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ABSTRACT
Microswimmers are active particles of microscopic size that self-propel by setting the surrounding
fluid into motion. According to the kind of far-field fluid flow that they induce, they are classified
into pushers and pullers. Many studies have explored similarities and differences between suspen-
sions of either pushers or pullers, but the behaviour of mixtures of the two is still to be investigated.
Here,we relyonaminimaldiscretemicroswimmermodel, particle-resolved, includinghydrodynamic
interactions, to examine the orientational ordering in such binary pusher–puller mixtures. In agree-
ment with existing literature, we find that our monodisperse suspensions of pushers do not show
alignment,whereas thoseof solely pullers spontaneously developordered collectivemotion. By con-
tinuously varying the composition of the binary mixtures, starting from pure puller systems, we find
that ordered collectivemotion is largelymaintained up to pusher–puller composition ratios of about
1:2. Surprisingly, pusherswhen surroundedbyamajority of pullers aremore tightly aligned than indi-
cated by the average overall orientational order in the system. Our study outlines how orientational
order can be tuned in activemicroswimmer suspensions to a requested degree by dopingwith other
species.
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1. Introduction

The field of self-propelled particles and active matter
has developed into a prime area to study the proper-
ties of non-equilibrium systems. Examples that have been
addressed in detail are the statistics of the migrational
behaviour of individual self-propelled agents involving
stochastic fluctuations [1–5] or of their collectivemotion,
including their dynamical phase behaviour [5–15].

The vast majority of studies on the collective
behaviour in this field concentrates onmonodisperse sys-
tems. To some extent, mixtures of active and passive
particles have been investigated. This concerns the collec-
tive behaviour of mixtures of self-propelled and passive
rods, in which, for instance, laning of the active rods in
the passive background is observed [16]. Moreover, the

CONTACT Andreas M. Menzel menzel@hhu.de Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225
Düsseldorf, Germany

separation into dense andmore dilute regions inmixtures
of active and passive spherical particles was addressed
[17–20], as was the coarsening of crystal domains when
systems of passive particles were doped by active agents
[21]. A related topic is the study of mixtures of particles
of different temperatures [22–24].

Investigations on mixtures of different types of active
particles are exceptions. For instance, multi-species
swarms of microorganisms were addressed [25], preda-
tor–prey scenarios were analysed [26,27], mixtures of
active rotors of opposite sense were considered [28]
including doping by passive particles [29], a stochastic
description of mixtures of particles of different activ-
ity was outlined [30], the alteration of the transition to
polarly ordered collective motion with increasing poly-
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dispersity of the aligning self-propelled agents was inves-
tigated [31] and the mutual support between different
species in their orientational ordering and collective
motion was studied in the context of imposed align-
ment interactions [32]. Mostly, these works concentrate
on ‘dry’ systems of self-propelled particles, not taking
into account the role of a surrounding medium between
the individual agents.

Active microswimmers represent one special type
of such self-propelled particles [13,33]. These objects
are suspended in a surrounding fluid. Examples are
given by artificial colloidal Janus particles that pro-
pel by localised asymmetric concentration or tempera-
ture gradients induced in their environment [1,34,35].
Biological microswimmers are found in nature in the
form of mechanically propelled bacteria or algae [36,37].
Their mechanism of self-propulsion sets the surround-
ing fluid into motion. As a first coarse classification, one
may distinguish between two different types of active
microswimmers. If, to leading order, the induced flow
field describes fluid pushed out along the propulsion axis
and is dragged in from the sides, the swimmer is called
a pusher [38]. In the opposite case of fluid being pulled
inwards towards the swimmer along the propulsion axis
and ejected to the sides, it is classified as a puller [38].
Via these induced fluid flows, hydrodynamic interactions
[5,38–43] arise between the individual swimmers that
can affect the overall collective behaviour [44–52]. Due
to the small dimensions of microswimmers, the relevant
fluid flows are typically characterised by low Reynolds
numbers [53].

In the present work, we combine the two aspects
described above. That is, we study mixtures of simpli-
fied activemodelmicroswimmers that hydrodynamically
interact with each other through self-induced fluid flows
in suspension. More precisely, we investigate binary mix-
tures of pusher- and puller-type swimmers. We concen-
trate on the microscopic swimmer-scale level, explicitly
taking into account the hydrodynamic interactions on
this scale. The swimmers are resolved individually in a
discretised description using a minimal swimmer model
[51,52].On this basis, we evaluate the global orientational
behaviour.

