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Dynamics in a one-dimensional ferrogel model:
relaxation, pairing, shock-wave propagation†

Segun Goh, Andreas M. Menzel and Hartmut Löwen

Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles.

Novel phenomena, such as the variation of the overall mechanical properties by external magnetic

fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In

this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs

between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To

probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system

and the corresponding equation of motion. We provide general classification scenarios for the dynamics,

elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it

is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave

propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that

these results will provide insight into the understanding of the dynamics of more realistic models with

randomness in parameters and time-dependent magnetic fields.

1 Introduction

Ferrogels, magnetic elastomers, or magnetic gels are smart
composite materials1 the elastic properties of which are tunable
by magnetic fields from outside.2–5 Novel characteristics originate
from the composite nature of ferrogels which gives rise to a
magneto-mechanical coupling between the embedded magnetic
particles and the gel network.2,6,7 Such a magneto-mechanical
coupling can be achieved by constraining the motion of magnetic
particles inside pockets of the matrix6,8,9 or by directly anchoring
the polymers to the surfaces of magnetic particles.2,6,10,11 Utilizing
this characteristic, a variety of applications such as sensors,12,13

actuators,14 tunable devices,15,16 medical scaffolds for tissue
engineering,17,18 and biocomposites for controlled release19

have been suggested.
Much effort has also been devoted to the theoretical under-

standing of the ferrogels. Several routes are suggested and
investigated to model these non-trivial materials. At the micro-
scopic scale, bead-spring models to resolve the individual polymer
chains connecting the embedded magnetic particles have been
studied by means of computer simulations.20–23 At the macroscale,
hydrodynamic theories for ferrogels have been developed.24,25

Moreover, mesoscopic dipole-spring models26–31 represent the

polymeric matrix by spring-like interactions, while the magnetic
particles are resolved and interact with each other via magnetic
dipole–dipole interactions. Alternatively, the elastic contributions
can be described by matrix-mediated interactions32–36 in terms of
continuum elasticity theory.

Recently, more attention has begun to be paid to dynamic
properties. Analogously to the dynamics of magnetic colloidal
systems,37–41 new configurations or generally novel phenomena
observable only in the dynamics are expected to emerge for ferrogels.
As an important example, the dynamic moduli/responses of
ferrogels have been studied extensively.42–48 To fully describe the
dynamics far from equilibrium and the consequent transitions
between qualitatively different configurations, it is necessary to
address the approach and separation dynamics of magnetic
particles under changing mutual magnetic attraction and repul-
sion. Indeed, the changes in particle distances are well known to
affect the material properties of ferrogels. One of the most widely
studied phenomena in this regard is the formation of chain-like
aggregates which can cause drastic changes in the elastic properties
of systems.49–56 It has been predicted theoretically that the detach-
ment of magnetic particles in chain-like aggregates can give rise to
the pronouncedly nonlinear, so-called superelastic stress–strain
behavior.57,58 The formation of chain-like aggregates has been
studied for various dipolar systems, for instance in combination
with the van der Waals interaction.59,60

From a theoretical perspective, the formation of compact
chains under magnetic attraction can be viewed as a hardening
transition,26 if the particles can come into close contact. Steep
changes in elastic properties can be attributed to the hardening
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due to virtual touching. It is worthwhile to note that the hardening
transition implies a double-well structure in the energy. In other
words, there exist two different equilibrium configurations, one of
which corresponds to the contracted and the other to the elongated
systems. Such a configurational bistability, involving the rearrange-
ment of the magnetic particles and the deformation of the gel
network, has been widely discussed with different settings26,32,33,50,61

and therefore seems to be a relatively universal feature. Moreover,
one may expect that there exists a regime in between the equilibrium
points where configurations become unstable. In short, a type of
dynamic mechanism formally similar to spinodal decomposition
may play a significant role if attention is extended to dynamics.62

Spinodal decomposition occurs in various systems, represen-
tatively to the phase separation of binary systems described with
the aid of the Cahn–Hilliard equation.63–66 Recently spinodal lines
were identified for systems of active Brownian particles.67–72 The
wetting phenomenon73,74 also provides an example with a special
boundary condition due to the presence of a reservoir. However,
there are technical difficulties related to the regularization of the
problem75,76 which corresponds to the unique characteristics of
each system under consideration. In the case of the Cahn–Hilliard
equation, for instance, the regularization term contains the free
energy cost due to the interface and therefore governs the
coarsening dynamics at the long-time scale. Also see, e.g.,
ref. 70 and 72 for further examples.

In this paper, we study the dynamics of a one-dimensional
ferrogel model far from equilibrium. We address questions on
the touching and detachment dynamics of magnetic particles.
The dipole-spring model is adopted as such a mesoscopic
model deals with the configurations of magnetic particles in a direct
manner: the magnetic particles are explicitly resolved and the
distances between them are simply related to the lengths of springs
attached between them. Then a quasi-continuum equation govern-
ing the behavior of the system is derived based on a term equivalent
to the particle density. Our main results show that the large-scale
chain formation dynamics in the long-time regime are governed by
shock-wave solutions in the continuum description. With the aid of
singular perturbation theory77,78 in connection with the Stephan
problem,66,79 we can successfully quantify the propagation speed.
The origin of our regularization and the relation to general phase
separation dynamics are also discussed.

This paper is organized as follows. In Section 2, a one-
dimensional version of the dipole-spring model is introduced.
Then we derive a quasi-continuum description of the system
and discuss its theoretical properties in Section 3. Section 4 is
devoted to illustrate the various observed dynamical scenarios
and to develop a ‘‘behavioral diagram’’ for the different types of
dynamics, which represents the main result of our study. Lastly,
a summary and an outlook are given in Section 5.

2 The model

Our one-dimensional dipole-spring model for a ferrogel system
consists of magnetic particles and springs:26,45,80 N + 1 magnetic
particles are connected by N harmonic springs, forming a linear

straight chain (see Fig. 1 for a graphical illustration). The number
of particles is finite so that the chain has definite boundaries at
both ends. In this way, we can perturb the system by applying
forces at the boundaries as in the laboratory. The location of the
ith particle is then represented by ri for i = 1,. . .,N + 1 and the
length of the ith spring between the ith and the (i + 1)th particles
by ri,i+1 � ri+1 � ri for i = 1,. . .,N. The magnetic dipole moment -

mi

is assigned to the ith particle, which can be any vector in the three-
dimensional space. Below, after switching to a non-zero value, it
will be considered as constant in time.

