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1.  Introduction

Colloidal suspensions of mesoscopic spherical particles are 
excellent classical model systems for fundamental ques-
tions of structural phase transformations [1–5]. The effective 
interactions between these particles can largely be tuned by 
charges and additives such that complex interactions with 
different competing length scales can be realized [6]. In the 
past two decades we have started to understand better how 
such interactions govern the stable ground state of the bulk 
system. For example, quasicrystals have been shown to evolve 
in one-component three-dimensional (3D) colloidal systems 
provided the interaction is complex enough [7, 8] and iso-
structural solid–solid transition were predicted [9–12]. In 
fact, various complex crystalline lattices have been found to 
be stable for certain parameters at small temperature [13–18].

One particular sort of interaction potential has been explored 
in great detail in the bulk. It is the so-called ‘mermaid poten-
tial’, a term coined by G Stell, which comprises potentials with 
an attractive head and a repulsive tail [19, 20]. This interac-
tion is also known as short-ranged-attraction–long-ranged 

repulsion (SALR) potential and is realizable in principle in 
charged and magnetic colloidal suspensions and protein solu-
tions with additives [20, 21]. A lot of theoretical work has been 
devoted to these ‘mermaid potentials’ [22]. In the 3D bulk, the 
competition between the two length scales of attraction and 
repulsion results in quite complex stable structures which are 
reminiscent to those obtained for amphihilic systems [23] and 
block-copolymers [24]. These include stable cluster fluids [21, 
25–29], cluster solids and new mesomorphic structures [30] 
with hexagonal rod-like, lamellar [31–33] or gyroid [34, 35] 
topologies. Based on this recent work, at small temperatures, a 
general bulk phase topology was obtained with a stable lamellar 
phase at intermediate densities surrounded by a double gyroid 
phase and different stable cluster crystal phases (such as hcp 
and bcc lattices) and hexagonal ordered rod-structures hence 
a huge treasure of structures can be stable or metastable [35].

Colloidal suspensions can also be confined in external 
confining potential using e.g. optical tweezers, thermopho-
retic traps [36] and acoustic trapping devices [37]. The sim-
plest description of such a trapping potential is a harmonic or 
isotropic parabolic potential. It is known from colloids and 
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Abstract
We investigate the structural properties of colloidal particle systems interacting via an isotropic 
pair potential and confined by a three-dimensional harmonic potential. The interaction potential 
has a repulsive–attractive–repulsive profile that varies with the interparticle distance (also 
known as a ‘mermaid’ potential). We performed Langevin dynamics simulations to find the 
equilibrium configurations of the system. We show that particles can self-assemble in complex 
structural patterns, such as compact disks, fringed disks, rods, spherical clusters with superficial 
entrances among others. Also, for particular values of the parameters of the interaction 
potential, we could identify that some configurations were formed by quasi two-dimensional 
(2D) structures which are stable for 2D systems.
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complex plasmas [38–41] that the constraints posed by con-
finement generate new cluster structures which can be vastly 
different from the unconfined bulk system [42–45].

In this paper we combine the two aspects of competing 
SALR interactions and harmonic confinement. In this con-
text, previous calculations have been performed in two spatial 
dimensions only [46–49]. They have revealed that complex 
two-dimensional (2D) structures emerge at zero temperature 
which incorporate the length scales involved in the pair inter-
action and therefore show a wealth of structures e.g. with 
fringed rims. Here we use the same model potential as previ-
ously applied to 2D and tackle the more-complicated 3D sys-
tems. Motivated from the rich bulk structures occurring in three 
dimensions, we expect even more complex structures which 
share at least parts of the bulk structures (gyroids, lamellar, 
etc). Indeed, we find a wealth of different structures which are 
so complex that they cannot even be classified easily. Some of 
them are reminiscent of the bulk building blocks, some can be 
seen as stacks of the structures found in the pure 2D system, 
and many others generated by the confinement are unfamiliar 
and new. In fact, for certain selected parameter combinations 
of our model, we show that at zero temperature cluster struc-
tures emerge which have superficial entrances, clusters which 
look like stacks of fringed disks, assemblies of parallel rods 
and compact aggregates with holes and tunnels. Some mac-
roscopic patterns are correlated to a packing measure from 
which we construct a phase diagram.

Most of these cluster structures are novel, demonstrating 
the rich potential to construct cluster morphologies at will 
by using tailored pair interactions and confinement. These 
tailored clusters can be used as further building blocks for 
micron-sized sieves and filters of controlled porosity [50]. 
They can also be taken as complex aggregates to form self-
organized crystals on larger length scales.