The arising orientational ordering in crowds of
microswimmers due to hydrodynamic interactions has
been analysed before for suspensions of either pushers or
pullers separately [45,54–56]. Here we study this effect in
mixtures of the two types. In our computer simulations
[57] we find, for instance, that pushers surrounded by
a majority of pullers exhibit tighter orientational order-
ing than the surrounding pullers. Underlying details like
possible intermittent or spatially localised orientational

ordering of the swimmers can be analysed accordingly in
more detail in the future.

Below, we proceed in the following way. First, we
describe the equations of motion for our suspended
pusher and puller microswimmers. Afterwards, we anal-
yse the collective behaviour of binary mixtures of the two
swimmer species for varying amounts of mixing ratio.
In this context, also the impact of temperature and area
fraction is addressed. Some conclusions are added in the
end.

2. Model

We consider a total of N self-propelled microswim-
mers, NA of which are pushers and NB = N − NA are
pullers, with positions Ri = (Rxi ,R

y
i ) and normalised

orientational vector ui = (uxi , u
y
i ) (i = 1 . . .N). For an

undisturbed swimmer, ui coincides with its propulsion
direction. All positions and orientations are confined to a
two-dimensional plane generated by the directions x̂ and
ŷ. Still, three-dimensional hydrodynamic interactions
apply. For brevity, we introduce the multi-dimensional
vectorsR andu, the components ofwhich are given by the
positional and orientational coordinates, respectively, of
all swimmers. Moreover, in the two-dimensional plane,
the orientational vector ui of each swimmer can be rep-
resented by its angle θi with the x-axis such that ui =
(cos θi, sin θi). In a similar fashion, we denote by θ , v and
ω the multi-dimensional vectors containing the angles,
the linear and the angular velocities of all swimmers.
The microswimmers are confined to a two-dimensional
periodic square box of area A.

In the low-Reynolds-number regime of active
microswimmers, dissipation dominates, and the motion
is governed by an overdamped, stochastic Langevin
equation. It is to be integrated forward in time according
to Stratonovich calculus [58]. Here we employ a sim-
ple Euler integration scheme at the cost of introducing
a ‘spurious drift’ term [49,59].

By integrating the Langevin equation over a small time
interval dt, we obtain the following expressions for the
discrete increments dR and dθ [60,61]:(

dR
dθ

)
=

(
vdet
ωdet

)
dt + H · ξ

√
dt (1)

with the deterministic linear and angular velocities(
vdet
ωdet

)
= M ·

(
F
T

)
+ A ·

(
u
0

)
+

(
∂R
∂θ

)
· D (2)

as well as the mobility and active mobility matrices

M =
(
Mtt Mrt

Mtr Mrr

)
and A =

(
Att Art

Atr Arr

)
. (3)
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The first term on the right-hand side of Equation (2)
determines the contributions of the conservative forces
F and torques T to the deterministic velocities vdet and
angular velocities ωdet. The second term includes the
contribution of self-propulsion along each particle axis
ui. The last term is the spurious drift [59], i.e. the diver-
gence of the diffusion matrix D = kBTM. In the case
of our hydrodynamic interactions, see below, the drift
term vanishes [59]. Finally, the matrix H is obtained by
Cholesky decomposition [62] to satisfy H · HT = 2D.
The components of the vector ξ are uncorrelated Gaus-
sian random numbers of zero mean and of variance
unity.

Thus, we obtain the correct deterministic mean dis-
placements

〈(
dR
dθ

)〉
= M ·

(
F
T

)
dt + A ·

(
u
0

)
dt, (4)

and, in the absence of deterministic driving forces and
torques, the correct mean squared displacements

〈dR dR〉 = 2kBTMttdt,

〈dR dθ〉 = 2kBTMtrdt,

〈dθ dθ〉 = 2kBTMrrdt (5)

(i, j = 1 . . .N) that reproduce the correct time evolution
of the corresponding Smoluchowski equation [58,59].