Following previous studies,44,45,47 we consider the over-
damped dynamics of the dipole-spring model as a function of
time t, governed by equations of motion of the form

G
dri

dt
¼ �@Etot

@ri
: (1)

Obviously, the form of the total energy Etot determines the
dynamical properties of the magnetic chain. In this study, we
adopt a simple version of the dipole-spring model in which Etot is
given by the sum of elastic interactions, magnetic dipole–dipole
interactions, and steric repulsion.45,47,80 First, the elastic energy
of the harmonic springs takes the form of

Eel ri;iþ1ðtÞ
� �� �

¼ k

2

XN
i¼1

ri;iþ1ðtÞ � a
� �2

; (2)

where k is the spring constant and a is the length of the springs
in the undeformed state. Second, the magnetic dipole–dipole
interaction energy is given as

Em rijðtÞ
� �� �

¼ m0
4p

X
j4 i

~mi � ~mj

� �
~rijðtÞ
�� ��3 � 3 ~mi �~rijðtÞ

� �
~mj �~rijðtÞ
� �

~rijðtÞ
�� ��5

" #
;

(3)

where m0 is the vacuum permeability, rij = rj � ri, and -
rij � rijx̂

with the unit vector x̂ along the chain axis. For simplicity, we
limit ourselves to the case in which the magnetic moments are
identical across the whole system, -

mi � m(cosyx̂ + sin y cosfŷ +
sin y sinfẑ). Then, introducing b � 1 � 3 cos2 y, one can rewrite
the magnetic energy in a simpler form

Em rijðtÞ
� �� �

¼ m0bm
2

4p

X
j4 i

1

rijðtÞ
�� ��3: (4)

Fig. 1 A graphical illustration of our model. Blue and green spheres
represent the magnetic particles inside and at the boundaries of the
system with the virtual diameter rc, respectively, while red arrows corre-
spond to the magnetic dipole moment m

-
of the particles. Springs of spring

constant k and undeformed length a are depicted as well. In addition, the
convention for quantifying the locations of the particles is also illustrated in
this figure.
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Finally, the steric repulsion preventing a collapse of the system
under strong magnetic fields reads

Est ri;iþ1ðtÞ
� �� �

¼
XN
i¼1

UWCA ri;iþ1ðtÞ
� �

; (5)

where UWCA is a modified Weeks–Chandler–Andersen (WCA)
type potential in the form45,81

UWCAðrÞ ¼ Y rc � rð Þes r

ss

� ��12
� r

ss

� ��6	

� rc

ss

� ��12
þ rc

ss

� ��6
� cs r� rcð Þ2

2

#
;

(6)

with the Heaviside step function Y and a cutoff distance rc. Here,
ss and cs are chosen such that UWCA

0(rc) = 0 and UWCA
00(rc) = 0.45

The parameter es characterizes the strength of the steric repulsion.
Now, one can find a set of dynamic equations, substituting the
above definitions directly into eqn (1). Those equations for
particles inside as well as at the boundaries of the system are
described in detail in Appendix A.

3 Formulation of a quasi-continuum
theory

To be able to develop a continuum description of the system, we as a
major simplification cut the long-range magnetic interaction beyond
the nearest-neighbor interaction. We have confirmed from particle-
resolved simulations that the overall dynamics with the nearest-
neighbor and long-range magnetic interactions are qualitatively
equivalent to each other, as far as uniform configurations are
adopted as initial conditions (see Section 3.3).

3.1 Continuum equation

Now the energy is only a function of the distances between
adjacent particles as follows:

Etot ri;iþ1ðtÞ
� �� �

¼
XN
i¼1

e ri;iþ1ðtÞ
� �

; (7)

where e is the pairwise energy given by

eðrÞ ¼ k

2
ðr� aÞ2 þ m0bm

2

4p
1

r3
þUWCAðrÞ: (8)

The direct analysis of this pairwise energy landscape will help in
understanding the equilibrium states as well as the dynamics of the
systems and therefore constitutes one of the essential parts of the
continuum theory. We address this issue in detail in Section 3.4.

We then seek a continuum description of the system,
introducing a continuous variable x, a positional field r(x,t),
and its derivatives with respect to x, i.e., rx, rxx, and so on.

Following a standard transformation rule
PN
i¼1
!
ÐN
0 dx, ri+1 �

ri - qr/qx, and q/qri - d/dr (see, e.g., ref. 82), we directly obtain
from eqn (1) a fully continuum equation

Grt(x,t) = e(2)(rx(x,t))rxx(x,t), (9)

where eð jÞðrÞ � @

@r


 �j

eðrÞ for a general natural number j.

If the explicit form of the energy is inserted, the continuum
equation reads

Grt ¼ krxx þ
3m0bm

2

p
rxx

rxð Þ5
þ esrxxY rc � rxð Þ

� 156

ssð Þ2
rx

ss

� ��14
� 42

ssð Þ2
rx

ss

� ��8
�cs

" #
:

(10)

Two important characteristics of the continuum equation are
summarized as follows: first eqn (9) takes the form of a diffusion
equation. However, the diffusion coefficient e(2)(rx(x,t)) may have
a negative value depending on the value of m. Second, the
variable rx, which determines the sign of e(2), is closely connected
to the particle density via the relation r(x,t) = 1/rx(x,t). Therefore,
the particle density controls the dynamics.

3.2 Regularization

We note that, if there exists a range with e(2)(rx) o 0, the continuum
equation becomes a type of the forward–backward heat equation
which does not necessarily have a unique solution.75 It is then
mandatory to include an additional term as a regularization, which
should be specific for each given physical problem.76 In our case,
the regularization stems from the discrete nature of the system,
similarly to the lattice regularization in critical phenomena.

Indeed, the transformation rule ri+1 � ri - qr/qx involves a
truncation of higher order terms rxx, rxxx, and so on, neglecting
corrections from the discreteness of the system. Here, we
explicitly take such corrections into account. We consider the
differences Dir � ri+1 � ri instead of the differential qr/qx and
utilize the functional-derivative technique for discrete variables.
As expected, this approach leads to the equations of motion for
i = 2,. . .,N, described in Appendix A, which formally read

G
dri

dt
¼ Di�1e

ð1Þ ri;iþ1ðtÞ
� �

: (11)

Now we probe a continuum description via a transformation
from the discrete variable i = 1, 2,. . .,N + 1 to a continuous
variable x defined in a domain 0 r x r xmax. We choose the
midpoint rule to weight equivalently the forces from the right
and left sides of the particle under consideration. In other
words, a point i in the discrete description corresponds to a
range [x � Dx/2,x + Dx/2] in the continuum description, where
Dx controls the discreteness of the system. If an asymmetric
rule is considered, particles may prefer a motion in a certain
direction. Then, with a transformation of the form

x � i � 1

2


 �
Dx, the domain on which the newly introduced

continuous variable x is defined is determined as 0 r x r xmax

with xmax � (N + 1)Dx. Here, we take xmax = 1 by further setting
Dx � 1/(N + 1). In this way, a continuum limit is achieved via
Dx - 0 or N - N. In contrast to that, rxx and higher order
derivatives were neglected in the case of the previous
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transformation rule to the domain 0 r x r N with Dx = 1 in
Section 3.1, which was used to derive eqn (9).