The paper is organized as follows: in section 2, we pro-
pose the model and describe our simulation technique and 
protocol. Results are summarized in section  3 and we con-
clude in section 4.

2. Theoretical model and simulation

We study the cooling scenario of a 3D system composed of N 
monodisperse colloids confined in a parabolic potential. The 
inter-particle interaction potential is given by

U(rij) = UHC(rij) + UPW(rij) + UG(rij),� (1)

where rij is the distance between the centers of the colloids 
i and j, UHC(rij) denotes a short range soft-core potential, 
UPW(rij) a mid-range well potential, and UG(rij) a shifted 
Gaussian shaped potential acting at larger distances. The 
explicit expressions for these three parts of the potential are

UHC(rij) = ε

(
D
rij

)m

,� (2a)

UPW(rij) = −ε exp

[
−
(

rij − D
α

)l
]

,� (2b)

UG(rij) = Rε exp

[
−
(

rij − β

0.5D

)2
]

,� (2c)

where D defines the diameter of the colloids, ε gives the 
strength of the short-ranged repulsion, m and l are expo-
nents that define, respectively, the range of the left and right 
sides of the total potential well, α is an important param
eter which defines the thickness of the well, while R and β 
are parameters used, respectively, to change the height of 
the Gaussian barrier and shift its position along the radial 
direction. In this work we use the value β = 1.5(D + α) 
in order to avoid superposition between the terms UPW(rij) 
and UG(rij). Henceforth we use D/2 (the radius) and ε as 
our length and energy scales, respectively. Figure 1 shows 
a graphic representation of the inter-particle interaction 
potential given by equation  (1) for the particular situation 
of α = 1.5 and R  =  1.5. It clearly has a ‘mermaid’ structure 
with a short-ranged attraction and a longer-ranged repul-
sion and therefore belongs to the general class of SALR 
interactions.

The specific assumptions in modeling the attractive and 
repulsive parts are a bit special for our model potential. Our 
choice was motivated by the fact that the same model has 
been studied already in 2D previously. Moreover, almost 
any model potential can be realized experimentally in col-
loidal suspensions provided enough different interactions 
types (such as van der Waals, steric, screened Coulomb 
due to charging, depletion attraction or accumulation 
repulsion due to additives, dipole–dipole interactions) are 
superimposed.

The external confinement potential acting on the particle i 
is a parabolic one, which is given by the expression

V(ri) =
1
2
κr2

i ,� (3)

where the prefactor κ defines its strength and ri is the particle 
i radial distance to the origin. Therefore, we can write the total 
potential energy of the system as

Figure 1.  Representation of the interaction potential for the 
parameters α = 1.5 and R  =  1.5.
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Utot =

N∑
i=1

V(ri) +

N−1∑
i=1

N∑
j>i

U(rij).� (4)

In order to obtain the self-assembled configurations of the 
system we use a simulated annealing scheme. For a certain 
set of parameters, the particles are arranged randomly in a 
cubic box of side L  =  50D centered at the origin, while the 
temperature of the system is set to the value Ti = 5ε/kB. In 
the sequence, the temperature is slowly decreased to Tf  =  0. 
For a given temperature, the evolution of the system is given 
by the overdamped Langevin equation, that is integrated using 
Euler’s method, and therefore resulting in the following first 
order algorithm

�ri(t +∆t) = �ri(t) +
�Fi(t)∆t

γ
+�g

√
2kBT∆t,� (5)

where �Fi = −∇�ri Utot is the total force acting on particle i, ∆t  
is the finite time step of the integrator and �g  is a 3D vector 
with random components, following a standard normal dis-
tribution whose mean and variance are equal to zero and one, 
respectively. The viscous drag coefficient is set to γ = 1 and 
the time scale is t0 = γD2/ε.

A good convergence of the integration algorithm in equa-
tion (5) is achieved for ∆t = 10−5. For each temperature T, 
we iterated the system 5 × 104 time steps before decreasing 
the temperature by an amount of ∆T = 0.05.

In our investigation we considered systems with N  =  1792 
particles. The number N is large enough to see an internal 
cluster structure but small enough to be treated numerically. 
Throughout our analysis, some potential parameters were 
fixed (m  =  50, l  =  10, ε = 1 and κ = 0.1), while we consid-
ered the parameters R and α within the range {0.1, 5.0} with 
steps of 0.1.