3. Details of the hydrodynamic and steric
swimmer interactions

Hydrodynamic couplings between the swimmers are
considered on the Rotne–Prager level [41,51,52]. Each
swimmer consists of a spherical body of no-slip surface
conditions for the surrounding fluid.Non-hydrodynamic
forces and torques acting on such a swimmer body are
transmitted to the surrounding fluid, set it into motion,
and in this way affect the motion of all other swim-
mer bodies, see Equation (2). Examples are conserva-
tive forces originating from steric repulsion or forces
and torques resulting from external fields. For the i-th
swimmer, the corresponding components ofM are

Mtt
ii,αβ = μtδαβ , Mrr

ii,αβ = μrδαβ ,

Mtr
ii,αβ = 0, Mrt

ii,αβ = 0, (6)

where i = 1 . . .N, δαβ denotes the Kronecker delta,
and α,β = x, y label the different Cartesian coordinates.
Here, we introduced the translational and rotational

mobility coefficients

μt = 1
6πηa

, μr = 1
8πηa3

, (7)

with adenoting the hydrodynamic radius of the swimmer
body and η the viscosity of the surrounding fluid. The
remaining components ofM are given by [41]

Mtt
ij,αβ(r) = μt

[
3a
4r

(
δαβ + rαrβ

r2
)

+ 1
2

(a
r

)3 (
δαβ − 3

rαrβ
r2

)]
, (8)

Mrt
ij,αβ(r) = Mtr

ij,αβ = μr
(a
r

)3 ∑
γ

εαγβ rγ , (9)

Mrr
ij,αβ(r) = − μr 1

2

(a
r

)3 (
δαβ − 3

rαrβ
r2

)
(10)

for i �= j (i, j = 1 . . .N), r = Rj − Ri, r = |r|, and εαγβ

the Levi–Civita tensor.
So far, we have described passive particles interacting

hydrodynamically with each other. Now we include self-
propulsion. For this purpose, two point-like force centres
are rigidly connected to each swimmer body, see Figure 1.
The two force centres are separated by a distance L and
exert on the fluid two oppositely oriented forces of equal
magnitude along the symmetry axis of each swimmer.
Since the force centres are located at different distances
from the sphere, the resulting flow field leads to a trans-
port of the swimmer body in the self-induced fluid flow
[51,52,63]. In principle, the rigid swimmer bodies affect

Figure 1. Geometry of our (A) pusher (f > 0) and (B) puller (f < 0)
model microswimmers with the direction of net motion denoted
by u. The spherical swimmer body of hydrodynamic radius a is
convected by the flowfield indicated by field lines and arrows and
induced by the two forces positioned at ±αLu and ∓(1 − α)Lu
from the centre of the sphere. The radius of the effective steric
repulsion, see Equation (19), is indicated by σ/2. (Colour of back-
ground arrows from purple to red indicates the local intensity of
the flow field.) (Colour Online).
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the self-induced flow field [64]. Here, we do not include
this effect. That is, we only address the situation to lowest
order in the length scale a/L [52].

The two active forces of the i-th swimmer are
parametrised as

f+
i = |f |ui, f−

i = −|f |ui, (11)

with their centres located at the positions

R+
i = Ri + f

|f |αLui, R−
i = Ri − f

|f | (1 − α)Lui,

(12)
respectively. Here, α ∈ ]a/L, 1 − a/L quantifies the
asymmetry in the propulsion mechanism. The case of
α = 0.5 recovers the symmetric ‘shaker’ configuration
[63]. Moreover, following Equation (12), the sign of f
determines whether the swimmer is a pusher or a puller,
i.e. whether it pushes the fluid outward or pulls the fluid
inward along the symmetry axis. To calculate the effect of
the active forces of swimmer j on the motion of swimmer
i, we use the mobility matrices of components [51,52]

μtt
αβ(r) = 1

8πηr

(
δαβ + rαrβ

r2
)

+ a2

24πηr3
(
δαβ − 3

rαrβ
r2

)
, (13)

μrt
αβ(r) = 1

8πηr3
∑
γ

εαγβ rγ . (14)

Using these expressions, we obtain the components of the
active mobility matrixA in Equation (2) as [51,52]

Att
ij,αβ = f

[
μtt

αβ(r+ij ) − μtt
αβ(r−ij )

]
, (15)

Art
ij,αβ = f

[
μrt

αβ(r+ij ) − μrt
αβ(r−ij )

]
, (16)

Atr
ij,αβ = Arr

ij,αβ = 0. (17)

r±ij = R±
j − Ri is the vector connecting the j-th ± active

force site to the centre of particle i. The elements of
Art and Arr vanish because the propulsion forces are
aligned with and are located on the symmetry axis of the
swimmer and, thus, exert no active torque [52].

