
 

Viscotaxis: Microswimmer Navigation in Viscosity Gradients

Benno Liebchen,1,* Paul Monderkamp,1 Borge ten Hagen,2 and Hartmut Löwen1
1Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

2Physics of Fluids Group and Max Planck Center Twente, Department of Science and Technology, MESA+ Institute,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands

(Received 23 December 2017; published 15 May 2018)

The survival of many microorganisms, like Leptospira or Spiroplasma bacteria, can depend on their
ability to navigate towards regions of favorable viscosity. While this ability, called viscotaxis, has been
observed in several bacterial experiments, the underlying mechanism remains unclear. We provide a
framework to study viscotaxis of biological or synthetic self-propelled swimmers in slowly varying viscosity
fields and show that suitable body shapes create viscotaxis based on a systematic asymmetry of viscous
forces acting on a microswimmer. Our results shed new light on viscotaxis in Spiroplasma and Leptospira
and suggest that dynamic body shape changes exhibited by both types of microorganisms may have an
unrecognized functionality: to prevent them from drifting to low viscosity regions where they swim poorly.
The present theory classifies microswimmers regarding their ability to show viscotaxis and can be used to
design synthetic viscotactic swimmers, e.g., for delivering drugs to a target region distinguished by viscosity.
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Introduction.—The ability to adapt their motion in
response to gradients in an external stimulus, called taxis
[1], is crucial for the life of most microorganisms.
Chemotaxis [2], for example, allows microorganisms to
find food (chemoattraction or positive chemotaxis) and to
escape from toxins (chemorepulsion or negative chemo-
taxis) but also acts as a precondition of mammalian life by
guiding sperm cells towards the egg. Very recently, it was
found that chemotaxis even plays an important role [3–10]
in synthetic colloidal microswimmers [11–13], where it can
induce dynamic clusters and patterns even at low density
[4–8]. Besides responding to chemical stimuli, many
biological and synthetic swimmers can adapt their motion
also in response to other stimuli such as gradients in light
intensity (phototaxis) [14–18], magnetic fields (magneto-
taxis) [19–21], temperature (thermotaxis) [22–25], or a
gravitational potential (gravitaxis) [26–31].
In this Letter we consider viscotaxis, which is a different

kind of taxis caused by viscosity gradients. Viscotaxis is
much less understood than the above types of taxes for
microorganisms and is undiscovered for synthetic swimmers.
However, viscosity gradients occur in many situations, both
for biological and synthetic swimmers. The interface
between two immiscible liquids of different viscosity, for
example, features a high viscosity gradient, occurring, e.g., in
a sedimentation profile of the two liquids. Similarly, viscosity
gradients showupnaturally in complex environments, e.g., in
fluids near a mucus zone or at the interface of different parts
of the human body with individual viscosities. Therefore,
somemicroorganisms, like Spiroplasma [32] and Leptospira
interrogans [33–35], which are poor swimmers at low
viscosity [33,36], have developed the ability to navigate

up viscosity gradients. Without this ability to perform
viscotactic motion, they would statistically migrate down
thegradient [36], as the residence timeof a particle in a certain
volume element decreases with its speed. Despite the
existence of a series of experiments on bacterial viscotaxis
[32,34–36], there is no systematic theory or understanding of
the precise mechanism allowing microorganisms to perform
viscotaxis [35]. We therefore develop a framework to study
viscotaxis for self-propelled biological and synthetic micro-
swimmers in slowly varying viscosity fields. The present
approach shows that nonuniaxial body shapes automatically
lead to viscous torques aligning linear swimmers generically
up viscosity gradients. This is due to a systematic mismatch
of viscous forces acting on different body parts of the
swimmer. The proposed mechanism may help to explain
experiments observing positive viscotaxis in Spiroplasma
[32] and Leptospira [33–35], which has previously been
attributed to the speculative existence of viscoreceptors [36].
The provided theory may also help linking the characteristic
motility mode in Spiroplasma and Leptospira, which
involves uniaxial and nonuniaxial body shapes [32,35,
37–39], with the very fact that these organisms show
viscotaxis [34,35]. We also demonstrate that swimmers
experiencing nonviscous torques, like chiral swimmers or
run-and-tumble bacteria, can, in principle, generate negative
viscotaxis, which may shed new light on corresponding
observations for E. coli bacteria [36]. More generally, our
theory classifies swimmers, based on their body shape and
self-produced torques, regarding their ability to perform
viscotaxis. This classification can be used as a new design
principle for synthetic microswimmers that are able to
navigate in viscosity gradients.
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Passive particles in viscosity gradients.—To develop a
first understanding for the dynamics in viscosity gradients,
we consider a passive and overdamped rigid body which is
confined to two dimensions (quasi 2D) and consists of N
rigidly connected spheres with midpoints ri ¼ ðxi; yiÞ
(i ¼ 1;…; N) and radii bi. Besides external forces Fi,
which we will later replace with effective self-propulsion
“forces” [40–42], the spheres also experience viscous
forces. Since we are mainly interested in slowly varying
viscosity fields, in the sense that viscous forces do
not change much on the scale of a single sphere
[jηðyi þ biÞ − ηðyiÞj=ηðyiÞ ≪ 1], we apply Stokes’s law
to define the frictional forces FRðriÞ ≈ −6πηðriÞbi _ri [for
physical effects due to large viscosity gradients (disconti-
nuities), see Ref. [43]]. This leads us to the following
equations of motion:X