Our main aim is to find the structures that can be self-
assembled by annealing. This does not necessarily imply that 
we arrive at the true groundstate for long times as many meta-
stable configuration can occur in principle for SALR poten-
tials. However, when we started our simulation from different 
initial configurations, we arrived always at clusters which had 
the same global topology and the same mesoscopic structure 
(for the same values of R and α), although the particle posi-
tions were not identical.

3.  Results and discussions

In order to outline the rich variety of macroscopic patterns, we 
present in figure 2 some examples. Only appropriate cutouts 
of the full cluster are shown here. In the case of figure 2(a), 
where R  =  0.7 and α = 1.3, the structure looks spherical with 
superficial entrances. When the attractive part of the inter-
action is broader (e.g. for R  =  0.5 and α = 3.3), tunnels are 
observed as seen in figure 2(b). For R  =  1.0 and α = 1.5, the 
configuration is formed by almost parallel disks which are con-
nected near their centers (see figure 2(c)). Comparatively, for 
increasing R and decreasing α, e.g. for R  =  1.6 and α = 1.3, 
the parallel disks give place to non-connected disks having 
fringed borders, as demonstrated in figure  2(d). Finally, we 
found that particles can aggregate to form rods, as seen in 
figure 2(e) for R  =  1.8 and α = 1.7. This corresponds to the 
bulk hexagonal rod phase which is modified under harmonic 
confinement. Also, in figures  2(c)–(e), some preferential 
direction appears, thus breaking the isotropy of the confine-
ment. This is expected given the fact that already in the bulk 
the isotropy is broken for the structured phases.

As already stated, the kind of potential considered in this 
paper was used in previous 2D simulations (see [47, 51]). The 
structures found in these previous works called our attention 
due to their peculiarity and variety. We notice that the 3D 
self-assembled structures, for some values of the interaction 
potential parameters, can be viewed as structures composed 
by quasi-2D sub-structures. These latter resemble the 2D 
equilibrium configurations found in [47, 51]. In this case some 
analogy can be drawn between 3D and 2D systems.

For instance, the tunneled structures found in this work 
(see, for instance, figure 2(b)), could be viewed as the 3D ver-
sion of the 2D perforated clusters in [47]. To put it in a more 
operational way, the 3D structure with tunnels can be gener-
ated by a successive stacking of 2D structures corresponding to 
circular clusters with holes. Regardless of the dimensionality 
of the system, holes and tunnels are patterns that can decrease 
the total energy because they diminish the contribution given 
by the energy barrier of the Gaussian interaction potential.

Figure 2(c) can be perceived as a structure constructed by 
the stacking of few quasi-2D compact disks. The latter are 
analogous to the 2D compact disks shown, for instance, in 
figure 7(e1) of [47]. Of course, in this case, the comparison can 
not be taken literally, in the sense that, first, the compact discs 

Figure 2.  Examples of mesoscale patterns present in the structures: (a) spherical structure with superficial entrances, (b) tunneled structures, 
(c) parallel disk structures, (d) separated fringed disks and (e) parallel rods. The parameters R and α are indicated within the figures. 
Figures are enlarged images of the obtained clusters, whose viewing angles were chosen to highlight as best as possible the various patterns.
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of figure 2(c) have a thickness greater than the particle diam-
eter, and secondly, they are connected by their central regions.

Figure 2(d) shows that the structure is formed by quasi-2D 
fringed disks. These are formed by more than one layer of 
particles, are approximately parallel to each other and have 
no connection through their centers. Note that the quasi-2D 
fringed disks of figure  2(d) carry the same type of macro-
scopic arrangement found in 2D clusters, such as those in 
figure 7(a3) of [47].

The formation of stripes, in 2D systems, was generated by 
introducing anisotropy in the confinement potential, as shown, 
for instance, in figure 5(b6) of [51]. In this case, our 3D analo-
gous corresponds to the configuration with rods exhibited in 

figure 2(e), which was obtained for an isotropic confinement 
potential.

Figure 3 gives a broad view of the self-assembled configu-
rations for the explored ranges of R and α, and indicates the 
number n of subclusters for each configuration. We defined 
that a particle belongs to a given subcluster if it is at a dis-
tance  ⩽1.1D from some other particle belonging to the same 
subcluster. The internal subclusters are usually bigger than 
those close to the periphery of the system, as we can see, for 
instance, in figures 3(b5) and (d5). We can also verify that the 
increase of R (i.e. of the Gaussian barrier), in general, strongly 
induces divisions of the system in subclusters. Moreover, the 
number of particles within a subcluster grows with the value 

Figure 3.  Configurations showing the presence of multiple clusters in the self-assembled structure for some given values of R and α. The 
values of R and α are fixed at each line and column, respectively. The total number of subclusters, n, is indicated for each case. The labels 
[(a1)-(e5)] shown within the figure are used to distinguish between different configurations. Each line and column holds, respectively, the 
same letter and number.