In the case of extremely diluted (i.e. non-interacting)
swimmers, their self-propulsion speed v0 follows as

v0 = fμta
2L

[
3

1 − 2α
α(1 − α)

− a2

α3L2
+ a2

(1 − α)3L2

]
. (18)

To position the force centres outside of the swimmer
body, we require α ∈ ]a/L, 1 − a/L.

Finally, our swimmers sterically interact with each
other via the pair potential of the generalised exponential
model of index 4 (GEM-4) [65]

Vst(r) = ε0 exp
(

−|r|4
σ 4

)
, (19)

where ε0 and σ measure, respectively, strength and range
of the steric repulsion. Although the steric interaction is
soft, we indicate by σ the size of the swimmers. In the
following, for convenience, we use v0 as the unit of mea-
sure of velocities. We set a = σ/4

√
3, L = σ/2, α = 0.3,

and swimming forces |f | � 2.41f0. Distances, times and
forces are measured in multiples of σ , t0 = σ/v0 and
f0 = v0/μ

t , respectively.
Moreover, to compare our study with other theoret-

ical investigations as well as with experimental results,
we introduce the following dimensionless numbers. First,
the Péclet number

Pe = v0σ

μtkBT
(20)

quantifies the strength of self-propulsion with respect
to Brownian diffusion. Furthermore, the area fraction is
given by

φ = Nπσ 2

4A
, (21)

and the fraction of overall pushers by χA = NA/N.
Thus, we indicate by χA = 0 and χA = 1 pure monodis-
perse systems of pullers and pushers, respectively. Finally,
unless specified otherwise, all of the following results
are obtained for simulations with a total of N=1024
particles. This, together with Equation (21) and for a
given area fraction φ, sets the area of our periodic square
box A.

4. Results

In our simulations, a suspension of active microswim-
mers can spontaneously develop collective motion into a
common direction, see the example snapshot in Figure 2.
To describe the degree of such collective orientational
ordering quantitatively, we define the global polar order
parameter

P(t) =
∣∣∣∣∣ 1N

N∑
i=1

ui(t)

∣∣∣∣∣ , (22)

which is equal to 1 in the case of complete polar align-
ment of all swimmers and 0 if the orientations do not
show a net global polar order. In all our simulations, we
start from an initial configuration of isotropically dis-
tributed orientations, implying P(t = 0) = 0. In agree-
ment with the results obtained via a Lattice–Boltzmann
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Figure 2. Example snapshot of one of our simulations of binary
pusher–puller mixtures of active microswimmers, here at φ =
0.0316;, Pe = ∞ (kBT = 0) and χA = 0.1. The depicted state cor-
responds to a value of the polar order parameter of P � 0.78. The
orientations ui of each swimmer are indicated by the arrow hats.
For better visibility, the sizes of the simmers have been enlarged.
The total number of swimmers is N= 1024, NA = 103 of which
are pushers (larger filled arrow hats, red online) and NB = 921 of
which are pullers (smaller empty arrow hats, blue online). More-
over, the black dashed square delimits the simulation box.

Figure 3. Timeevolutionof thepolar order parameterP(t) for dif-
ferent area fractionsφ, Péclet numbers Pe and relative amounts of
pushers χA. The curves, unless specified otherwise by the respec-
tive labels, areobtained fromsimulationswithP(t = 0) = 0,Pe =
∞ (kBT = 0) and χA = 0. The total number of active microswim-
mers is N= 1024, except for the case of Pe= 38,493 (in black)
comprising only N= 225 swimmers because of the higher com-
putational cost.

scheme in Ref. [56], and as shown in Figure 3, suspen-
sions of only pullers spontaneously develop a steady polar
order, which here seems to saturate around P ∼ 0.8. In
the case of only pushers, instead, we in our system do
not observe the polar order parameter to spontaneously

increase; moreover, if initialised by an aligned state P(t =
0) = 1, P(t) quickly decays to almost zero.

The overall area fraction φ affects the dynamics of
developing ordered collective motion. At low area frac-
tions, e.g. φ = 0.01 in Figure 3, the swimmers eventually
reach an equally high amount of alignment as for φ ∼
0.03, but reaching this value takes a noticeably longer
time. The ordering process involves the induced flow
fields acting on the other swimmers. Lower area frac-
tions imply larger interparticle distances, weaker hydro-
dynamic interactions and longer time needed for the
swimmers to develop the collective behaviour. At higher
area fractions, instead, the time necessary to reach the
steady state further decreases, see φ = 0.1 in Figure 3.
The attained orientational order, however, is lower, pre-
sumably, because for denser systems collisions between
the swimmers become more relevant and affect the over-
all order.