½Fi − 6πbiηðriÞ_ri� ¼ 0; ð1Þ
X

ðri −RÞ × ½Fi − 6πbiηðriÞ_ri� ¼ 0; ð2Þ

representing force- and torque-balance conditions. Here,
a×b¼a1b2−a2b1,

P
≔

P
N
i¼1, and R ¼ ðX; YÞ is some

reference point for which we choose, for convenience, the
hydrodynamic center of mass R ≔

P
biri=

P
bi; charac-

teristically, forces acting at this point do not cause rotations
of the rigid body in the lab frame. We focus here on linear
viscosity profiles ηðrÞ ¼ η0 þ λy, and we eliminate η0 by
shifting the origin of the coordinate system y → y − η0=λ
and λ by defining a rescaled radius ai ¼ 6πλbi.
To get an initial idea about the dynamics of particles

in viscosity gradients, we consider externally forced bodies,
say, the “sedimentation” of a sphere experiencing a constant
force F1 ¼ F0ey pointing up the gradient [Fig. 1(a)]. For a
single sphere, Eqs. (1) and (2) yield y1ðtÞ ¼ y1ðt ¼ 0Þ þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F0t=a1

p
and x1ðtÞ ¼ x1ðt ¼ 0Þ, showing that the sphere

continuously slows down as _y1 ∝ 1=
ffiffi
t

p
.

While more complicated N-body objects experiencing
forces Fi ¼ Fiey feature a more involved short-time
dynamics, at late times, they universally follow the sameffiffi
t

p
law as the single sphere. To see this, we write, for later

convenience, ri ¼ R − liei [cf. Fig. 1(d)], where li ¼
jri −Rj and ei ¼ ðcosϕi; sinϕiÞ, with ϕi≕ϕþ αi being
the angle between R − ri and the x axis and ϕ defining
the orientation of the swimmer based on the orientation of
R − r1 relative to the x axis [Figs. 1(c) and 1(d)]. For
Y≫ li, we have yi ¼ Y − li sinϕi ≈ Y so that Eq. (1) yields
ðPaiÞY _Y¼P

Fi, resulting in YðtÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tðPFiÞ=ð

P
aiÞ

p
.

Solving Eqs. (1) and (2) numerically, using a Runge-Kutta
integrator with Dormand-Prince adaptive step-size control,
for a sphere, a symmetric dumbbell, and a triangular
swimmer confirms this law [see Fig. 1(b)]. Note that
nonlinear viscosity profiles lead to a qualitatively analo-
gous behavior [44].

