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1.  Introduction

One powerful method to devise innovative, enhanced mat­
erials is to combine two or more known components into 

a new substance featuring new and optimized properties. 
Among composite materials, magnetoelastic materials such 
as ferrogels and magnetic elastomers [1–5] blend the elastic, 
reversible deformability typical of polymeric materials [6, 7] 
with the responsiveness to external magnetic fields distinctive 
of ferrofluids [8, 9]. Their possible applications include soft 
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Abstract
Ferrogels and magnetorheological elastomers are composite materials obtained by embedding 
magnetic particles of mesoscopic size in a crosslinked polymeric matrix. They combine the 
reversible elastic deformability of polymeric materials with the high responsivity of ferrofluids to 
external magnetic fields. These materials stand out, for example, for significant magnetostriction as 
well as a pronounced increase of the elastic moduli in the presence of external magnetic fields. By 
means of x-ray micro-computed tomography, the position and size of each magnetic particle can 
be measured with a high degree of accuracy. We here use data extracted from real magnetoelastic 
samples as input for coarse-grained dipole-spring modeling and calculations to investigate internal 
restructuring, stiffening, and changes in the normal modes spectrum. More precisely, we assign 
to each particle a dipole moment proportional to its volume and set a randomized network of 
springs between them that mimics the behavior of the polymeric elastic matrix. Extending our 
previously developed methods, we compute the resulting structural changes in the systems as well 
as the frequency-dependent elastic moduli when magnetic interactions are turned on. Particularly, 
with increasing magnetization, we observe the formation of chain-like aggregates. Interestingly, 
the static elastic moduli can first show a slight decrease with growing amplitude of the magnetic 
interactions, before a pronounced increase appears upon the chain formation. The change of the 
dynamic moduli with increasing magnetization depends on the frequency and can even feature 
nonmonotonic behavior. Overall, we demonstrate how theory and experiments can complement 
each other to learn more about the dynamic behavior of this interesting class of materials.

Keywords: magnetorheological elastomer, ferrogel, tunable dynamic moduli, dipole-spring 
model, x-ray microcomputed tomography, structural transition
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actuators [10, 11], tunable vibration absorbers [12, 13], tun­
able damping devices [14], magnetic field detectors [15, 16], 
electromagnetic radiation absorbers [17], and smart accelera­
tion sensors [18, 19]. Since the polymer can be bio-compat­
ible, applications for drug delivery [20] have been outlined.

One way to generate soft magnetoelastic materials is to 
crosslink a polymeric solution in which magnetic particles of 
mesoscopic size are dispersed. The particles are typically large 
enough so that they cannot move through the surrounding 
polymer mesh, or they are directly chemically bound to the 
polymer network [21–24]. Therefore, when magnetically 
interacting with an external field and with each other, the par­
ticles rotate or push against their environment and in this way 
deform the surrounding polymer matrix. Thus the resulting 
‘magneto-mechanical’ coupling [21, 25, 26] can reversibly 
change the shape and stiffness of the materials in the pres­
ence of an external magnetic field. Consequently, adjusting 
the magnetic interactions by external magnetic fields, it is 
possible to tune the mechanical state and properties such as 
strain [27–31] or elastic moduli [32–40]. This coupling can 
also influence other physical properties such as resonance fre­
quency [18] or electrical impedance [41]. Furthermore, it is 
the origin of intriguing features such as formation of chains 
of magnetic particles [40] and their buckling under magnetic 
fields [42], superelasticity [43, 44], and complex behaviors of 
the dynamic moduli [45].

Various theoretical approaches have been performed to 
describe the behavior of these materials, such as macroscopic 
theory [15, 26, 46–48], finite-element methods [49–53], as 
well as discrete particle resolved models [43–45, 54–57]. One 
new route in the modeling has recently been outlined in the 
form of a density functional theory [58]. Along these lines, the 
magnetically induced changes in elastic properties have been 
described [43–45, 50, 54, 55, 57, 59].

In the particle-resolved approaches, the magnetic particles 
are usually assumed to carry magnetic point dipoles, a rea­
sonable approximation at low enough volume fractions [60]. 
The challenge typically consists in representing appropri­
ately the elastic forces mediated by the polymer matrix. To 
lowest order, the matrix-mediated elastic interaction can be 
described via linear [45, 57, 61, 62] or nonlinear [63] springs 
connecting the particles. Other approaches coarse-grain the 
polymer into a coupled mesh of nearly-incompressible tet­
rahedra [43, 44], or, conversely, zoom onto the microscopic 
detail by resolving the individual polymer chains in a coarse-
grained way [64, 65]. Within the framework of linear elas­
ticity theory, the matrix-mediated interactions between the 
particles can be calculated analytically and up to a desired 
order exactly [66–70].

When devising new materials with smart, enhanced prop­
erties, one usually aims at optimizing their response to an 
external perturbation. For instance, in the case of a vibration 
absorber, one would like to have a material stiff enough to 
sustain the required load but also viscous enough to dissi­
pate kinetic energy as quickly as possible. The key physical 
quantities are the dynamic moduli. They provide the time- or 
frequency-dependent stress response of the material to an 

externally imposed strain. Recently, increasing attention has 
been paid on investigating the time-dependent properties 
either via macroscopic [46, 47, 71] or particle-resolving [45, 
72, 73] models.

In our previous investigation [45] we outlined a method to 
compute the frequency-dependent Young and shear moduli 
E(ω) and G(ω), respectively, for basically any given par­
ticle arrangement and studied several theoretically assumed 
particle structures. In the present work, after refining our 
method, we aim at applying our technique to three-dimen­
sional (3D) particle distributions obtained by x-ray micro-
computed tomography (X-μCT) [40, 74–76] from real 
experimental samples. We evaluate the dynamic moduli for 
varying frequencies, volume fractions of magnetic particles, 
and intensity of the magnetic interactions. Yet, the presented 
approach is quite general and can, in principle, be applied 
to other systems as well that feature a finite size with well-
defined boundaries, overdamped dynamics, and that can 
be discretized into a set of individual nodes with mutual 
potential interactions. In the present context of magnetic 
elastomers, we assume that the elastic polymer mesh is fine 
enough so that the embedded magnetic colloidal particles 
are locked in their positions and cannot move through the 
polymer network.