Mostly, the results that we report here were obtained
at vanishing temperature kBT = 0, i.e. for infinite Péclet
number Pe = ∞. In all considered cases, in which we
examined the influence of finite temperature, we found
it to lower the limiting value of P(t) and increase its
fluctuations, see Figure 3.

We now move on to the central concern of our study,
i.e. the collective behaviour of pusher–puller mixtures.
For this purpose, we vary the fraction of pushers χA =
NA/N from 0 to 1. We sample the average polar order
parameter in the stationary state, i.e.

P∞ = 1
M

M∑
n=1

P(tn) (23)

withM>3000. Sampling is performed over a time inter-
val t ∈ [t1, tM] in the long-time regime, for which a sta-
tionary state has been reached. The effect of increasing
mixing ratio χA for different area fractions is shown in
Figure 4. As mentioned above, high area fractions (see
φ = 0.2 in Figure 4) hinder the orientational ordering of
the swimmers regardless of the swimmer species. On the
contrary, at low to intermediate area fractions, collective
motion spontaneously emerges forχA = 0 and ismore or
less preserved even upon introduction of relatively large
amounts of pushers. Even up to a total of∼ 30% of push-
ers, see the curves for φ = 0.03162; and φ = 0.05623; in
Figure 4, P∞ remains as high as 0.4, indicating still a
significant degree of alignment. As χA further increases
beyond this point, P∞ quickly decays to zero and the
absence of polarly ordered collective motion in our pure
pusher suspensions (χA = 1) is recovered.

Remarkably, when a large set of pullers is doped with a
small amount of pushers, the latter are observed to align
themselves along the collective direction of motion more
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Figure 4. Polar order parameter P∞ in the stationary collective
state for increasing pusher–puller mixing ratio χA and different
area fractionsφ (kBT = 0,Pe = ∞). Lines andbars represent aver-
ages and standard deviations, respectively, over sampling inter-
vals in the stationary regimes as displayed in Figure 3. Inset: zoom
of the initial behaviour at low χA.

Figure 5. Time evolution of the polar order parameter P(t) in a
suspension of pullers with a 10% doping by pushers (χA = 0.1),
area fraction φ = 0.03162; and Pe = ∞ (kBT = 0). The dotted
(red online) line denotes the polar order solely of the pusher
microswimmers,PA(t). Solid (blueonline) anddash-dotted (black)
lines correspond to the polar order parameter of the pullers, PB(t),
and of the whole collection, P(t), respectively. Inset: polar dis-
tribution of the swimming orientations of pullers (solid% line,
blue online) and pushers (dotted line, red online) in the stationary
regime.

tightly than the surrounding pullers. To illustrate this
behaviour, we show in Figure 5 the polar order param-
eters for the two species separately, PA(t) for pushers
and PB(t) for pullers. In the stationary regime, we find
PA(t) > PB(t). As a consequence of this higher degree
of alignment, the distributions of the pusher and puller
swimming orientations (see the inset of Figure 5) are cen-
tred on the same direction, but the pusher distribution is
narrower. Even for χA as high as 0.3, we found the polar
order parameter PA(t) to be systematically higher than
PB(t).

We remark that an increased orientational ordering
and mutual support in collective motion by interactions
between different species in a binary mixture of self-
propelled particles has been previously reported in a ‘dry’
system [32], analysing a variant of the Vicsek model
[6]. In our case, such an effect of mutual support in
orientational ordering would need to result from the
presence of the hydrodynamic interactions due to the
self-induced flow fields. In the inset of Figure 4, we
enlarge the curves for elevated polar order at low frac-
tions of pushers χA.Whether also the overall polar orien-
tational order increases by the initial addition of pushers
at low values of χA cannot be statistically resolved by our
present means. This question needs further clarification
in the future.