We set up a transformation rule in the form ri(t) - r(x,t)/
(Dx), relating the length scale of springs to the corres-
ponding continuous variable rx as ri;iþ1ðtÞ ¼ riþ1ðtÞ � riðtÞ !
rðxþ Dx; tÞ � rðx; tÞ

Dx
¼ rxðx; tÞ þ

Dx
2
rxxðx; tÞ þ � � �. Then we

obtain a continuum description from the discrete form in
eqn (11) as follows:

Grt ¼ ðDxÞ eð1Þ
rðxþ Dx; tÞ � rðx; tÞ

Dx


 ��

� eð1Þ
rðx; tÞ � rðx� Dx; tÞ

Dx


 �
:

(12)

Rescaling x - x/(Dx) from the domain 0 r x r 1 to 0 r x r
N + 1, one indeed recovers to leading order the continuum
description of the dynamics described by eqn (9). This can be
easily checked by expanding eqn (12) in terms of Dx as

Grt ¼� ðDxÞ
X1
i¼1

ð�1Þi
i!

rðxþ Dx; tÞ � 2rðx; tÞ þ rðx� Dx; tÞ
Dx

� i

� eðiþ1Þ
rðxþ Dx; tÞ � rðx; tÞ

Dx


 �

¼� ðDxÞ
X1
i¼1

ð�1Þi
i!

2
X1
j¼1

ðDxÞ2j�1
ð2jÞ! rð2jÞðx; tÞ

( )i

�
X1
k¼0

eðiþ1þkÞ rxðx; tÞð Þ
k!

X1
l¼2

ðDxÞðl�1Þ
l!

rðlÞðx; tÞ
 !k

8<
:

9=
;;

(13)

where rðiÞ � @

@x


 �i

r. In this way, we maintain the aspects of the

discrete nature of the system in a quasi-continuum description
by letting Dx become small but finite. Accordingly, we obtain
regularization terms to eqn (9) from the second- and even
higher-order contributions in eqn (13).

Now one could seek for a precise solution, including all
terms in eqn (13). Instead, one may truncate them at a certain
order, searching for approximate solutions. At this point, we
encounter the mathematical issue that different regularization
forms may differently alter the dynamics of the forward–back-
ward heat equation.76,83 Rather than rigorously investigating
this issue, we here take a pragmatic approach using the next-
order correction as a feasible form of regularization. This leads
to a regularized equation

Grt�ðDxÞ2eð2Þ rxð Þrxx

þðDxÞ4 1

12
eð2Þ rxð Þrxxxxþ

1

6
eð3Þ rxð Þrxxrxxxþ

1

24
eð4Þ rxð Þ rxxð Þ3

	 �
:

(14)

In the end, a certain type of regularization is necessary to
evaluate the equations. Our approach has the strong benefit
of being fully systematic.

3.3 Initial and boundary conditions

For simplicity, we only consider uniform initial configurations,
i.e., rx(x,t = 0) = vinit with constant vinit. Boundary conditions in
the quasi-continuum theory are carefully determined from the
model as follows. First, it is clear that the quasi-continuum
equation, e.g., eqn (13), applies to the interior particles. For the
boundary particles, additional rules are necessary. Specifically,
the boundary particles (i = 1,N + 1) at the left/right ends are
governed by

G
dr1

dt
¼ �

@e r1;2ðtÞ
� �
@r1

; G
drNþ1
dt
¼ �

@e rN;Nþ1ðtÞ
� �
@rNþ1

; (15)

while we have

G
dri

dt
¼ �

@e ri�1;iðtÞ
� �
@ri

�
@e ri;iþ1ðtÞ
� �
@ri

(16)

for the particles inside the chain. To fill this gap and make the
quasi-continuum equations of motion applicable to the boundary
particles as well, we introduce hypothetical particles i = 0, N + 2,
following the procedure in ref. 82. Indeed, eqn (15) takes the same
form as eqn (16), if the locations of the hypothetical particles, r0

and rN+2, are given by the positions satisfying

@e r0;1ðtÞ
� �
@r1

¼ 0;
@e rNþ1;Nþ2ðtÞ
� �
@rNþ1

¼ 0; (17)

so that the forces from the hypothetical to the boundary particles
are zero. In the continuum limit, the above relations to lowest
order take the form

e(1)(rx)|xAdO = 0, (18)

where dO = {0,1}.
In practice, the dynamics together with the initial and

boundary conditions described above could be interpreted in
two different ways as follows: first, one may imagine an
infinitely long chain at an unstable fixed point. In this case,
the dynamics are initiated by cutting off the outer parts of the
chain at the boundaries. Secondly, a stable finite chain with
definite boundaries may be considered from the beginning.
With m = 0, for instance, we attain a homogeneous chain as the
equilibrium configuration, in which the distances between
adjacent particles are equivalent to the equilibrium spring
length a. The dynamics of the system is then initiated by
turning on an external magnetic field. This accords with a
quenching procedure. In both cases, the interior particles are
still in the state of the unstable fixed point directly after the
initiation procedures, because the forces from the left and the
right particles are well balanced due to the initial homogeneity.
This is true as long as only nearest-neighbor magnetic inter-
actions are taken into account. The long-range magnetic inter-
actions slightly affect this picture. However, also in our test
simulations including long-range magnetic interactions, we
have not observed qualitative differences. As far as the uniform
initial configurations are considered, it is always the bound-
aries from which the dynamics are initiated: for the particles at
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the left/right boundaries, forces are only exerted by the particle
on the right/left side at the moment of cutting or quenching.

3.4 Pairwise energy landscape

Mathematically, the pairwise energy e plays a similar role as the
free energy does in thermodynamics as thermal fluctuations of
the particles80 are neglected in the present study. Above all,
(mechanical) equilibrium configurations correspond to the
minimum points in the landscape of the pairwise energy, which
are determined to lowest order from the condition e(1)(rx) = 0
in the continuum limit. We note that uniform equilibrium
configurations automatically satisfy the static equilibrium con-
dition rt = 0 of our regularized equation, eqn (14). In this study,
we are considering a double-well potential, with at least one
and at most two locally stable fixed (equilibrium) points: one
corresponds to the configuration in which the particles touch
each other (high density) while the particles stay away from
each other (low density) in the other configuration. By tuning the
magnetic moment m, one can modulate the number of stable
equilibrium points.26 Furthermore, the diffusion coefficient e(2)(rx),
the sign of which plays a significant role as already discussed in
Section 3.2, is also modulated by the values of m. Together with the
trivial one for the initial condition, we take into account two
independent control parameters, namely, the magnetic moment
m and the initial uniform distance between adjacent particle pairs
vinit. Keeping these in mind, we classify the landscapes of the
pairwise energy into three categories as shown in Fig. 2.

First, we confirm that e(2)(vinit) 4 0 for all the vinit values, if
the magnetic moment m is very small [Fig. 2(a)]. In this case,
there exists only one minimum in the pairwise energy land-
scape and the whole range of vinit (colored in yellow) belongs
to the basin of attraction of the minimum point. From now on,
the term Scenario I is used to indicate relaxation dynamics to
the stable equilibrium corresponding to this case.

