions exposed
to an oscillating external potential. While overdamped particles
in a continuous environment do not show resonance behavior,
it is the confinement in combination with the ion oscillation
that leads to the resonance effect. However, observation of this
phenomenon depends critically on system parameters. It is a
peculiar signature of the pronounced wall effects, which prevail

in strongly confined systems upon application of an AC voltage
with large amplitude. Under normal conditions in planar
capacitive devices, the resonance should be quenched by
thermal diffusion.38−40,50,54 Diffusion causes a melting or
dephasing of the highly coherent ion motion induced by wall
effects. Since the occurrence of the impedance resonance is not
affected by hard-sphere or Coulombic interaction terms, the
phenomenon can be illustrated and explained using a highly
simplified model, which will be presented next.

Resonance Effect. Single-Ion Capacitor Model. The
origin of the minimum in Figure 4 must be universal and
can thus be understood for the simple case of a noninteracting
gas of ions with charge q confined between two charged plates.
For simplicity, we neglect thermal motion. In the non-
interacting case, every ion can be considered individually. The
equation of motion for each ion is equivalent to the case of a
capacitor configuration with just one ion between the plates
and is given by

γ
ω̇ =z t

qE
t( ) cos( )0

(22)

with the friction coefficient γ and the angular frequency ω. The
ion position is then

ωγ
ω= +z t z

qE
t( ) sin( )0

0

(23)

with arbitrary starting position z0. During one oscillation
period, an ion will transfer through a total transverse distance
dtr = 2qE0/ωγ between the plates.

Figure 4. Impedance with respect to angular frequency of the driving voltage ω for systems of lengths (a) L/σ = 1, (b) L/σ = 2, (c) L/σ = 3, and
(d) L/σ = 4. The impedance values in the large frequency limit are reached from below for system lengths that are odd multiples of σ and from
above for even ones. The analytical result for the position of the minimum in the impedance ωtr according to eq 14 is also indicated.
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In terms of the distance dtr and frequency ω, we can
distinguish three regimes. In the regime of small amplitude, dtr
< L/2, and high frequency, ω > 4qE0/γL, ions that cross the
midplane and contribute to j and Z at this plane perform full
harmonic oscillations with zero phase shift to the applied AC
voltage. The resulting ionic current density is easily obtained as

ρ
ρ

γ
ω= = ̇ =j z L t qz t

q E
t( /2, ) ( ) cos( )0

2
0 0

(24)

in the case of negligible thermal motion.
In the regime of large amplitude, dtr > L, and small

frequency, ω < 2qE0/γL, all ions will accumulate at either one
of the surface planes during a half-period. Therefore, under
ideal conditions, as considered with this simple model, cations
and anions will perform a highly coherent motion and cross the
midplane as two condensed and oppositely directed layers; see
also Figure 3. In this regime, all ions will contribute to current
and impedance responses determined at this plane. The ionic
current density, averaged over a half-period, will thus be
proportional to the frequency of the applied field; it will be
highly anharmonic and exhibit a monotonically decreasing
phase shift with decreasing ω, approaching − π

2
in the zero

frequency limit. The solutions of eq 22 in this and the
following case are given in the Supporting Information.
In the intermediate regime with L/2 ≤ dtr ≤ L and

ω≥ ≥
γ γ

qE

L

qE

L

4 20 0 , all ions in the system contribute to current

density and impedance at the midplane; however, a fraction
dtr/L of these ions forms a condensed layer at the walls,
whereas the remaining fraction of ions remains distributed
uniformly in between and follows the applied field harmon-
ically and with zero phase shift. The transition that gives rise to

the impedance resonance occurs at ω =
γ

qE

Ltr
4 0 : slightly above

this frequency, only 50% of ions (corresponding to dtr/L)
contribute to the ion flux at the midplane, and as the frequency
increases, this fraction diminishes with the decrease of dtr/L. In
the frequency range at and below ωtr, 100% of ions contribute
to the midplane current as a consequence of the ion
condensation at the walls. Thus, the resonance seen in Figure
4 has a simple geometric interpretation.
A necessary condition for observing this resonance at finite

temperature is that diffusional dephasing of the coherent ion
motion will take place on a time scale that is much larger than
the ion transit time, that is, τdiff ≫ τtr or ωdiff ≪ ωtr. The critical
parameter that decides this condition is U*, which should be
much larger than 1 for the ion condensation effect to be
discernible.
Further, the preceding small amplitude or high frequency