Our goal is twofold. On the one hand, mesoscopic models 
often adopt strong assumptions on the particle arrangement 
to render the problem manageable [45, 54, 57, 59, 65, 73, 
77, 78]. However, depending on the choice of the distribu­
tion, this can lead to qualitatively different deformational and 
stiffening behaviors [45, 54, 57, 59, 78]. Here, we directly 
use the spatial and size distribution of the particles from real 
samples the behavior and properties of which we wish to 
address. On the other hand, we exploit our mesoscopic model 
to predict, e.g. the dynamic moduli or the stress-strain phase 
lag, as a function of frequency, deformation geometry, and 
with increasing magnetic interaction. While our model can 
be evaluated in a very efficient way together with the internal 
restructuring under increasing magnetic interactions, it is 
extremely challenging to measure all these properties simul­
taneously in experiments.

Our paper is structured as follows. First, in section 2 we 
present our minimal dipole-spring model including steric 
repulsion. Then, in section  3, we describe the experimental 
set-up employed to acquire the particle distributions used 
as input for our model. Then, our technique to calculate the 
dynamic moduli is briefly summarized in section 4. Finally, 
we present our results in section 5 before drawing our final 
conclusions in section 6.

2.  Dipole-spring model

Our employed dipole-spring model is a modified version of 
the one presented in [45]. First, we summarize the properties 
of our particle-spring network and explain how it is gener­
ated. Then, we discuss the pair potentials acting between the 
particles and the generated mesh nodes in the reduced units 
of the system.

J. Phys.: Condens. Matter 30 (2018) 125101
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2.1.  Particle-spring network

We consider a set of Np spherical magnetic particles with posi­
tions Ri = (xi, yi, zi) and radii ai (i = 1, . . . , Np). The posi­
tions and radii of the magnetic particles are experimentally 
measured and used as input for our calculation (see section 3 
below). Moreover, each particle carries an individual magnetic 
moment mi. We assume an identical magnetization M  for all 
particles as might be achieved by magnetization in a homo­
geneous external magnetic field under magnetic saturation or 
when neglecting mutual particle magnetization. Together with 
the particle volume vp,i =

4
3πa3

i  we thus obtain mi = Mvp,i .
The polymeric network embedding the particles is mod­

eled by a network of harmonic springs. In our previous works 
we introduced a minimal set of springs directly connecting 
the particles via Delaunay triangulation [57, 72, 74, 75]. 
Care was taken to suppress artificial soft shear modes. In the 
present work, to represent in a better way a uniform elastic 
background around irregular particle arrangements we insert 
Nextra extra nodes in the space between our magnetic particles. 
These nodes are non-magnetic, volumeless, and only serve 
as linking points that connect springs. We similarly label 
the positions of these mesh nodes by Ri = (xi, yi, zi), with 
i = Np + 1, . . . , N . The Np magnetic particles and the Nextra 
additional nodes add up to a total of N = Np + Nextra mesh 
points, implying 3N translational degrees of freedom.

The nodes of the total network are initially positioned 
according to a face-centered-cubic (fcc) lattice. Each lattice 
site corresponds to a mesh node. The nearest-neighbor con­
necting edges between the nodes are converted to harmonic 
springs. Furthermore, amesh sets the initially identical length 
of all springs. We choose an appropriately small mesh size 
comparable to the average interparticle distance in the densest 
sample, see section 3. In other words, we set our spring net­
work so that it ‘fills’ the gaps between the magnetic particles 
as homogeneously as possible. Moreover, amesh is identical for 
the different investigated systems.

When later an experimentally measured particle configura­
tion of overall cubic shape is imported, it is laid over the spring 
network. Subsequently, the network node closest to each par­
ticle is moved and attached to the center of the particle. We 
determine the mean square displacement of all these displace­
ments. In a subsequent step, the remaining nodes are stochas­
tically displaced with an identical mean squared displacement, 
thus randomizing the whole network homogeneously, see 
figure 1. The lengths of the springs in their undeformed states 
are adjusted accordingly, so that there are no initial stresses in 
the elastic network in the absence of magnetic interactions. To 
maintain an overall cubic shape with well-defined boundaries, 
the nodes on the outermost layers of the network are, however, 
only randomized by one fifth of that amount.

It is important to define the boundaries of the resulting con­
figuration, i.e. the faces of the cubic-like system. There are 
six boundaries: right, left, rear, front, top, and bottom, corre­
sponding, respectively, to the ±x̂ , ±ŷ , and ±ẑ  surfaces. In 
the following, we will denote the set of particles and nodes 
belonging to each boundary by Bα̂ (α̂ = ±x̂,±ŷ,±ẑ ). The 
boundaries of our system are chosen in a way to include about 

the same number of particles as there are on the faces of the 
initial fcc network. Later, the magnetized particles will be dis­
placed under increasing magnetization. The particles assigned 
to the boundaries can change but their overall number remains 
constant. Below, we will be employing a total of N = 4631 
nodes. Each boundary comprises about  ∼5% of them.

Each spring connecting the ith mesh point (particle or extra 
node) with the jth one is characterized by its elastic constant 
kij. We set the elastic constant of each spring to be propor­
tional to its length in the undeformed state. One reason for 
this choice is that the resulting overall elastic modulus of the 
whole system should not depend on the artificially introduced 
length scale amesh. In our case of a randomized fcc network, 
we verified numerically that scaling each spring constant pro­
portionally to its length in the undeformed state yields con­
verging moduli for decreasing amesh. In the case of an infinitely 
extended regular spring lattice, this result can be derived by 
analytical arguments [78].

Finally, we assume an overdamped dynamics of our parti­
cles and extra mesh nodes [45, 72, 73]. Therefore, the motion 
of each particle and extra node is subject to an effective fric­
tional force −ciṘi , with the coefficients ci = c0 identical for 
each node, both for particles and extra mesh nodes. The reason 
is that here the relaxation process is mainly determined by 
the bulk (visco)elastic medium, which, in both cases, is given 
by the same (visco)elastic polymer. An additional solvent can 
further modify the dynamic relaxation behavior.