Conversely to the position RðtÞ, the late-time orientation
of a sedimenting body in a viscosity gradient depends on its
shape. To see this, let us consider a symmetric dumbbell
with equal forces F ¼ Fey acting on the two spheres
[Fig. 1(c)] and ask how it will align to the gradient while
falling. To find the answer, we use the late-time solution of
Eq. (1): ðX�; Y�Þ ¼ (Xðt ¼ 0Þ; 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tF=ða1 þ a2Þ
p

), and we
determine the fixed points of Eq. (2) as ϕ� ¼ 0, π=2,
representing the horizontal and vertical dumbbell orienta-
tions, respectively. Performing a linear stability analysis of
these fixed points shows that the vertical configuration is
always unstable,whereas the horizontal one (ϕ� ¼ 0) attracts
ϕðtÞ, whichmakes the dumbbell fall horizontally. Physically,
for ϕ ≠ 0 the drag acting on the lower sphere [Fig. 1(c)]
dominates such that the upper sphere moves faster and the
dumbbell turns towards the horizontal configuration (see also
movie 1 in the Supplemental Material (SM) [45]).
Microswimmer viscotaxis.—We now turn to our key aim

of exploring the mechanism allowing microswimmers to
navigate in viscosity gradients. Analogously to the previous
considerations for externally forced passive bodies, we
describe active microswimmers as multibead rigid bodies
[46–48,52–55]; since our key results will apply to arbi-
trarily complex arrangements of (very small) beads, the
model can also be used to closely mimic swimmers with a
continuous shape. For clarity and generality of the physical
discussion, we implement activity by effective propulsion
forces [42,56], but we show in the SM [45] that equivalent
results can also be derived for swimmers where the self-
propulsion is explicitly modeled by body shape deforma-
tions, for example. The latter type of swimmers experience
only minor corrections from hydrodynamic interactions
(see the SM [45]). The effective forces point in fixed
directions in the body frame of the particle and corotate

FIG. 1. The sedimentation of (a) a sphere, (c) a dumbbell, and
(d) more complex objects in a linear viscosity profile ηðyÞ ¼
η0 þ λy (illustrated by the shading of the background color)
universally follows (b) a YðtÞ ∝ ffiffi

t
p

law at late times, where Y is
the y component of the hydrodynamic center of mass [the long
blue arrow in (d)]. (b) shows the sedimentation dynamics based
on numerical integration of Eqs. (1) and (2) of a single sphere [the
two (red) curves which merge corresponding to two different
initial Y values], a symmetric dumbbell (blue, top curve at late
times), and an irregular triangle (green, lower curve) (using
arbitrary parameters). The black dashed line shows the yðtÞ ¼ ffiffi

t
p

line for comparison.
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with the swimmer in the laboratory frame. Formally, the
dynamics of active swimmers therefore still follows
Eqs. (1) and (2), but with forces Fi → FiðϕÞ, depending
on the angle ϕ between the x axis and the axis connecting
sphere 1 and R [see Fig. 2(b)].
Minimal design of viscotactic swimmers.—Let us focus

on viscotaxis in linear swimmers and disregard chiral
swimmers for now. Accordingly, we only allow for
effective forces Fikðri −RÞ≕xi [57], which sum
up to a single force F pointing at some fixed angle ϕF
relative to the swimmer [see Fig. 2(b)], i.e., F=jFj ¼
( cosðϕþ ϕFÞ; sinðϕþ ϕFÞ). (Note that any net force
acting on a point of the swimmer distinct from R would
indeed create chirality).
We now seek the minimal design of a viscotactic

swimmer. Clearly, for a single sphere we have r1 ¼ R,
such that Eq. (2) is identically fulfilled and the sphere does
not change its initial direction of motion. The next simplest
candidate, a dumbbell with a propulsion force pointing
along the symmetry axis connecting both spheres
[Fig. 2(a)], experiences only viscous forces along its
symmetry axis but no viscous torque, as F ¼ F1 þ F2

and x1;2 all point along the symmetry axis of the dumbbell
[compare Eq. (2) and Fig. 2(c)]. Following this argument,
uniaxial swimmers, i.e. swimmers which are symmetric to
the axis connecting the beads, cannot show viscotaxis (see
also movie 2 in the SM [45]). [This result remains true in
three dimensions, of course, and, as we show based on a
perturbative solution of the Stokes equation in the presence
of a viscosity gradient in the SM [45], it is robust against
hydrodynamic far-field interactions up to terms on the
order of the relative change of viscosity on the scale of a
single bead aλ=ηðRÞ.] To see if triangular swimmers, as the
simplest remaining candidate, can show viscotaxis, we now
numerically solve Eqs. (1) and (2) for a regular triangular