Partial answer to this question can be obtained
by evaluating the different pair distribution functions
[66]gXY(r,ϕ), with X and Y either A (pushers) or B
(pullers). gXY(r,ϕ) represents the probability to find a
swimmer of species Y around a swimmer of species X at
distance r and in direction ϕ with respect to the swim-
mer orientation of X, see Figure 6. The amount of doping
by pushers in Figure 6 was χA = 0.1 and the overall

Figure 6. Pair distribution functions gXY(r,ϕ) (X,Y=A,B with A
for pushers and B for pullers) related to the probability to find a
swimmer of species Y in the ϕ-direction and at distance r from
a swimmer of species X centred at the origin and pointing to
the top. The data are sampled in the stationary state of a simu-
lation at φ = 0.03162;, kBT = 0 and χA = 0.1. gAB, gBA and gAA
have been rescaled for better visibility and their maximum inten-
sity is 0.0125. The overall g(r,ϕ) for the whole system is basically
indistinguishable from gBB(r,ϕ).
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total pair distribution function is virtually identical to
gBB(r,ϕ).

The functions gXY(r,ϕ) feature a ring around the
centre, most likely due to the soft steric interaction
introduced in Equation (19), which was cut at r ∼
2σ . gBB(r,ϕ) shows a central maximum at the front,
which is presumably related to collisions between the
self-propelled swimmers. Interestingly, gAB(r,ϕ) features
three distinct maxima: one at the front and two lat-
eral ones at ϕ ≈ ±3π/4. This may indicate a preferred
arrangement for pushers when surrounded by a major-
ity of pullers, namely, one or more pullers in front of
each pusher and two behind at ϕ ≈ ±3π/4. A similar
triangular-like configuration is found for pullers when
considering the probability to find a nearby pusher, see
the function gBA(r,ϕ). Remarkably, there is no pro-
nounced maximum at the front for gAA(r,ϕ) for the
pusher–pusher spatial correlation. This may reflect the
propulsion mechanism associated with the ejection of
fluid along this axis. Such flows will counteract the
mutual approach of two pushers along this axis.

5. Conclusions

To summarise, we employed particle-resolved simula-
tions to address the behaviour of binary mixtures of self-
propelled particles of different propulsion mechanisms
(pushers and pullers). The effect of mutual support
between the two species concerning the polar orienta-
tional ordering of their propulsion directions was anal-
ysed. So far, this question of mutual inter-species cou-
pling has been investigated within a variant of the
famous Vicsek model for ‘dry’ self-propelled particles
[32].Here, we have explicitly included the contribution of
hydrodynamic interactions to the collective orientational
behaviour.

Via our minimal hydrodynamic microswimmer
model, we can readily realise both pusher- and puller-
like propulsion mechanisms. In agreement with previ-
ous studies [56], we observe the spontaneous polar ori-
entational ordering of pure monodisperse suspensions
of pullers, while no polar ordering could be found in
our monodisperse suspensions of pushers. Furthermore,
we point out that increased area fraction or tempera-
ture counteract the polarly ordered collective motion.
We remark that at very low area fractions the swimmers
weakly interact and a common orientation could not be
reached within observable times.

By doping a system of pullers even with significant
amounts of pushers (up to 30%) the overall polar col-
lective motion is largely preserved. Surprisingly, we find
that the polar ordering of pushers in this case is higher
than the overall polar orientational order in the rest of the

system. Such an effect is possibly connected to some pre-
ferred spatial arrangement of the pushers relatively to the
surrounding pullers. One hint to support the existence
of such preferred arrangements can be inferred from the
inter-species pair distribution functions. Further work
is necessary in the future to determine the mechanism
that drives the pushers into a more ordered state than
the enclosing pullers. A way to shed further light onto
the internal structure of such mixtures could result from
more analytical investigations, based, for instance, on
dynamical density functional theory [51,52].

Several developments may follow on the basis of the
present study. First, polydispersity in size of both pushers
and pullers could be considered, as well as different con-
tinuous combinations of the parameters α and f related
to propulsion efficiency and activity. Moreover, an addi-
tional doping by passive particles should be addressed.
The effect of using other microswimmer models [67,68]
could likewise be assessed in subsequent investigations.
In this way, a large set of parameters is to be explored to
devisemixtures of different active and passive particles to
adjust at will the structural and dynamic properties of the
system. Achieving tunable degrees of alignment for spe-
cific subsets of active particles could, for instance, allow
to modify the transport properties or selectively sepa-
rate the different species. Via improved particle-resolved
simulations, we hope to gain a better understanding and
to develop elaborated predictions on the dynamic and
structural behaviour of real active systems.
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