If the magnetic moment is very strong [Fig. 2(c)], once again
there is only one stable fixed point which corresponds to a
hardened touching configuration of the particles.26 In this case,
however, there exists a range with e(2)(vinit) o 0 (shaded in
green) analogous to the spinodal interval, which divides the
range of vinit with e(2)(vinit) 4 0 into two regions: a high-density
region (in yellow) forming a basin of the only minimum point
and a low-density one (in cyan) separated from the fixed point.
Among these three regions, the dynamics around the equilibrium
(yellow) is equivalent to Scenario I, while the dynamics starting
from the spinodal-like interval (green) and the low-density regime
(cyan) are qualitatively different from Scenario I and, respectively,
referred to as Scenario IV and III in this paper.

If we consider magnetic moments lower than for the strong-
m regime, bistable landscapes appear [Fig. 2(b)]. Once again,
separated regions with positive diffusion coefficients (in yellow
as before) correspond to Scenario I. In contrast to that, the
dynamics starting from the spinodal-like interval in between
(shaded in magenta) exhibits a new behavior which is called
Scenario II henceforth. Between the bistable [Fig. 2(b)] and very-
weak-m regime [Fig. 2(a)], there is an interval with an energy
landscape similar to an inversion (e.g., by vinit - 1/vinit) of the

abscissa in Fig. 2(c). As one may expect, no further dynamics
qualitatively different from the ones of Scenario I, III, and IV are
observed in this case.

4 Scenarios

Using eqn (10), its regularized quasi-continuum version eqn (14),
and the analysis of the pairwise energy landscapes in Section 3.4,
we now describe the dynamical scenarios in detail. Even though the
quasi-continuum theory is developed using the variable x, simula-
tion results are presented in terms of density as a function of the
location of the particles in real space, namely, ri� 1/ri,i+1 versus ri, if
not specified otherwise. Similarly, we also use the terms r(x)� 1/rx,
rinit � 1/vinit to lowest order, and so on. Henceforth, time, length,
and energies are rendered dimensionless setting G/k, rc, and krc

2 as
units of measurement, respectively. In this unit system, a density of
r/rc = 1 with rc � 1/rc indicates the set of touching adjacent
magnetic particles. Moreover, magnetic moments are then mea-

sured in the unit of m0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pkrc5=m0

p
. In plotting the figures for

additional particle-resolved simulation results, values of a/rc = 2.5,
es/(krc

2) = 1, and b = �2 (assuming that the dipole moments are
parallel to the chain axis and all pointing into the same direction)
have been used and red cross symbols in the figures represent
initial density distributions. Even though only results for N = 100 are
shown, we have observed equivalent dynamics simulating systems
with N = 200, 400, and 800.

Fig. 2 Schematic illustration of the qualitatively different landscapes of
the pairwise energies, leading to qualitatively different initial and long-time
dynamical behaviors. While regions of e(2)(vinit) o 0 in the first row
represent spinodal-like intervals, points at e(1)(vinit) = 0 in the second row
indicate local extrema in the energy density landscapes (see e in the third
row). Based on the number of minimum points and the existence of the
spinodal-like interval, the landscapes are classified into three qualitative
categories, depicted in (a)–(c). Further analyzing the sign of e(2) and the
location of the minimum points, we classify the behavior according to the
value of vinit into different regimes I, II, III, and IV shaded by different colors.
See the text for the dynamic scenario corresponding to each regime.
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4.1 Scenario I: simple relaxation

We first describe the scenario in the yellow regimes in Fig. 2, in
which the uniform initial configuration belongs to the basin of
attraction of the equilibrium point given by e(1)(req) = 0. Moreover,
e(2)(r) is always positive during the whole time evolution and the
regularization is not necessary: direct integration of eqn (10) yields
very good agreement with particle-resolved simulations as shown in
Fig. 3. The density profiles evolving in time can be either concave
(rinit 4 req) or convex (rinit o req).

4.2 Scenario II: pair formation

Now, we consider the dynamics in the bistable regime with
initial configurations in the spinodal-like interval, i.e., the range
satisfying e(2)(rinit) o 0. As depicted by black lines in Fig. 4, there

are two different states of energetic minima, in both of which the
corresponding configurations are uniform. In the particle-resolved
simulations, we observe formations of particle pairs. As represented
by high-density points in Fig. 4, the pairs consist of two touching
particles, appearing in a row along the chain. Both of the two
densities computed from the pairs as well as from the stretched
springs between the pairs coincide with the density values of the
minimum points in the pairwise energy. This indicates that the
heterogeneous configurations are stable in the discrete systems
in the absence of fluctuations. Therefore, in the particle-resolved
simulations, the relaxation to the global minimum state with a
uniform configuration is not observed. In addition, we note that,
near the spinodal lines of e(2) = 0, clusters with a number of
touching particles larger than 2 (high-density spinodal line) or
stretched springs with only one magnetic particle in between
(low-density spinodal line) are observed as stable configurations
in the simulations.

We then turn to the continuum theory. For this scenario, a
regularization is mandatory. There are two different candidates
for the boundary condition, both of which satisfy eqn (18), as
we consider the bistable regime. Here, let us take the global
minimum state as a boundary condition. Then it is observed that
numerical solutions of the continuum equation (see Appendix C
for further details) converge to the global minimum state with
a uniform configuration in contrast to the particle-resolved
simulations. Such a disagreement may imply a failure of the
continuum theory in providing a full description in this regime.
Indeed, it is well known from the G-convergence theory that the
solutions to the Cahn–Hilliard equation asymptotically approach
the global minimum point.66,84,85 Similarly, we conjecture that the
asymptotic solutions to our quasi-continuum theory are given as
the uniform configuration at the global minimum point. This may,
for instance, be due to our non-exact regularization terms in the
quasi-continuum description together with the numerical scheme
adopted in the integration of the continuum equation that includes
additional diffusion. Thus, the bistability is at present only visible
in our discrete particle simulations.

For further insight, we inspect the individual particle dynamics.
Let us consider a particle and its two nearest neighbors as well as
the two springs connecting them. With the two distances between
the two particle pairs, r1 and r2, the corresponding energy can be
written as Ein(r1,r2) = e(r1) + e(r2). Then introducing new variables
L� r1 + r2 and l = r1� r2, we first confirm that the state of l = 0 with
a homogeneous configuration corresponds to a fixed point of the
dynamics because

@Ein

@l

����
l¼0
¼ 1

2
eð1Þ

Lþ l

2


 �
� 1

2
eð1Þ

L� l

2


 �	 �
l¼0
¼ 0: (19)

Meanwhile, the fixed point of l = 0 is unstable if e(2)(L/2) =
e(2)(r1) = e(2)(r2) o 0 as one can easily verify from the corresponding
Hessian matrix

1

2
eð2ÞðL=2Þ 0

0
1

2
eð2ÞðL=2Þ

0
BB@

1
CCA: (20)

Fig. 3 Time evolution of the density profile for Scenario I. Density
distributions extracted from the particle-resolved simulations are repre-
sented by symbols while black lines show the numerical solution of
eqn (10). Here, m = 0.1m0 and rinit

i = 0.2rc. Agreement between particle
simulation and numerical solution of the theory is manifested clearly.
These results are also depicted in more detail in Movie I of ESI.†