2.2.  Pair interactions

We now detail the various contributions to the total energy of 
the system U. It is composed of elastic Uel, magnetic Um, and 
steric Us contributions such that U = Uel + Um + Us. First, 
the elastic energy Uel stored in the elastic springs reads

Uel =
1
2

N∑
i,j=1; i�=j

kij

2
(
rij − �0

ij

)2
,� (1)

where the sum runs over all mesh nodes (particles and extra 
nodes) labeled by i and j ( j �= i) and the leading factor 12 ensures 
that we count each pair interaction only once. Furthermore, 
rij = Rj − Ri, rij = |rij|, and �0

ij  is the length of the spring con­
necting mesh nodes i and j in the undeformed state. The spring 
constants are given by kij = k0�

0
ij (see above), if i and j are con­

nected by a spring, and 0 otherwise. k0 is then set by the static 
elastic modulus of the matrix material.

Since we assume the magnetization M  is equal for all 
particles along an identical direction, set, e.g. by an external 
magnetic field, the only contribution to the magnetic energy 
Um due to varying particle distance is the dipole–dipole 
interaction

Um =
µ0

4π
1
2

Np∑
i,j=1; i�=j

mi · mjr2
ij − 3(mi · rij)(mj · rij)

r5
ij

.� (2)

Here, the sum runs only over the pairs of the Np magnetic 
particles, mi = Mvp,i = M 4

3πai
3, and µ0 is the magnetic per­

meability of vacuum.
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Finally, the steric repulsion is given by

Us =
1
2

Np∑
i,j=1; i�=j

vs

(
rij

σs
ij

)
,� (3)

where vs is a purely repulsive interaction. It is given by

vs(ξ) = εs
[
ξ−12 − ξ−6 + εc −

cs

2
(ξ − ξc)

2
]

� (4)

for ξ < ξc and zero otherwise [45], in the spirit of the WCA 
[79] potential. The shift εc and the cutoff range ξc = 21/6 are 
set to achieve vs (ξc) = 0 and vs′ (ξc) = 0. Moreover, the term 
with the coefficient cs is introduced to achieve vs′′ (ξc) = 0, 
which requires cs = 36 × 2−4/3 (see appendix A of [45] for 
further details). Since we here consider particles of different 
sizes, we arrange the steric cutoff between particles i and j, 
where steric interaction sets in, to correspond to the sum of the 

respective radii. Thus, σs
ij = 2−1/6(ai + aj).

To further describe our systems below, we define the 

characteristic length scale l0 =
3

√∑Np
i=1 a3

i /Np . Thus, the 

total volume occupied by the particles is exactly Np
4
3πl03. 

Moreover, and as further described in section 3, the distribu­
tions of particle radii in the considered samples have similar 
averages. Thus l0 is a good length scale to use even when sys­
tems of different particle concentration are addressed. We set 
the strength of our steric interaction to εs = k0l03.

3.  Experimental data acquisition and  
characteristics of the resulting numerical systems

The experimental samples from which we acquired the particle 
positions are of cylindrical shape and of weight percentage 
(weight magnetic particles over sample weight) of 15 and 40 
wt%. Manufacturing processes, data acquisition, as well as a 
comprehensive evaluation of measured particle structures and 
mechanical properties of the samples are given in [80, 81] 
(15 wt%), and [40] (40 wt%). In size, the samples had diam­
eters of 3.5 mm and 4 mm as well as heights of 3.5 mm and 
5 mm, respectively. To prepare the polymer host matrix, the 
elastomer kit Elastosil R© RT 745 A/B (Wacker Chemie AG, 

Figure 1.  Cartesian projections and 3D plot of magnetic particles (larger, blue spheres) and mesh nodes (smaller, gray spheres) in one 
numerical realization of an experimental sample. The mesh nodes are numerically generated to represent a homogeneous polymeric matrix. 
Experimentally, the arrangement of magnetic particles is obtained via X-μCT (see section 3). A central, homogeneous region of the sample 
is then cut for the numerical system generation (here of the 40 wt% sample), see section 3.

J. Phys.: Condens. Matter 30 (2018) 125101
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Germany) was employed for the sample with 15 wt% and sili­
cone polymers by Gelest Inc. for the sample of 40 wt%.

In both cases, soft-magnetic carbonyl iron powder ASC200 
(Höganäs AB, Sweden) was added. The amounts of iron 
powder of 15 and 40 wt% (volume fraction φ � 0.023 and 
≃0.056) were chosen to obtain significant responsiveness to 
magnetic fields as well as a statistically significant amount of 
described particles. On the one hand, the 15 wt% sample was 
prepared by pouring the silicon-iron powder mixture into a 
mold which was then immersed into a water bath at 95 ◦C 
for two hours for polymerization. On the other hand, the 40 
wt% sample was polymerized by action of the catalyst (Alfa 
Aesar Platinum (0)-1,3-divinyl-1,1,3-tetramethyldisiloxane, 
1:20) with a short final phase (30 min at 100 ◦C) of high-
temperature curing to finish. Care was taken to avoid particle 
sedimentation and to ensure a homogeneous distribution of 
the particles in the polymerized sample.

In a successive stage, x-ray micro-computed tomography 
(X-μCT) scans of the samples were performed. An X-μCT 
system [82] with electron current and acceleration voltage set 
to 170 μA and 90 kV, respectively, was employed. Projected 
images of the samples were generated by rotating the sample 
with a 0.25◦ increment. Furthermore, throughout the CT 
investigations, temperature remained constant at 20 ◦C. The 
exposure time, instead, varied from 2 s to 6.5 s to optimize the 
quality of the resulting image, for which a magnification factor 
of 15 was used, thus achieving a resolution of 1 pixel = 3.2 
μm. Finally, a self-developed software based on the FDK 
algorithm [83] was used to reconstruct the 3D images from the 
projected data. Further processing of the three-dimensional 
data to obtain the positions and volumes of the particles is 
performed by a segmentation algorithm using the DIPimage 
library [84] for matlab.