J. Phys.: Condens. Matter 30 (2018) 325101



E O Lima et al

5

of α, due to the enlargement of the potential well. In addition, 
the effective resulting potential barrier of the agglomerate also 
increases. These considerations help us to understand how 
α can also influence the repulsion between subclusters. For 
instance, keeping R  =  4.9, for α = 0.1 (see figure 3(a1)) the 
subclusters are closer than for α = 4.4 (see figure 3(a5)).

We observed that, within the ranges 0.5 � R � 2.1 and 
1.0 � α � 3.5, a rich variety of structural patterns are formed. 
We analyzed this region in detail in order to understand the 
possible structural transitions of the system. This enables us 

Figure 4.  Self-assembled configurations presenting a global ordering for several values of the interaction potential parameters R and α. The 
configurations were chosen on purpose in order to reveal structural phase transitions. Each line has a fixed value of R while α grows from 
left to right. The labels [(a1)-(e5)] shown within the figure are used to distinguish between different configurations. Each line and column 
holds, respectively, the same letter and number.

Figure 5.  The opposite view of the configuration presented in 
figure 4(e2). From this point of view we see the precursor of the 
multiple parallel layer structure.

Figure 6.  A second viewpoint of the configuration of figure 4(b4), 
where the axes of the rods are approximatelly perpendicular to the 
plane of the page. Note that the rods form a hexagonal ordering.

J. Phys.: Condens. Matter 30 (2018) 325101
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to understand, for example, how the configurations seen in 
figure 2 can change and evolve between them.

Figure 4 presents some self-assembled configurations 
within the mentioned region. The values of R are fixed for each 
line of the figure, increasing from bottom to top. Whereas α, 
for each line, increases from left to right. The values of R and 
α were chosen on purpose in order to highlight the transitions 
between the macroscopic structures. Because of that, along 
the same column, the value of α is not kept constant.

The bottom line of figure 4 shows, for increasing α, the 
following sequence of transitions: spherical shaped structure 
with superficial entrances (figure 4(f1)), spherical shaped 
structures with tunnels (figure 4(f3)), open structures (figure 
4(f6)) and finally, a structure with two subclusters (figure 
4(f7)).

Line (e) in figure  4 makes clear how a spherical tun-
neled cluster, figure 4(e1), gradually evolves, as α enlarges, 
to a layered parallel disk configuration connected by their 
centers, figure  4(e3), a layered parallel disk configuration 
with a tunneled spherical core, figure  4(e4), a string struc-
ture, figure 4(e6) and finally a string structure with clusters, 
figure 4(e7). Interestingly, figure 4(e5) locally looks similar 
to a gyroid-like cluster which is one of the stable structures in 
the bulk [34, 35].

As we have said, the transitions seen in line (e) of figure 4 
are gradual. This implies that mixtures of phases can occur 
which results in configurations with more than one ordering. 
This fact becomes evident from the configuration for R  =  0.7 
and α = 1.8, which holds a mixture of two phases. We show 
in figure 4(e2) one side of such a configuration, which exhibits 
a tunneled surface, while the opposite side of the same cluster 
is shown in figure 5, which presents a structure similar to the 
parallel layered disks.

For R  =  2.1, the first line of figure 4 shows the following 
sequence of global orderings as α increases: a multi-layer 
fringed disk configuration, figure  4(a1), rods structures, 
figure 4(a3), and finally, a structure with rounded small sub-
clusters, figure 4(a7). Figures 4(b1) and (a1) have the same 
value of α, that is, α = 1.0, and R  =  1.3 and R  =  2.1, respec-
tively. From these two previous configurations we can notice 
that the increasing of the repulsion leads to the formation of a 
larger number of layers and fringes. Similarly, the increasing 
of the repulsion can also lead to the break of the sticks in 
rounded sub-clusters. This latter transition can be realized 
when the configurations of figures  4(b7) and (a7) are com-
pared. Also, from the sequence of configurations displayed in 
figures 4(b2)–(b4), becomes evident that the increasing of α 
gradually prolongs the fringes up to the formation of sticks or 

Figure 7.  Phase diagram in terms of the packing measure η for 0.5 � R � 2.1 and 1.0 � α � 3.5. Illustrative examples of structures, 
including all of figure 2, are also displayed. Phase ‘A’ is characterized by structures with superficial entrances and tunnels, ‘B’ by disks and 
circular structures, and ‘C’ by fringes and fingers. Fragmentation in extended tubes and small subclusters occurs in the structures in ‘D’ and 
‘E’, respectively.
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rods. In order to make the stick configurations clearer we dis-
play a second view of figure 4(b4), that is, figure 6. The axes 
of the rods are approximately perpendicular to the plane of the 
page and form a hexagonal lattice.