Fig. 4 Density distributions in Scenario II. The symbols display the simu-
lation results and thick black lines represent the uniform configurations
corresponding to the local minimum points of the pairwise energy. The
region shaded in gray represents the spinodal-like interval. In this figure,
m = 0.9m0 and rinit

i = 0.625rc. For more details, see Movie II of ESI.†
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For e(2)(L/2) o 0, as in this case, it is straightforward to describe
the onset of the scenario: dynamics initiated from the boundary
(as already discussed in Section 3.3) penetrates into the inner part
of the chain, perturbing particles in the local maximum state. Then
one may expect a heterogeneity in the configuration (i.e., l a 0)
as a consequence of the above spinodal-like decomposition
mechanism, which underlies the formation of touching particle
pairs. As shown in Fig. 4, densities for touching pairs and for the
stretched springs between pairs agree well with the values of the
two local minimum points. Consequently, the resulting configu-
ration remains stable once the localized spinodal-like decomposi-
tion dynamics are accomplished.

4.3 Scenario III: shock-wave propagation

In this scenario, the most important feature observed in the
particle-resolved simulations is the generation of sharp inter-
faces which divide the chain into macroscopic high-density
clusters and stretched low-density configurations, as shown in
Fig. 5. Specifically, we observe movements of the interfaces
between these regions, which are initially formed at the ends of
the chain. Such movements or propagations of the interfaces,
for instance, in the regime of strong magnetic fields [cyan in
Fig. 2(c)], make the high-density clusters of touching particles
grow towards the center of the chain. As one can see, the widths
of interfaces are of the order of the distance between adjacent
particles. Before we proceed, we note that, in this section as
well as in Section 4.4 devoted to Scenario IV, only the touching
dynamics are analyzed. The extension of the discussion to the
detaching dynamics corresponding to the case between very
weak or vanishing m and the intermediate bistable regime
would be straightforward.

According to the analysis at the level of individual particles,
the dynamics are initiated from the boundary as before. In
contrast to Scenario II, however, the perturbation from the
boundary does not affect the particles inside immediately as

they roughly remain in a locally stable state. If the effects from
the boundaries are not too strong (this corresponds to Scenario
I, in which the initial state already belongs to the basin of the
equilibrium point), then the relation e(2)(L/2) 4 0 can still be
satisfied, keeping the configuration somewhat uniform. As a
consequence, in Scenario I particles persistently move towards
the center during the whole dynamics.

As a new feature, in Scenario III, the distortion at the
boundaries is strong enough due to such a large difference
between the initial and equilibrium densities that the stability
of the uniform configuration can be disturbed. In this case,
the l = 0 (homogeneous) configuration becomes unstable for
particles at interfaces. With this mechanism, the particles at
interfaces can move in the direction opposite to the motion of
most other particles in this half of the chain as well as of the
interface, resulting in hopping of the particle from the low-
density region on the inside to the high-density cluster at the
corresponding end of the chain. Subsequently, a sharp under-
shoot is developed in the density distribution at the interfaces.

In terms of continuum theory, this scenario corresponds to
shock-wave propagations.77 With a specific regularization, we
are able to describe the shock with the aid of singular perturba-
tion theory. Here, we briefly summarize the procedure (see
Appendix B for the details). According to singular perturbation
theory, the structure of the shock is quantified by the values of
rx behind and in front of the discontinuity v� and v+ as defined
in Appendix B, which should satisfy e(1)(v�) = e(1)(v+). Among the
candidates satisfying the condition, certain values of e(1)(v�) are
selected, depending on the specific form of regularization. For
the regularization in eqn (14), we find that the shock wave
satisfies the equal area rule66 or equivalently the common
tangent construction (see, e.g., ref. 72 and 78 for other types
of solution). From the determined values of v�, we can then
compute the similarity coefficient xs which means the factor in

a similarity relation of the type NT ¼ xs
ffiffi
t
p

, where NT is the

Fig. 5 Results for Scenario III of shock-wave propagation. (a) Density distributions for m = 1.7m0 and rinit
i = 0.4rc are shown, indicating high-density

clusters at the ends and a low-density region on the inside. Symbols represent the particle-resolved simulation results while the equilibrium density
computed from the theory is represented by a black line. Sharp interfaces between high- and low-density clusters are manifested clearly. A movie (Movie
III) describing the time evolution can be found in ESI.† (b) Values of the coefficient xs, obtained from the particle-resolved simulations (symbols) and the
singular perturbation theory (lines), are compared to each other.
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number of the particles in the high-density cluster. As this coefficient
determines how fast the shock-wave propagates, it is of interest to
probe quantitatively its values which are presented in Fig. 5(b). As
one can see, the overall behavior is described qualitatively by the
theory, but with non-negligible errors. Regarding the fact that here
we consider the dynamics near a singularity, this type of error seems
to be acceptable.

In addition to that, we can further classify the density profiles
of this scenario into two cases: the first one corresponds to the
case of rinit o r+ � 1/v+ to lowest order. As the outer layer
solution should connect the initial condition vinit and v+, the
existence of an undershoot in the density profile at the shock is
expected. Considering the conservation of particles involved in
determining the shock structure,66,77,79 we speculate that a mecha-
nism similar to the generation of depletion regions in solidification
processes ahead of the solidification front86 seems to play a role in
this undershoot generation. If the initial density is high enough,
such an undershoot disappears and the solution becomes mono-
tonic. In particle-resolved simulations, one may take the concavity/
convexity of the interior part of chains as an index to identify the
existence of the undershoot in density profiles.

4.4 Scenario IV: shock wave of pairs

Lastly, we describe Scenario IV. In this scenario, the initial
configurations reside in the spinodal-like interval as e(2)(vinit) o 0.
Therefore, as in Scenario II, complicated configurations consisting
of touching particle pairs develop from the beginning of the
dynamics. In contrast to Scenario II, however, the density extracted
from the stretched springs does neither correspond to the stable
solution nor does it belong to the basin of the stable fixed point.
Moreover, the stretched configurations are no longer in the
spinodal-like interval, once the spinodal-like dynamics are settled.
Therefore, one may expect a shock-wave dynamics as in Scenario
III. Indeed, we observe once again a shock-wave propagation, see
Fig. 6. In this scenario, it is the touching of the touching pairs
instead of the single particles which constitutes the dynamics of the

shock wave. We also confirm that the numerical integration of the
theory exhibits similar time evolution in the density distributions
as shown in Appendix C. However, a quantitative description of the
shock structure/position in terms of theory is still in progress.

4.5 Dynamical state diagram

Putting together the four different scenarios, we present in Fig. 7 a
dynamical state diagram of the one-dimensional dipole-spring
model. No other qualitatively different scenario was found for the
present energy with at most two equilibrium points. Schematic
figures represent the density profiles at intermediate time scales
after the settlement of the initial pair-formation dynamics but before
full equilibration. Here, let us elucidate the observed phenomena.