The experimentally investigated particles had very dif­
ferent, irregular shapes. To handle them effectively in our 

theoretical approach, we converted them to spheres of equiva­
lent volume, which ensures that the overall magnetic dipole 
moment under saturated magnetization is maintained. The 
distribution of the resulting radii is shown in figure 2 for the 
two systems. We note that the detection algorithm for our 
purpose had to be optimized for positional data, leading to a 
trade-off concerning the volume data, which does affect the 
size distributions for the two systems in figure 2. The average 
radii and average cubed radii show some variations but the 
extracted radii basically stay within the range of 5–35 μm. 
Both aspects hinder a quantitative comparison between exper­
iments and theoretical results at the present stage, but good 
qualitative agreement is achieved.

We choose the z-axis of our Cartesian coordinate system 
along the cylinder axis. Then, we check the homogeneity of 
the samples by calculating the particle distribution along the 
z-direction, see figure 3. As shown in figure 3, the particles 
are not completely uniformly distributed along the z-direction. 
Variations are particularly ascribable to slight deviations from 
perfectly flat boundaries [81]. To work with a distribution 
of relatively uniform particle density, we use as input of our 
analysis the magnetic particles contained within a central cube 
of dimension ≃600 μm. The distribution of mutual particle 
distances scaled by the length l0 is shown in figure 4.

Corresponding data of particle positions and volumes are 
imported into our numerical algorithm. Then, in both cases a 
numerical mesh of initial edge length amesh � 2.5l0  is gener­
ated. The total number of generated mesh nodes is much larger 
than the number of magnetic particles, see table 1. In the denser 
sample, we employ Nextra = 3860 extra nodes and Np = 771 
magnetic particles, for a total of 3N = 3 × 4631 = 13 893 
translational degrees of freedom, as indicated in table 1. This 
amount of nodes corresponds to a total of 50 400 intercon­
necting springs.

4.  Calculation of dynamic moduli

In this section we briefly summarize our extended method to 
calculate the dynamic moduli. We consider the system ini­
tially in equilibrium in the ground state for M = |M| = 0. As 
M increases, the particles reposition from the initial ground 
state to reduce their magnetic interaction energy Um until the 
closest minimum of the total energy U is found, i.e.

−∂Ri U = Fi = 0, ∀ i = 1, . . . , N.� (5)

Figure 2.  Distribution of radii in μm after converting the irregular 
shapes of the particles to spheres, maintaining their volumes as 
provided from the experimental analysis for our (a) 15 wt% and 

(b) 40 wt% systems. Average radius 
∑Np

i=1 ai/Np and unit length 

l0 =
3

√∑Np
i=1 a3

i /Np  are marked in the plots by the vertical dashed 
and solid lines, respectively.

Figure 3.  Distribution of the particles along the z-direction in 
μm for the cylindrical sample of weight fraction 40%. To assure 
a uniform distribution of magnetic particles we numerically cut 
a cube from the center of the cylinder as indicated by the vertical 
lines.

J. Phys.: Condens. Matter 30 (2018) 125101
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This, in general, is achieved at the cost of increasing the elastic 
and steric energies Uel and Us. Because of the large number 
of degrees of freedom and the irregular particle arrangement, 
the only practical way to find the equilibrium state is to per­
form numerical minimization. In the present work, we chose 
to employ the FIRE algorithm [85]. The control gauge for 
reaching the equilibrium state is the magnitude of the largest 
total force acting on a single particle. This means that at conv­
ergence no particle is subject to a total force larger than a cer­
tain threshold, which we here set to 10−3k0l02.

While obtaining the equilibrium configuration, it is cru­
cial to suppress rigid translations and rotations of the whole 
system. On the one hand, rigid translations induce the system 
to drift in space and we tackle them by subtracting an identical 
average from all forces, i.e. by substituting

Fi ← Fi −
1
N

N∑
j=1

Fj ∀i.� (6)

Thus, the total force vanishes, 
∑N

i=1 Fi = 0. On the other 
hand, a net overall rotation would alter the relative orienta­
tion of M  with respect to the system boundaries. Since we 
here intend to evaluate the moduli for specified geometries 
and orientations of M , a global rotation of the system must 
be averted. For this purpose, we first calculate the instanta­
neous overall torque τ =

∑N
i=1 Ri × Fi. As explained in sec­

tion 2.1, we model our system as overdamped. Such a torque 
τ  would then be balanced by the friction resulting from an 
instantaneous angular rigid rotation ω = I−1 · τ  of the whole 

particle arrangement. I  is a 3 × 3 auxiliary tensor that has 
the same structure as the moment-of-inertia tensor, leading to 

the expression I = c0
∑N

i=1

(
R2

i 1− RiRi
)
. I−1 is its inverse, 

and 1 is the unit matrix. To suppress the unrequested rigid rota­
tion at every step of iteration, the force field acting on all the 
particles is rendered torque-free by subtracting from the force 
Fi on each particle i the force c0ω × Ri, i.e. by substituting

Fi ← Fi − c0


I−1 ·

N∑
j=1

Rj × Fj


× Ri ∀i.� (7)

Then, the total torque vanishes, τ =
∑N

i=1 Ri × Fi = 0.
Once the equilibrium positions Req

i  (i = 1, . . . , N) are 
obtained under a given M , we can calculate the corresponding 
dynamic moduli. It is more convenient to treat the problem 
in terms of deviations from the equilibrium. Therefore, we 
introduce the displacements ui = Ri − Req

i  and their bra-ket 
notation |u〉 to indicate a D-dimensional (here D  =  3N) vector 
containing all the degrees of freedom. The key object in this 
analysis is the Hessian matrix H of the total energy U. Its ele­
ments are given by the second derivative of U with respect to 
all degrees of freedom, Hij = ∂ui∂uj U . Since the system is in 
an energetic minimum, U is a convex function of |u〉 and H is 
positive-semidefinite. We denote eigenmodes and eigenvalues 
of H by |vn〉 and λn, respectively, so that H |vn〉 = λn |vn〉. If 
the system is subject to a small static external force field |f〉 
acting on the mesh nodes, its final deformation is determined 
from the condition |f〉 = H |u〉.