swimmer [Fig. 2(b)] with a1 ¼ a2 ¼ a3, l1 ¼ l2 ¼ l3, and
ϕF ¼ 0. When the swimmer is initialized such that the
propulsion forces push it up the viscosity gradient, it
continues swimming in this direction. However, when we
initialize it such that it starts swimming down the gradient,
remarkably, we observe that the swimmer slowly turns and
finally approaches a direction leading, again, to motion up
the gradient [see Fig. 2(d) and movies 3(a) and
3(b) in the SM [45]]. Therefore, suitable body shapes can
create viscotaxis. Figure 2(g) illustrates the underlying
mechanism: here, for a given _R, sphere 1 experiences more
drag than sphere 2 and moves more slowly (f1 > f2 for the
magnitudes of the friction forces). As a result the swimmer
turns up the gradient until torque balance between the two
spheres is reached. Once the swimmer has reached its late-
timeorientation, the active forcepoints in a constant direction
[vertically upwards for the regular triangular swimmer in
Fig. 2(g)] and we encounter the same universal

ffiffi
t

p
law as for

passive particles in an external force field. These arguments
should apply analogously in three dimensions, of course.
Repeating the numerical solution of Eqs. (1) and (2) for

other, less regular swimmers, we always find viscoattrac-
tion. To see how representative this result is for arbitrarily
complicated swimmers, we next develop a systematic
theory for viscotaxis.
Theory of viscotaxis.—To understand viscotaxis more

generally, we now determine the late-time swimming
direction (X0, Y0) depending on the swimmer geometry.
Here, we first exploit the

ffiffi
t

p
scaling law and use the

ansatz XðtÞ ¼ X0

ffiffi
t

p
, YðtÞ ¼ Y0

ffiffi
t

p
to asymptotically solve

Eqs. (1) and (2). As a result (see the SM [45]), we find two
possible late-time swimming directions determined by

Y0 ¼ X0 tan ðϕ0 þ ϕFÞ; ð3Þ

FIG. 2. Viscotaxis in linear swimmers. (a) Uniaxial swimmers do not show viscotaxis and move in the direction of their initial
orientation [typical trajectory obtained by solving Eqs. (1) and (2) numerically in arbitrary units shown in (c)]. (b) Nonuniaxial
swimmers generically show viscotaxis which is always positive for linear swimmers [typical trajectory in (d)]. (e) Spiroplasma and
(f) Leptospira bacteria changing their body shape from roughly uniaxial to nonuniaxial shapes (snapshots from Refs. [35,39]).
(g) Mechanism of viscotaxis. The viscous drag acting on body parts at high viscosity (sphere 1) dominates the drag acting on spheres at
low viscosity (sphere 2), which turns the swimmer up the gradient.
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where ϕF is fixed by the propulsion forces [Fig. 2(b)] and
ϕ0 is given by

ϕ0¼�arctan

0
B@X

½cicosðαiÞ�
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i;j¼1

cicjcosðαi−αjÞ
vuut

1
CA;

ð4Þ
with ci ¼ ail2i =ða1l21Þ and the angles αi (with α1 ¼ 0)
characterizing the swimmer geometry [see Fig. 1(d)].
The two solutions in Eq. (4) represent fixed points of
the orientational dynamics of the swimmer. In fact, depend-
ing on the system parameters, one or the other of these
solutions accurately agrees with the late-time swimming
direction seen in our numerical solutions of Eqs. (1) and (2)
(not shown). To predict which of these solutions will attract
the swimmer dynamics, we perform a linear stability
analysis in the SM [45]. The resulting growth rate of small
orientational fluctuations around ϕ0 reads

σ ¼
P

ci sin ðϕ0 − ϕF þ 2αiÞ
2 sinðϕ0 þ ϕFÞ

P
ci

: ð5Þ

A ϕ0 solution is stable if σ < 0. The remaining task is to
find some qualitatively informative relation between the
sign of σ in Eq. (5) and the swimmer geometry.
Remarkably, it is possible to show [45] that σ is generally
negative if ϕ0 þ ϕF ∈ ð0; πÞ: that is, we universally find
stability of the fixed point [Eq. (4)] representing motion
(diagonally) up the viscosity gradient. The conclusion is
that, within our model, nonuniaxial linear swimmers
generically move up viscosity gradients, no matter what
their size and shape may be.
To estimate the role of fluctuations,we compare the typical