When the magnetic moment is very small (m/m0 t 0.21),
the effects of the magnetic interactions are negligible and
the touching/detachment dynamics does not play a significant
role. If we consider the regime of strong magnetic moments
(m/m0 \ 1.15), the magnetic interactions significantly affect the
overall dynamics. As the magnetic interactions are strong, it is
the touching of particles separated in the low initial density
regimes (cyan) that triggers the shock-wave dynamics. Here, we
further note that, phenomenologically, the contraction of the
chain is mainly governed by this shock-wave dynamics.

In the case of the spinodal-like mechanism (green and
magenta), the pair formation rather contributes to the redis-
tribution of particles and sometimes even causes an increase of
the chain length. Here, the dissipation of energy is faster during the
initial stage of the pair formation than during the shock-wave

Fig. 6 Density profiles for Scenario IV. As before, the symbols, black line, and
gray region indicate the particle-resolved simulation results, the equilibrium
density predicted by the theory, and the spinodal-like interval, respectively.
Here, ri

init = 0.5rc and m = 1.7m0. The pair formation and also the shock-wave
propagation are observed clearly. For more details, see Movie IV of ESI.†

Fig. 7 Dynamical state diagram. Black dotted lines indicate boundaries
between dynamical scenarios, while black solid lines discriminate between the
states with different equilibrium configurations, see Fig. 2. Red dashed lines
represent the equilibrium states of global energetic minima while the blue
dotted-dashed line corresponds to the unstable local maximum points in the
pairwise energy. We note that the black solid lines between yellow and magenta
areas and the black dotted lines between green and cyan regimes and between
green and yellow areas constitute the spinodal line with e(2)(r) = 0. Additional
black dotted lines inside cyan regions are of r+/rc for m/m0 \ 1.15 and of r�/rc

for 0.21 t m/m0 t 0.48. We also note that green and magenta regions are the
spinodal-like intervals while yellow regions correspond to the basins of attraction
of the equilibrium points. The same colors as in Fig. 2 are used to identify the
different dynamical scenarios. Schematic density profiles of the corresponding
dynamical scenarios are indicated.
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propagation. This seems plausible as the instabilities are localized
only in the vicinity of the interfaces in the case of the shock-wave
propagation dynamics, while they are distributed across the whole
system in the spinodal-like case, simultaneously contributing to the
energy dissipation during the pair formation.

Opposite phenomena are observed in the range of 0.21 t
m/m0 t 0.48. Even though the magnetic interactions play a
significant role in this regime, what we observe is mostly the
separation of particles as the magnetic interactions are still weak in
this case. Specifically, we observe separation of magnetic particles
starting from the boundaries and propagations of sharp interfaces
extending expanded regions of the chain from the left/right ends to
the center in the high-density regime (cyan). Similarly, in the
intermediate-density regime (green), the separation of particles
that form pairs due to the spinodal-like mechanism in the initial
stage of the dynamics underlies the shock-wave propagation.

In the intermediate m-regime, at 0.48 t m/m0 t 1.15
(magenta), we observe heterogeneous configurations as resulting
equilibrium states due to the bistability of the energy. However,
if the dynamical theory based on the quasi-continuum equation
of motion [eqn (14)] is evaluated, we are not able to describe the
emergence of this Scenario II. Only the relaxation dynamics to
the global minimum states are found.

4.6 General discussion

Lastly, we qualitatively discuss our results in comparison to general
aspects of the dynamics of phase separation. First, in the present
case, it is found that the boundaries initiate the dynamics of the
systems, instead of thermal fluctuations as for general scenarios of
phase separation. Secondly, the growth mechanism of touching
clusters (or their separation dynamics) following the spinodal-like
initial dynamics is different from the phase separation due to
different conservation laws. In sharp contrast to scenarios of typical
phase separation, in our case the overall size of the system may
change over time. Thus the particle number is conserved in the
dipole-spring system, instead of the global density as in typical
scenarios of phase separation. This counteracts the coexistence of

two phases of different densities but rather promotes the transition
to only one phase. Consequently, the shock-wave propagation
dominates the long-time relaxation dynamics of the system, driving
the change in extension of the chain and promoting the overall
transformation of the whole system.

Apart from that, as a technical detail, the underlying back-
ground of the regularization is also different in our quasi-
continuum description. While, for instance, the interface itself
contributes to the free energy in the Cahn–Hilliard equation in
the form of gradient terms,63,66 it is only the discreteness of the
system that gives rise to the regularization in our case. We
stress, however, that the spinodal-type mechanism based on
the structure of the underlying energy is formally rather analo-
gous, leading to the emergence of pair/cluster formation.

Altogether, the touching/detachment dynamics can be
related to a spinodal-type mechanism, while the interfacial
shock-wave propagation governing the long-time dynamics in
certain cases may rather be comparable to a scenario of domain
growth. Different scenarios of touching/detachment dynamics
are summarized in Table 1.

5 Summary and outlook

Until now, we have investigated the relaxation dynamics of a
one-dimensional dipole-spring model. We have revealed that a type
of spinodal decomposition mechanism plays a central role in the
touching or detachment dynamics of magnetic particles and that
shock-wave-type propagations can dominate the long-time relaxation
dynamics to the equilibrium states. The boundary effects are shown
to be an essential ingredient for the initiation and the subsequent
qualitative appearance of the dynamics, while the discreteness of the
system regularizes the continuum equation of motion. It is remark-
able that even these simple one-dimensional systems exhibit
heterogeneous scenarios in spite of the homogeneity in initial
and, mostly, equilibrium configurations. A variety of rich dynamics
involve the interplay between the formation of particle pairs and
the shock-wave propagation.

Table 1 Schematic graphical representations of the scenarios involving the touching/detachment dynamics. While schematic figures for the intermediate
density profiles are displayed in the second column, corresponding intermediate configurations during the relaxation to stationary equilibrium states are
briefly portrayed in the third column. Values of m and rinit can be identified from the dynamical state diagram in Fig. 7 by comparing the corresponding
schematic plots in the second column. In the last column, the characteristics of their final stationary equilibrium configurations are summarized. In all of the
three scenarios, a spinodal-type mechanism underlies the initial touching and detachment dynamics of the magnetic particles. However, the long-time
dynamics are always dominated by the shock-wave propagation, except for Scenario II, in which there is no further long-time relaxation dynamics

Scenario ri(ri) Intermediate configuration Equilibrium state

II Heterogeneous

III

Uniform, r 4 rc

Uniform, r o rc

IV

Uniform, r 4 rc

Uniform, r o rc
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There still remains plenty of space for further extensions of the
present study. First of all, the response of the system to time-
dependent magnetic fields is of interest. Specifically, effects of
the touching/detaching dynamics on the dynamic moduli of
the system45,47 may deepen the understanding of the magneto-
mechanical couplings in ferrogels. Extensions of the model to two-
and three-dimensional systems are also an important step. In part,
we anticipate similar dynamics for strong directed magnetic inter-
actions, as then, likewise, one-dimensional chain-like aggregations
will form aligned along the direction of an applied external magnetic
field.45,47,55,56 Already, our one-dimensional simulation results sug-
gest that the global minimum states in the intermediate regime
could be non-uniform. Even more possibilities arise in two or three
dimensions and, therefore, even richer dynamics are expected to be
observed. In addition to that, the effects of thermal fluctuations
should be clarified as well.80 For example, if heterogeneous initial
configurations are taken into account, we observe the onset of the
shock-wave propagation in the particle-resolved simulation for
long-range magnetic interactions even from the interior of the
chain. One may expect similar phenomena in the system induced
by thermal fluctuations, which may correspond to the nucleation of
dense clusters or soft components.