To describe external force fields that result in axial or 
shear deformations, we define external forces acting on the 
boundary particles. They represent a mechanical stress applied 
from outside and oriented along preselected directions. In the 
present work, sticking to the experimental set-up, we focus on 
axial stretching/compression along the z-direction and shear 
strains with the shear plane containing ẑ  but the force applied 
perpendicular to it, see figure 5. A corresponding force field 
must satisfy the following conditions: (i) it is non-vanishing 
only on the boundaries and oriented in the appropriate direc­
tions to build up the corresponding macroscopic stress; (ii) it 
induces neither translational drift (iii) nor net rotations; and 
(iv) its magnitude scales with the macroscopic force F corre­
sponding to the stress σ = F/S acting on the boundary of sur­
face S.

When a small external force is applied, the system rear­
ranges to balance it and its total energy increases. By decom­
posing the external force field over the eigenmodes of 
deformation [42, 45, 72, 86], we can identify the contribution 
of each mode to the total change in energy. The corresponding 
static elastic modulus is found as

E =
L
S

[
1

F2

D∑
n=1

〈 f |vn〉2

λn

]−1

,� (8)

where L is the distance between the boundaries on which the 
forces are applied, calculated from the averaged particle posi­
tions in each corresponding boundary. Moreover, the surface 
S of the boundary Bẑ  is obtained by projecting the nodes and 

Figure 4.  Distribution of the nearest-neighbor distances in our 
samples of (a) 15 wt% and (b) 40 wt% in terms of scaled particle 
distances r/l0. Particles on the boundaries are excluded from this 
calculation.

Table 1.  For each experimental sample of wt% as indicated we 
select a cube from its center containing Np magnetic particles. Nextra 
additional nodes are included in the spring network to achieve a 
total of N = Np + Nextra mesh nodes, each with 3 translational 
degrees of freedom.

wt% Np Nextra N

15% 186 4445 4631
40% 771 3860 4631
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particles belonging to it onto the plane perpendicular to ẑ . 
Subsequently, the convex hull of the projected set of points is 
determined [87], which allows us to describe samples of non-
regular and changing shape.

In the case of a periodically oscillating stress, the former 
static condition |f〉 = H |u〉 becomes an overdamped equa­
tion of motion which reads

C |u̇〉 (t) +H|u〉(t) = |f〉(t).� (9)

The first step consists in transforming it into an eigenvalue 
problem. The entries of the matrix C of viscous friction read 
Cij = c0δij, with δij the Kronecker delta and i, j = 1, . . . , N . 
Since C and H commute and can be diagonalized simultane­
ously, (9) decouples into D  =  3N one-variable equations

c0u̇n(t) + λnun(t) = fn(t)� (10)

(n = 1, . . . , 3N ). Each describes the dynamics of a single 
normal mode, with un(t) = 〈vn |u〉 (t) and fn(t) = 〈vn |f〉 (t).

If the time-dependent external force is periodic with 
a single frequency, i.e. |f〉(t) = |f 0〉eiωt, then the solution 
|u〉(t) = |u0〉eiωt  of (9) in the steady state will be oscillating 
with identical frequency, possibly with a time lag. The same is 
true for the projections onto the normal modes fn(t) and un(t), 
respectively. Solving for each normal mode in the steady state, 
we find

un(t) = u0
neiωt =

f 0
n eiωt

κn(ω)
=

fn(t)
κn(ω)

� (11)

with κn(ω) = λn + ic0ω, u0
n = 〈u0|vn〉, and f 0

n = 〈f 0|vn〉 [45]. 
Thus, starting from a given external oscillating force field 
|f 0〉eiωt we can calculate the dynamic linear response of the 
system in the form |u0〉eiωt.

Finally, we define the complex single-frequency dynamic 
elastic moduli as the ratio between stress and strain in the 
steady state regime: E(ω) = E′(ω) + iE′′(ω) = σ(t)/ε(t). 
The real and imaginary parts E′(ω) and E′′(ω) are defined 
as storage and loss moduli, respectively. To bridge the gap 
between the macroscopic and the mesoscopic quantities, we 
identify the total strain of the system as the displacement of 
the forced boundary particles over the distance between the 

forced boundaries, i.e. ε(t) = 〈u(t)|f u〉/L. Here, |f u〉 indicates 
a force field rescaled so that it exerts a total force of unitary 
magnitude on each boundary in the overall force direction.

The dynamic elastic moduli are then calculated as [45]

E(ω) =
L
S

[
D∑

n=1

f u
n

2

κn(ω)

]−1

,� (12)

with f u
n = 〈vn|f u〉.

To summarize, we have outlined a procedure that from 
mesoscopic particle distributions and discretized meso­
scopic force fields yields the macroscopic stresses, strains, 
and elastic moduli. In the following we consider the effect of 
increasing magnetic interactions on the systems described in 
section 3. Our main focus will be on the resulting changes in 
the dynamic elastic moduli.

5.  Results

We now investigate how increasing magnetization M = |M| of 
the particles affects the overall properties of the system such 
as internal structure and elastic moduli. In agreement with the 
experimental set-up, we here set M = Mẑ . For the presenta­
tion of our results, we measure lengths, energies, forces, and 
elastic moduli in multiples of l0, k0l03, k0l02, and k0, respec­
tively. Viscosity, velocities, times, and frequencies are mea­
sured, respectively, in multiples of c0/l0, k0l02/c0, c0/k0l0, 

and ω0 = k0l0/c0. Finally, we measure magnetic moments and 

magnetization in multiples of m0 =
√

4πk0l06/µ0  and 

M0 =
√

4πk0/µ0, respectively.
Since k0 scales the elastic moduli of the matrix, 

M0 =
√

4πk0/µ0 gauges the relative strength of elastic and 
magnetic effects in our reduced units. A magnetoelastomer 
with elastic modulus of  ∼104 Pa [33, 40] implies M0 of the 
order of  ∼3 × 105 A m−1. Since the saturation magnetization 
of carbonyl iron is  ∼2 × 106 A m−1 [88], the range of magnet­
ization would be M � 7M0. However, applying the rescaled 
model to very soft gels of elastic moduli  ∼1 Pa [42] suggests 
up to M � 30M0 in reduced units.