torque Tm ∼ 6πRvL2λ acting on a microswimmer with
lengthL ∼ 10 μm, speed v ∼ 20 μm=s (Leptospira, E. coli),
andR ∼ 1 μminawaterlike fluid (η ≈ 8.9 × 10−10 kg=μms)
whose viscosity varies by 5% over L (λL ¼ 0.05η), with
the thermal energy kBT at T ¼ 293 K. This yields
kBT=Tm ∼ 10−2; i.e., fluctuations are strongly suppressed.
The viscotactic alignment time can be estimated as
ta ∼ ðL=vÞðLF=TmÞ ¼ η=vλ ≈ 10 s, where FL ∼ 6πηRvL
acts as a resistive torque opposing Tm. For a triangular
synthetic colloid with L∼3μm, R ∼ 1 μm, and v ∼ 3 μm=s,
we find ta ∼ 30 s; kBT=Tm ∼ 0.1.
Torque-induced negative viscotaxis.—For nonlinear

swimmers like circle swimmers or run-and-tumble bacteria,
which experience a torque, negative viscotaxis is no longer
forbidden by the above results. In fact, this class of
swimmers can show both positive and negative viscotaxis.
To see this in detail, we reconsider our dumbbell swimmer
but now allow the force to point at a finite angle to the
swimmer axis [Fig. 3(a)]. Numerically solving Eqs. (1) and
(2) for dumbbells swimming with the forcing sphere ahead,
we generically observe a spiraling motion up the viscosity

gradient [see Fig. 3(b) and movie 4 in the SM [45]], i.e.,
effectively, viscoattraction. Remarkably, however, dumb-
bells swimming with the forcing sphere in the back
typically spiral down the gradient and effectively show
viscorepulsion [see Fig. 3(c) and movie 5 in the SM [45]].
Physically, from the viewpoint of the forcing sphere, the

second sphere provides more additional drag when the
dumbbell moves up the viscosity gradient than when
moving down the gradient [Fig. 3(d)]. Therefore, the
dumbbell swims faster down the gradient and overshoots
in this direction within each circle. The inverse situation
applies to a dumbbell moving with the forcing sphere ahead
[Fig. 3(b)].
Biological implications.—Both Leptospira interrogans

[33–35] and Spiroplasma bacteria [32] show viscoattrac-
tion based on a mechanism which is still unclear [35].
Interestingly, the characteristic motility modes of both
bacteria contain conformational body changes involving
sequences of uniaxial and nonuniaxial shapes; i.e., follow-
ing the present theory, they should be automatically
viscoattractive (rather than requiring speculative viscore-
ceptors [36]). In fact, without viscotaxis both bacteria
would statistically drift to low viscosity regions [36], where
they swim poorly. Thus, conformational body deformations
in Leptospira and Spiroplasma might have an unrecog-
nized functionality: to continuously align them towards
viscosity regions where they are efficient swimmers.
Conversely, nonlinear swimmers like run-and-tumble

bacteria, propelled by flagella in their back, might swim

FIG. 3. (a) Viscotaxis in chiral swimmers can be (b) positive
[typical trajectory obtained by solving Eqs. (1) and (2) numeri-
cally in arbitrary units] or (c) negative. Negative viscotaxis
emerges from the fact that (c),(d) back-driven swimmers move
faster down the gradient than upwards and systematically over-
shoot down the gradient while circling (see the text for details).
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more effectively during runs pointing down the gradient
than during upward pointing runs, similar to the
above-discussed chiral dumbbell, which might drive their
viscorepulsive behavior [36].
Conclusions.—Nonuniaxial body shapes create visco-

taxis, which is generally positive in linear swimmers and
effective even for very weak gradients. This generic finding
might explain the classical observations of positive visco-
taxis seen in Spiroplasma and Leptospira bacteria; in
particular, it suggests that the transitions between uniaxial
and nonuniaxial body shapes shown by both microorgan-
isms, previously attributed only to the propulsion mode of
these microorganisms, may have an additional function-
ality: to prevent them from drifting towards regions where
they swim poorly. Here, viscotaxis emerges from a generic
mechanism hinging on a systematic imbalance of viscous
forces acting on the individual body parts of a swimmer.
The same mechanism should apply to synthetic swimmers
and may serve as a design principle, e.g., for targeted drug
delivery to regions of high viscosity.
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