We expect that the results discussed in this study can be
confirmed from experiments. Indeed, the experimental technology
these days enables researchers to capture the configuration at a
certain time point55 or to provide a temporal resolution of the
dynamics of corresponding systems.34,87 Therefore, supported by
quantitative analysis of the data, the formation of particle pairs and
the propagation of sharp interfaces might be verified. Still, there is
a possibility that the imperfections inherent in experimental
samples may obscure such verification. However, there are efforts
to construct uniform nanocomposite samples.88 With the aid of
such an approach, the rigorous comparison between theory and
experiments could be achieved.

Meanwhile, especially in interpreting possible experimental
results, randomness in the network connectivity as well as in the
arrangement and size of the magnetic particles should be taken into
account. Still, one may expect a similar dynamics, consisting of
pair formation and shock-wave propagation. For example, touching
pairs and compact chain formation are observed even in three-
dimensional inhomogeneous dipole-spring systems based on experi-
mentally observed particle configurations.47 However, details such as
the size of the touching clusters or the initiation mechanism of the
dynamics may differ. If heterogeneity is introduced in the spring
constant, softer parts of the chain may form a touching cluster more
easily than other parts of the system and, therefore, the chain
formation dynamics could be initiated in various parts of the system.
In this case, we speculate that a kind of coupling between the
interfaces may play a certain role. Verification of such couplings could
be a challenging task in theoretical as well as in experimental studies.

In short, we expect that our results may serve as an essential
building block in understanding the dynamics of more realis-
tic models for ferrogels. However, we also note that a further
adjusted continuum theory with fine-tuned regularization
terms should be devised to fully describe the whole dynamics,
especially in the bistable regime. This is left for future works.

Conflicts of interest

There are no conflicts of interest to declare.

A Equations of motion for the particles

We describe the equations of motion for the particles in the
magnetic chain in detail. The equations for the boundary
particles are shown explicitly as well.

Obviously, the term on the right-hand side of eqn (1) con-
sists of three parts. The first one of them, resulting from the
elastic energy, reads

�@Eel

@ri
¼ k riþ1 � rið Þ � k ri � ri�1ð Þ (21)

for i = 2,. . .,N and

�@Eel

@r1
¼ k r2 � r1 � að Þ; � @Eel

@rNþ1
¼ �k rNþ1 � rN � að Þ: (22)

Second, the contributions from the magnetic dipole–dipole
interaction take the form

�@Em

@ri
¼ 3m0bm

2

4p
�
X
j4 i

1

rj � ri
� �4 þX

jo i

1

rj � ri
� �4

" #
(23)

for i = 2,. . .,N, and

�@Em

@r1
¼ �3m0bm

2

4p

XNþ1
j¼2

1

rj � r1
� �4; (24)

� @Em

@rNþ1
¼ 3m0bm

2

4p

XN
j¼1

1

rj � rNþ1
� �4: (25)

We note that the nearest-neighbor magnetic dipole–dipole
interaction is obtained from the above equations by constraining
the summations in j to nearest neighbors.

Lastly, we have

�@Est

@ri
¼ fst ri;iþ1

� �
� fst ri�1;i

� �
(26)

for i = 2,. . .,N and

�@Est

@r1
¼ fst r1;2

� �
; � @Est

@rNþ1
¼ �fst rN;Nþ1

� �
(27)

from the steric repulsion energy, where

fstðrÞ � esY rc � rð Þ �12
ss

r

ss

� ��13
þ 6

ss
r

ss

� ��7
�cs r� rcð Þ

	 �
: (28)

B Singular perturbation theory

We define v � rx and rescale the time variable by introducing
t � (Dx)2t for convenience. Then eqn (14) reads

Gvt ¼ eð1ÞðvÞ þ ðDxÞ2 1

12
eð2ÞðvÞvxx þ

1

24
eð3ÞðvÞðvxÞ2


 �	 �
xx

: (29)

Introducing the extended variable ~x ¼ x� sðtÞ
ðDxÞ , we probe an

interlayer solution which describes the behavior of the system
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in the vicinity of the shock front at s(t). Under a change of

variables v = ṽ(x̃,t) with vx ¼
1

Dx
~v~x and vt ¼ ~vt �

_sðtÞ
Dx

~v~x, eqn (29),

to the leading order of Dx, becomes

eð1Þð~vÞ þ 1

12
eð2Þð~vÞ~v~x~x þ

1

24
eð3Þð~vÞð~v~xÞ2


 �
~x~x

¼ 0; (30)

which has a solution of the form

eð1Þð~vÞ þ 1

12
eð2Þð~vÞ~v~x~x þ

1

24
eð3Þð~vÞ ~v~xð Þ2¼ A~xþ B: (31)

For the interlayer solutions ṽ and ṽx̃ must approach constant
values v� and 0 as x̃ - �N and, therefore,

A = 0, B = e(1)(v�) = e(1)(v+). (32)

Further multiplying by ṽx̃, we also find

ðB~vÞ~x ¼ eð~vÞ þ 1

24
eð2Þð~vÞ ~v~xð Þ2


 �
~x

; (33)

which leads to the equal-area rule66,78 for the interlayer solution
of the form

B(v+ � v�) = e(v+) � e(v�). (34)

Numerically solving eqn (32) and (34), one can compute the
values of v+ and v�, which specify the structure of the shocks.
The construction of the equal area rule and the resultant shock
structures are presented in Fig. 8(a) and (b).