case, eq 24, can be adopted to determine the high frequency
limit behavior of nonuniform distributions of interacting
particles by interpreting ρ as a local density, which we
understand as the mean density over the length that particles
oscillate, dtr. Then, if the local density has a maximum at the
plane of interest, j grows for smaller dtr, that is, for larger ω,
and the impedance Z ∝ 1/j declines toward its high frequency
value. For a minimum in the density, the opposite is true and
we approach the constant high-frequency impedance from
below. This effect is also visible in Figure 4 for interacting
particles (HS, Coul). For system lengths that are even
multiples of σ, there is a maximum in the density at the
center position when hard-sphere interactions are included and

the high frequency limit of the impedance is approached from
above. For odd multiples of σ, the center position is at a
density minimum and the high frequency limit of the
impedance is approached from below. Similarly, density
inhomogeneities in the vicinity of the considered plane also
appear in the impedance response at the corresponding
frequencies, leading to additional extrema at medium
frequencies.

Rescaled Resonance. We use the one-particle model to
further investigate the emerging resonance. Defining the
current averaged over a period of the driving signal

∫̅ =j tj td ( )
T

T1
0

, we determine the corresponding time-

averaged impedance Z̃ = ΔU/ jσ̅2. For high frequencies, j is
given by eq 24 in the athermal case. At finite temperature, we
find that even though the condensed particles at the walls do
not contribute to the current directly, diffusion from the
condensed part into the gap center will lead to a density higher
than the equilibrium density ρ0 there. This effect is particularly
dominant for medium frequencies where the fraction of
condensed particles, dtr/L, is expected to be high. As a next-
order improvement, we correct for this effect by neglecting the
peaked structure altogether. The numerical results for the
density show that this is a valid approximation as the ion
density peaks account for only about 10% of all ions.
Considering only the uniform distribution part, the leftmost
ions reach the extremal position dtr, while the rightmost are
pushed against the wall at position L. The effective width
available to the ions is thus reduced to L − dtr. The density,
assuming again a constant distribution but now over the
reduced region, is given by

ρ ρ= −L L d/( )0 tr (25)

From eqs 24 and 25, we thus obtain

π γ
ρ

̅ =
−

j
q E L

L d
2 2

0 0

tr (26)

and the high frequency limit, ω → ∞, as =
π

ρ
γ

∞j
q E2

2
0 0 .

Normalizing the frequencies to the transit frequency ωtr and
the impedance to the high frequency limit Z∞ = U*j0/j

∞, we
find that the result is solely depending on the value of U*; see
Figure 5. An approximate analytic result in the limit of
negligible thermal motion compared to the driving force is
given by eq 26 for ω > ωtr and j ̅ = qρ0Lω/π for ω ≤ ωtr when
all ions are passing the midplane.
The resonance becomes more pronounced for higher values

of U*. However, it cannot exceed a factor of 2 between the
resonance value and the high frequency limit of the impedance.
High values of U* may appear unphysical but could be realized
by using multivalent ions rather than higher voltages.

Effect of Condensed Layer. Impedance. So far we have
only considered the impedance corresponding to the current at
the system center at z = L/2. However, it is intuitive to expect
the local impedance response, that is, the impedance associated
with the time-dependent current at a fixed point between the
capacitor plates, to be highly dependent on the position. The
current response in the ion layer at the wall should significantly
differ from the current in the system center. As a next step, we
therefore consider the dependence of the local impedance on
the position between the two capacitor plates. In Figure 6, the
case z/σ = 2 corresponds to the center of the system. The
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system response here is as expected, with a 1/ω decay to the
high frequency constant value in the impedance amplitude and
the phase changing from −π/2 to 0. Approaching the wall, the
position of z/σ = 0.5 corresponds to a density minimum and
the large frequency limit of the impedance is approached from
below. The rise in Z toward the high frequency limit is
accompanied by a maximum in the phase with the system
response even becoming inductive (φ > 0) for a limited
frequency range. The phase behavior is caused by ion
condensation at the wall. These ions lead to a temporal shift
of the maximum in the current response toward the time at
which they pass the plane. The resulting phase shift increases
with ω and may even become positive. Upon further increasing
ω, ions from the wall no longer reach the plane and the effect
abates.
Decreasing the distance to the wall, we find that the low

frequency phase value approaches zero as we enter the region
of condensed ions. If we now consider again the time the ions
condensed at the wall take to reach the plane at which we
determine the impedance, we find that some of these ions are
already present at the considered plane, reducing the phase
shift toward zero. The effect becomes stronger the more ions
are present at the plane, so the closer we are to the wall. At
large frequencies, the oscillation amplitude is very small and

the current is constituted by the ions freely oscillating in the
field; thus, also in this limit the phase grows toward zero.
A discussion of the effect of short-range electrostatic

correlations on the impedance response based on the usage
of the more sophisticated density functional from ref 74 is
included in the Supporting Information.