We can see that lines (c) and (d) of figure  4 present the 
same transitions shown in line (b), and discussed previously. 
From these three lines, one can presume that the critical 
values of α, related to the same structural transition, have dif-
ferent magnitudes. For instance, for R  =  0.9 and α = 1.7 (see 
figure 4(d3)), there is not yet signs of fringes in the disks. On 
the other hand, for smaller α and larger R, that is, α = 1.3 and 
R  =  1.3 (see figure 4(b2)) the disks already present fringes. 
Then, in general, the same transition will occur for smaller α 
as bigger is R.

Lindquist et al [52], using also SALR interactions, found 
different structures of particles (and voids) depending on the 
packing fraction, in bulk. In our confined system, we can 
measure the packing of particles using a procedure similar 
to the one used in the 2D case of [47, 51]. This is done by 
evaluating the ratio between Vp = NπD3/6 (sum of particles’ 
volumes) and the volume Vch of the convex hull (smallest 
convex polyhedron that contains all particles). We found that 
some macroscopic behaviors in figure 4 are correlated to the 
packing fraction value η = Vp/Vch.

Figure 7 shows a phase diagram constructed through the 
simulation results of η for 0.5 � R � 2.1 and 1.0 � α � 3.5, 
which are the same intervals analyzed in figure 4. In this region, 
the value of η can indicate several phases found in our system 
and their transitions. In contrast to the 2D studies, here we can 
use the packing order parameter, defined on the whole system, 
to identify a greater variety of patterns. We observed that the 
intervals [0.353, 0.366], [0.272, 0.285], [0.19, 0.204] and 
[0.123, 0.15] in η (the dotted regions in figure 7) separate the 
phase diagram in regions with different structural patterns, that 
is, regions A, B, C, D and E. As expected for such a complex 
and finite system, the transitions are not precisely defined.

Examples of structures at some points of the phase diagram 
are illustrated and indicated in the figure 7, including all cases 
of figure 2 and some of figure 4. For instance, we have super-
ficial entrances (figure 2(a)) and tunnels (figure 2(b)) in region 
A. Then disks (figure 2(c)) and circular structures (figure 
4(e6)) in region B. As expected, the case of figure 4(e2), which 
is the same in figure 5, appears in a transition region, that is, 
between the regions A and B. Fringes (figure 2(d)) and fingers 
(figure 4(d6)) appear in region C. Finally, in regions D and 
E we have fragmentation in extended tubes (figures 2(e) and 
4(b7)) and in small subclusters (figure 4(a7)), respectively. 
Note that, the structures found in regions D and E of figure 7 
are similar, respectively, to the structures of columns and clus-
ters found in [52] for small packing and without confinement.

4.  Conclusions

In conclusion, we have calculated ground state structures for a 
harmonically confined colloidal system with competing inter-
actions involving a ‘mermaid’ potential with short-ranged 
attractions and long-ranged repulsions. We found a wealth of 

different clusters which can partially be derived and under-
stood by the bulk phases and that in strong 2D confinement. 
Some of the structures found, however, are very complex and 
differ in terms of the porosity topology and also in terms of the 
rim structures. Our results show that many different agglom-
erate structures can be gained by self-organization of spher-
ical colloids in traps.

Future work should be performed along the following 
directions. First of all, apart from exploring more parameter 
combinations of the model proposed here, other ‘mermaid-
like’ pair potentials should be considered to check whether 
the structures found here are universal or not. This is a chal-
lenging task as many different pair potentials are conceivable. 
Second different kind of confinement should be explored 
including a hard sphere cavity, a quartic potential or parti-
cles within a hard cubic void. Third, a geometry-based theory 
would be desirable which can in principle predict the struc-
tures at least qualitatively. Even if this theory would be purely 
phenomenological, this would be a formidable achievement. 
Finally, active systems which are self-propelled represent a 
flourishing research area [53, 54]. They have been considered 
recently in the bulk with competing pair interactions [55, 56] 
and under harmonic confinement [57–62] but not when these 
two effects are combined. We are expecting complex active 
molecules [63] with a dynamical function which can emerge 
on different levels when these active particles possess com-
peting interactions and are confined.
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