We turn to the propagation speed of the shock-wave front
s(t). As our equation of motion in the leading order takes the
form of a diffusion equation, we consider a similarity solution
U(z) = v(x,t) with the similarity variable z � x=

ffiffiffi
t
p

. The equation
of motion in the leading order follows as

Gvt = (e(2)(v)vx)x (35)

in terms of x and t. It can be rewritten as

G
2
z
dUðzÞ
dz

¼ � d

dz
eð2ÞðUÞdUðzÞ

dz


 �
(36)

in terms of the similarity variable z. In particular, the quantity
of interest is the coefficient xs which is defined by a similarity
relation sðtÞ ¼ xs

ffiffiffi
t
p

. Quantifying the values of xs with the
Whitham’s derivation,89 one can describe the dynamics of the
shock-wave propagation. For self-containedness, we briefly
summarize the procedure, following ref. 77 and 89. We also
note that an equivalent result was obtained66 with the aid of
mathematical consideration of Stephan problems.79

First, we consider the diffusion flux q in a region x1 4 x 4 x2

where a balance between the net inflow across x1 and x2 in a
region is described by

G
d

dt

ðx2
x1

vðx; tÞdxþ q x1; tð Þ � q x2; tð Þ ¼ 0; (37)

leading to the conservation form

G
@v

@t
þ @q
@x
¼ 0: (38)

Therefore, we define the diffusion flux as q � �e(2)(v)vx [see
eqn (35)]. We then extend the above consideration to a case
with a discontinuity at x = s(t). In this case, eqn (37) can be
rewritten as follows:89

q x1; tð Þ � q x2; tð Þ ¼ G
d

dt

ðsðtÞ
x2

vðx; tÞdxþ G
d

dt

ðx1
sðtÞ

vðx; tÞdx (39)

¼ Gv s�; tð Þds
dt
þ
ðsðtÞ
x2

Gvtðx; tÞdx

� Gv sþ; tð Þds
dt
þ
ðx1
sðtÞ

Gvtðx; tÞdx:
(40)

With the limits x1 - s+ from above and x2 - s� from below,
we obtain

G
ds

dt
¼ q s�; tð Þ � q sþ; tð Þ

v s�; tð Þ � v sþ; tð Þ �
½q�
½v�; (41)

where square brackets denote the jump of the contained value
across the interface. For the similarity solution, q(z,t) =
�t�1/2e(2)(U)Uz, and therefore the above equation is cast into
the form77

1

2
xs ¼ �

eð2ÞðUÞUz

� �
½GU� ; (42)

which finally determines the propagation speed of the
shock front. Numerically solving eqn (36) and (42), we obtain
the values of xs which are presented in Fig. 5(b). Using these
values, we can compute, for instance, the number of touching
particles NT(t) in one end. Specifically, scaling back to the time
t, we have

NTðtÞ ¼
sðtÞ
Dx
¼ xs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2t

p
Dx

¼ xs
ffiffi
t
p
: (43)

As expected, the number of touching particles is independent
of the value of Dx. Predicted values of xs are shown in Fig. 5(b),
together with those extracted from the simulation results by the
procedure described in Fig. 8(c) and (d).

C Numerical integration of the
continuum equation of motion

In this appendix, we describe the algorithm used in integrat-
ing the quasi-continuum equation of motion. The algorithm
is a modified version of the upwind scheme,90,91 which is
widely used to find propagating solutions to wave equations.
However, if it is directly applied to the magnetic chain under
contraction, for instance, the shrinkage of the chain is rather
exaggerated as the particles behind an interface receive
biased information towards the particles in front of the
interface,90 which may impose a resistance to contraction.
To compensate such an artifact, we introduce an additional
downwind-biased step and write the discretized equation for
each time step Dt as follows:

PCCP Paper

Pu
bl

is
he

d 
on

 0
7 

M
ay

 2
01

8.
 D

ow
nl

oa
de

d 
by

 H
ei

nr
ic

h 
H

ei
ne

 U
ni

ve
rs

ity
 o

f 
D

ue
ss

el
do

rf
 o

n 
06

/0
6/

20
18

 1
2:

46
:3

1.
 

View Article Online

http://dx.doi.org/10.1039/C8CP01395K


15048 | Phys. Chem. Chem. Phys., 2018, 20, 15037--15051 This journal is© the Owner Societies 2018

As already pointed out in ref. 76, a certain form of regulariza-
tion is always involved in the numerical integrations, which are
indeed discrete. In the case of the numerical scheme discussed
here, the dominant correction to the fully continuum equation
of motion [eqn (10)] is given as

ðDxÞ2 1

12
eð2Þ rxð Þrxxxx þ

1

6
eð3Þ rxð Þrxxrxxx þ

1

8
eð4Þ rxð Þ rxxð Þ3

	 �
: (45)

Interestingly, the terms are almost equivalent to the leading
order regularization in eqn (14). Therefore, we conclude that the
algorithm discussed above provides solution to the continuum
equation of motion but with a slightly different type of
regularization.

It is well known that the upwind scheme introduces numer-
ical diffusion of the interface.91 The numerical integration
scheme described above also seems to suffer from such an
issue, as the numerical solutions are not consistent with

Fig. 8 (a) How the equal area rule applies in practice is described: the structures of the shocks are given by the filled blue circle (v�) and the filled green
square (v+), corresponding to the intersection points between the red line representing e(1) and the black dotted line, where v� and v+ are the values of rx

behind and in front of the shock. The gray areas above and below the black dotted line need to be equal to each other. Plus and cross symbols
representing the particle-resolved simulation results are displayed as well. Specifically, r� and r+ are given as the lengths of the springs in front of and
behind the abrupt jump in the density, respectively. (b) The values of v+ and v� (magenta solid and cyan dashed lines) computed from eqn (32) and (34) are
compared with the particle-resolved simulation results, r+ and r� (blue circles and red squares). We note that the values on the left axis correspond to
those of r� (red squares) and v� (magenta solid line), while r+ (blue circles) and v+ (cyan dashed line) are represented by the axis on the right. (c) Fig. 5(a) for
Scenario III is replotted in terms of ri,i+1 as a function of i. The values of NT are explicitly depicted by arrows. (d) The values of NT as functions of time t are
plotted for m = 1.3m0, 1.5m0, and 1.7m0 with rinit

i = 0.4rc. We extract the values of xs by numerically fitting the results to the relation NT ¼ xs
ffiffi
t
p

(black
solid lines), which here are found to be xs(G/k)1/2 = 0.380 (m/m0 = 1.3), 0.600 (m/m0 = 1.5), and 0.732 (m/m0 = 1.7).

Grðx; tþ DtÞ

¼ Grðx; tÞ þ Dt
2

eð2Þ
rðx; tÞ � rðx� Dx; tÞ

Dx


 �	

� rðxþ Dx; tÞ þ rðx� Dx; tÞ � 2rðx; tÞ
ðDxÞ2

�

þ Dt
2

eð2Þ
r xþ Dx; tþ Dt

2


 �
� r x; tþ Dt

2


 �
Dx

0
BB@

1
CCA

2
664

�
r xþ Dx; tþ Dt

2


 �
þ r x� Dx; tþ Dt

2


 �
� 2r x; tþ Dt

2


 �
ðDxÞ2

3
775:

(44)
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eqn (32), which should be satisfied regardless of regularization.
Specifically, it has been tested by plotting a figure like Fig. 8(a)
from the numerical integration results. Moreover, the propagation
speed of the interface sensitively depends on the structure of the
shock as manifested in eqn (42). We find that the coefficient xs

extracted from a numerical solution can be, roughly, 100 times
larger than the one obtained from the particle-resolved simulation
and the singular perturbation theory. Still, the essential shapes of
the solutions agree quite well with the simulation results, as
shown in Fig. 9.
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47 G. Pessot, M. Schümann, T. Gundermann, S. Odenbach,
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