We consider deformations of the system explicitly 
involving the magnetization orientation, i.e. the z-direction. 
Accordingly, we focus on the elastic moduli Ezz and Gzy corre­
sponding to axial strain in the z-direction and shear strain with 
the shear plane containing M , respectively, as depicted in 
figure 5.

5.1.  Field-induced internal restructuring and chain formation

Increasing the amplitude of the magnetization M, we observe 
a type of two-step process. First, an initial repositioning of 
the particles occurs. The initial tendency of dipoles to rotate 
around each other minimizes their magnetic energy. Next, 
with increasing M, the dipole–dipole attraction between two 
magnetic particles can become strong enough to overcome the 
springs connecting them [61, 89]. Then, in a similar fashion 
as described in [61] but in a 3D environment, the particles 

Figure 5.  Main geometries to calculate the elastic Young (Ezz) and 
shear (Gzy) moduli. The notation Ezz indicates that the macroscopic 
forces are applied onto the ±ẑ  surfaces and parallel to the z-
direction. In a similar fashion, Gzy corresponds to a configuration 
in which the forces are applied onto the ±ẑ  surfaces as well but 
parallel to the y-direction.
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collapse towards each other along the M -direction and are 
then stabilized by steric repulsion. Consequently, chain-like 
clusters start to grow, which, initially, consist of just two par­
ticles, as depicted in figure 6.

In the following, we identify particles as belonging to the 
same chain when they are closer than the steric repulsion 
cutoff distance and caught in a virtually touching state after 
the dipole–dipole attraction has overcome the connecting 
elastic springs. When further increasing the magnetization, 
the distance between particles already in contact changes only 
slightly due to the strong steric repulsion. For M � 2.5M0 
chains of more than 2 particles begin to form. After a large 
enough amount of aggregates has formed, the chains start 
to merge with each other. This is signaled by a decreasing 
number of chains for M � 4.5M0 while the average chain 
length keeps increasing.

The formation of the chains is further highlighted by fig­
ures 6(b) and (c), which show projections of all nodes onto 
one plane for M  =  0 and M  =  7M0 of the 40 wt% sample, 
respectively. By eye, the chain-like aggregates can clearly 
be identified in figure 6(c). This figure also reveals a limita­
tion of the present basic dipole-spring approach. When the 
strong internal restructuring occurs in terms of the chain for­
mation, the basic approach cannot provide overall volume 

conservation any longer. Therefore, predictions on the abso­
lute lengths resulting for the magnetized sample due to the 
magnetostrictive behavior [90] are not meaningful in the pre­
sent context. However, upon chain formation, we still observe 
on average an increase of the system extension along the field 
direction relatively to the transversal dimensions. The same 
is observed in the majority of the experiments in terms of a 
magnetostrictive elongation along the field direction.

5.2.  Dynamic elastic moduli

We now move on to the dynamic Young and shear moduli 
Ezz(ω) = E′

zz(ω) + iE′′
zz(ω) and Gzy(ω) = G′

zy(ω) + iG′′
zy(ω) 

as a function of frequency ω and particle magnetization M. 
Estimating our reduced unit of measure for the frequency 
ω0 = k0l0/c0 requires knowledge of the friction coefficient c0. 
Here, we choose a different approach. To compare with exper­
imental data, we match the frequency at which the storage 
and loss moduli cross as shown in figure 7. At this frequency, 
arctan(E′/E′′) = π/4. Comparing with representative rheo­
logical measurements [91], we estimate that ω0 ∼ 103 Hz for a 
typical polymeric material of modulus  ∼105 Pa. Experiments 
in the low strain regime [91, 92] can explore wide frequency 
intervals (10−1 − 106 Hz) that in our reduced units would cor­
respond to 10−4 − 103 ω0.

As explained in section 4, the dynamic moduli, e.g. Ezz(ω), 
link the macroscopic oscillating stresses and strains, i.e.

σzz(ω) = Ezz(ω)εzz(ω).� (13)

In the steady-state regime stress and strain both oscillate with 
the same frequency but shifted by a phase

δzz(ω) = arctan

[
E′′

zz(ω)

E′
zz(ω)

]
.� (14)

Our modeling of the particle dynamics as in (9) corre­
sponds to a Kelvin–Voigt macroscopic model. Such a model 
is particularly appropriate at longer timescales (i.e. in the 
small-ω regime). There, it is characterized by a constant 
storage modulus and a loss modulus that linearly increases 
with the frequency. Upon decomposition into the normal 
modes, each mode behaves as an independent Kelvin–Voigt 
element with different parameters and dynamic modulus 
κn(ω) = λn + ic0ω as in (11). Increasing the oscillation fre­
quency, the dynamic moduli deviate from a simple Kelvin–
Voigt description, as shown in figure 7, because the response 
of the system switches to different combinations of modes.

Data points and bars in figure 7 are obtained from aver­
ages and standard deviations of 15 uncorrelated, differently 
randomized numerical realizations of the spring network. 
Furthermore, and albeit the Kelvin–Voigt model describes 
particularly the long-timescale behavior, we here plot for 
completeness a larger range of ω. We can mainly distinguish 
between three regimes of frequency.

First, up to  ∼10−2ω0, the storage moduli have a flat 
behavior and, in the ω → 0 limit, converge to the static elastic 
moduli. Here the deformation occurs over long timescales and 
the bulk relaxes completely. Therefore, the storage modulus 

Figure 6.  Clustering in one numerical discretization of the 40 wt% 
sample. Panel (a) shows the number of chains formed for increasing 
M (left ordinate axis), together with the average number of particles 
comprised by each chain (right ordinate axis) plotted by solid and 
dotted lines, respectively. Furthermore, points and bars represent 
averages and standard deviations over the set of aggregates present 
in the system. The inset addresses the angle θ between the end-to-
end vectors of the chains and M  for increasing M. Panel (b) depicts 
the projection of extra nodes (light-colored) and magnetic particles 
(dark-colored) at M  =  0 onto the xz plane. Panel (c) shows the same 
plot for the largest M reached in panel (a). There, the formation 
of chain-like aggregates as well as the overall deformation of the 
spring network are visible.
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has its minimum with respect to ω. Typically, in experi­
ments the elastic moduli increase with increasing volume 
fraction φ of hard inclusions. According to Einstein’s law, 
E(φ) = E(φ = 0)[1 + 5φ/2] to lowest order in φ [93, 94]. 
Here we do not observe this effect, because we set the springs 
between the centers of the particles.