Current Components. To better understand the effect of
ion interaction on the current, we separate the flow into
contributions corresponding to the different energy terms in eq
2. In Figure 7, the flows caused by the external electric field, jel,
by the hard-sphere, jHS, and Coulomb interaction, jCoul, and the
one due to diffusion of the ions, jdiff, are shown together with
the total flow, jtot, as a function of time for two different
frequencies.
At the center (right column), the largest contribution to the

total flow is always given by the flow due to the external
electric field. Owing to the moderate density at this position,
the hard-sphere interaction term is negligible. At high
frequencies, the ions are freely following the electric field
with a small amplitude oscillation around their position. The
oscillation is in phase with the external electric field and the
effect of the interaction terms is minute. For lower frequencies,
however, the amplitude of the oscillatory motion becomes
larger and the ions feel their neighbors via their Coulomb
potential. Together with the diffusive flow, the Coulomb effect
counteracts the particle oscillation induced by the electric field,
resulting in a phase-shifted total flow jtot.
Close to the wall, and at low frequencies, there are three

main components that enter the total flow. These are given by
hard-sphere interaction, diffusion, and external field term. The
external electric field causes high densities near the walls for
which the hard-sphere interaction becomes important. Addi-
tionally, the high-density gradient close to the walls causes a
strong diffusive flow. The electric field and hard-sphere terms
lead to charge flows in the same direction, pushing the ions
against the wall. This flow is countered by the diffusive flow,
which works against the formation of the accompanying
density gradient. The different contributions show large
anharmonicity, and the resulting current is tiny. At high
frequencies, the current contributions are harmonic and the
hard-sphere flow term is reduced due to the smaller oscillation
amplitude.

Figure 5. Impedance Z̃ for different values of the external voltage U*
and for the approximative analytic result with respect to angular
frequency ω. The results are rescaled to the transition frequency ωtr
and the high frequency impedance limit Z∞. The observed resonance
at ω/ωtr = 1 becomes more pronounced for higher U*.

Figure 6. Impedance Z (a) and phase φ (b) as functions of frequency for different positions z between the plates. The frequency-dependent
impedance changes qualitatively when approaching the wall. The parameters are L/σ = 4, U* = 38.9.
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■ CONCLUSIONS

We have explored by dynamic density functional theory the
effect of an alternating voltage on a symmetric binary
electrolyte confined between plan-parallel capacitor plates.
This nonlinear theory provides a unifying framework to
include steric interactions between ions and their drift
dynamics induced by the AC electric field. It thus significantly
generalizes previous approaches based on Poisson−Nernst−
Planck theory. Besides the dynamical layering of the driven
ions near the confining walls, we predict a resonance effect of
the impedance, which can be traced back to a simple single-ion
effect, but is modified by Coulomb and steric interactions. This
effect becomes relevant in strong confinement and allows one
to tune the electric response by confinement spacing,
temperature, and external voltage applied. It was explored for
two different realizations, both of vital importance to physical
chemistry, namely, charged colloids and microions of nano-
metric size.
Future work should concentrate on the molecular details of

the solvent as well as specific substrate properties like surface
charges and roughness. In particular, reorientation and
polarization effects of the liquid molecules and the impact of
these effects on the capacitive ion response discussed here
should be considered. Density functional theory can in fact be
generalized toward solvent-ion mixtures89,90 and more general
external potentials. Modeling of electrode details can in
principle be incorporated as well.
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Schilling, T. Free Energies, Vacancy Concentrations, and Density
Distribution Anisotropies in Hard-Sphere Crystals: A Combined
Density Functional and Simulation Study. Phys. Rev. E 2010, 82,
No. 051404.
(87) Tyldesley, J. An Introduction to Tensor Analysis for Engineers and
Applied Scientists; Longman, 1975.
(88) Chaudhuri, M.; Allahyarov, E.; Löwen, H.; Egelhaaf, S. U.;
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