The loss moduli in the low-ω regime linearly increase 
and follow the trend  ∼ηω, with η an effective viscosity, see 
figure 8. The viscosities are obtained from the initial slopes of 
E′′

zz(ω) and G′′
zy(ω). They are, respectively, E′′

zz(ω)/ω ∼ 10c0/l0 
and G′′

zy(ω)/ω ∼ 2c0/l0. In this regime, the phase lags are 
increasing but small, see figure 7, so that stress and strain are 
almost completely in phase.

Increasing ω until  ∼10−1ω0, the phase lags reach the value 
π/4, as a consequence of the increasing loss moduli. At this 
characteristic frequency the storage moduli equal the corre­
sponding loss moduli. As indicated above, this reference 

point could be used to compare our results with experimental 
measurements.

For increasing frequency ω, the bulk of the system is 
unable to relax as the oscillation period of the external stress 
decreases. As a consequence we find an increase in the 
storage moduli up to ω ∼ 102ω0, where they reach a final 
plateau. Here, the linear response results from the springs on 
the boundary and practically no dynamical internal relaxation 
occurs. The frequency is too large to allow for propagation 
of the external stimulus into the bulk. In agreement with the 
Kelvin–Voigt model, the loss moduli keep increasing. Some 
deviations from the linear increase are visible in the regime 
10−1ω0 � ω � 101ω0, in which the system switches from 
a low-ω bulk to a high-ω surface response. Subsequently, 
in the range ω � 102ω0, the phase lags practically reach 
the stationary value of π/2, for which stress and strain are 
completely out of phase. We mention that, at high frequen­
cies, inertial effects may become important. In this case, our 
results obtained from overdamped dynamics may lose their 
significance.

5.3.  Hardening effects

Increasing the magnetization M of the particles, e.g. by 
applying an external magnetic field, their spatial arrangement 
undergoes significant transformations, see figure  6 and sec­
tion 5.1. Such adjustments are reflected by variations in the 
elastic moduli.

First we address induced changes in the static moduli 
Ezz(M) and Gzy(M), where Ezz(M) = E′

zz(ω = 0, M) and 
Gzy(M) = G′

zy(ω = 0, M). For briefness, we denote the 
moduli at vanishing frequency and magnetization as 
E0 = E′

zz(ω = 0, M = 0) and G0 = G′
zy(ω = 0, M = 0). 

Moreover, we focus our analysis on the sample with 40 wt% 
because it shows a stronger response to magnetic interactions. 
Again we average our results over 15 different numerical real­
izations of the spring network and show the corresponding 

Figure 7.  Dynamic (a) Young and (b) shear moduli Ezz(ω) 
and Gzy(ω) for vanishing magnetic interactions (M  =  0) for 
arrangements extracted from samples of 15 and 40 wt%, 
respectively. The curves for the storage moduli E′

zz(ω) and G′
zy(ω) 

refer to the left axes. The curves for the phase lags between 
storage and loss components, (a) δzz(ω) = arctan(E′′

zz/E′
zz) 

and (b) δzy(ω) = arctan(G′′
zy/G′

zy), refer to the right axes. For 
δzz(ω) = π/4 = δzy(ω) (horizontal dashed blue line) corresponding 
storage and loss moduli are equal. Data points and bars (where 
visible) represent averages and standard deviations over 15 different 
numerical realizations of the spring network surrounding the 
magnetic particles.

Figure 8.  Loss moduli E′′
zz(ω) (solid line) and G′′

zy(ω) (dashed line) 
at vanishing magnetization M  =  0 for samples with 15 and 40 wt%. 
The double logarithmic scale reveals the initial linear behavior. Data 
points indicate averages over 15 different numerical realizations of 
the spring network surrounding the magnetic particles. Standard 
deviations are much smaller than the symbols.
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averages and standard deviations. In this way, we link our 
findings to the specific particle distribution and not to the spe­
cific arrangement of the network nodes.

Initially, for M � 2M0 the moduli do not vary significantly, 
see figure  9. In this low-M regime, the amount of formed 
chain-like aggregates is quite small and only few particles 
are clustered. Furthermore, here the standard deviations on 
the moduli due to the different realizations of the numerical 
spring network are less than 1%.

For values of M � 2M0 we first observe a slightly decreasing 
trend for both moduli, more accentuated for the shear mod­
ulus which here is reduced by up to 12%. This behavior cor­
responds to a softening of the systems. Significant particle 
rearrangements occur in this regime due to the induced magn­
etic interactions. Apparently, the resulting energetic locking 
of the corresponding intermediate structures is weaker than in 
the initial unmagnetized state. Such configurations are, how­
ever, stable minima of the system for each given M, as evi­
denced by the positive values of the moduli.

Finally, for higher M � 4M0, we observe a significant 
increase in both moduli, together with an increase in the 
statistical standard deviations. We conjecture such a change 
in behavior to be connected to the structural change in the 
magnetic particle aggregates, see figure 6. For M � 4M0 the 
clusters of magnetic particles switch from prevalently dimers 
to longer chain-like aggregates. The corresponding large 
increase of elastic moduli has previously been predicted theor­
etically [45] and been observed in experiments [33, 35, 40]. 
We directly attribute this hardening of the sample to the for­
mation of large chain-like aggregates in the system [61]. They 
are aligned in the M -direction and can span large portions of 
the sample. When the magnetic particles on the chains are at 
contact in a ‘hardened’ [61] state, they are virtually locked in 
position by the intense balance of steric and magnetic forces. 
Each such particle is trapped in a potential well much steeper 
than the one originating from the spring network. Thus, it 
is intuitive that the macroscopic deformations illustrated in 

figure  5 experience a significant stronger resistance if they 
work on the hardened chains. Moreover, it is intuitive that the 
increase in Ezz is stronger than the one in Gzy in figure 9.

In fact this hardening is certainly one of the most important 
aspects of the investigated materials in view of practical appli­
cations. In magnetic fluids of magnetic colloidal particles sus­
pended in a carrier liquid, external magnetic fields can induce 
the formation of such chain-like aggregates as well. When 
this happens, the shear viscosity of the suspension strongly 
increases, which was, for instance, referred to as ‘magne­
toviscous effect’ [95–97]. Here, we apparently observe the 
analogue to this effect, now for elasticity in solid materials. 
Comparing figures 6 and 9 with each other, it becomes con­
ceivable that the formation of the chain-like aggregates plays 
an analogous driving role in the present context.

We now discuss the impact of increasing M on the dynamic 
moduli. As expected, in the low-ω regime (ω � 10−1ω0) the 
storage moduli E′

zz(ω) and G′
zy(ω) follow the same behavior 

as their static counterparts, as shown in figure 10. Moreover, 
the phase lags δzz and δzy in this regime tend to decrease 
for increasing M. This implies that a large M does not only 
increase the storage moduli but also helps to keep stress and 
strain in phase. This is consistent because an increase in, e.g. 
E′

zz directly causes a decrease in δzz = arctan(E′′
zz/E′

zz).
For larger ω � 10−1ω0, a less distinct increase in the storage 

Young modulus E′
zz(ω) was found. Also the phase lag δzz is 

less influenced by the magnetization in this frequency regime. 
For ω � ω0 there is no statistically significant variation for δzz 
any longer. Interestingly, the storage part of the shear modulus 
G′

zy(ω) decreases when switching on M at intermediate fre­
quencies ω, in contrast to the low-ω regime. A crossing of the 
curves for G′

zy(ω, M = 0) and G′
zy(ω, M = 7M0) is observed 

in figure 10. However, for even higher ω � 10ω0 the storage 
modulus recovers its increasing behavior with increasing mag­
netization as in the static case. Approximately, the shear-related 
phase lag δzy shows a behavior similar to δzz, although with 
smaller amplitudes of variation at intermediate frequencies.

The loss moduli, displayed in figure  11, are influenced 
by increasing magnetization M as well. Because of the 
roughly linear behavior in both the low- and high-ω regime, 
see figure  8, we discuss the variations in terms of changes 
in E′′

zz(ω)/ω and G′′
zy(ω)/ω, which for ω → 0 represent the 

corresponding effective viscosity of the system.
The loss modulus E′′

zz(ω) seemingly decreases with 
increasing M at low to moderate frequencies, thus leading to a 
reduced effective viscosity. The reason for the larger standard 
deviations at low frequencies is that the absolute value of 
E′′

zz(ω) vanishes approximately as E′′
zz(ω) ∼ ω for ω → 0. 

The same applies to the shear loss modulus G′′
zy(ω). While the 

shear loss modulus G′′
zy(ω) always seems to decrease when 

switching on M, see figure  11(b), the Young loss modulus 
E′′

zz(ω) interestingly changes from decrease to increase for 
higher frequencies.

The chain formation described in section 5.1 and the stiff­
enings displayed in figures 9 and 10 can be related to changes 
in the distribution of the eigenvalues with increasing M, see 
figure 12. Over the whole range of λn, the effect of increasing 

Figure 9.  Variation of the static (ω = 0) normalized moduli 
Ezz(M)/E0 and Gzy(M)/G0 with increasing magnetization for the 
sample of 40 wt%. Data points indicate averages over 15 different 
numerical realizations of the spring network. For M < 5M0 the 
standard deviations are smaller than those at M = 5M0.
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M is to lower the smaller (λn � 10k0l0) and to increase the 
larger (λn � 10k0l0) eigenvalues. This influence is especially 
pronounced for the larger λn. They correspond to localized 
normal modes involving nearby particles. Such modes typi­
cally dominate the response at high frequencies. The forma­
tion of chain-like aggregates strongly magnetically binds the 
nearby particles to each other, making their relative motion to 
each other difficult. This explains the significant increase for 
larger λn in figure 12 and is directly reflected by the increase 
of the storage moduli in figure 10 at high frequencies.

Moreover, the inset of figure 12 reveals an increase in many 
of the very small eigenvalues λn with increasing magnetiza­
tion M. At low frequencies, the system has time to signifi­
cantly adjust to the imposed global deformations. Therefore, 
mainly the more globally extended modes corresponding to 
long-ranged distortions spanning the system become impor­
tant in the low-ω regime. Those are especially the modes 
corresponding to lowest nonvanishing eigenvalues λn. Thus, 
the increase in the elastic storage moduli in figure 10 reflects 
the increase in these eigenvalues λn in the inset of figure 12.

Figure 10.  Effect of increasing magnetization M on the storage 
moduli (a) E′

zz(ω) and (b) G′
zy(ω) (solid lines) as well as on the 

phase lags (a) δzz(ω) and (b) δzy(ω) (dashed lines) for the 40 wt% 
sample. The inset in (b) zooms in onto the low-ω behavior of 
G′

zy(ω), see also figure 9 for the case ω = 0.

Figure 11.  Influence of increasing magnetization M on the loss 
moduli (a) E′′

zz(ω) and (b) G′′
zy(ω) for the sample of 40 wt%. 

Because of the approximately linear increase of the loss moduli 
with frequency, we here plot them after division by ω.

Figure 12.  Spectrum of eigenvalues λn (n = 1, . . . , 3N ) for the 40 
wt% sample when increasing the magnetization M. Data points and 
bars correspond to averages and standard deviations, respectively, 
for 15 different numerical realizations of the spring network. The 
inset zooms in onto the lowest 31 eigenvalues, while the vertical 
dashed line separates the 6 lowest λn representing 3-dimensional 
translations and rotations from the other eigenvalues.
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6.  Conclusions

Bringing together experimental analysis of real samples and 
the subsequent theoretical and numerical investigation and 
evaluation of the data can complement the two approaches 
and increase our understanding of complex materials. Here, 
refined X-μCT methods were used to scan macroscopic sam­
ples of magnetic elastomers. Mesoscopic information on the 
positions and volumes of the magnetic particles embedded 
in an elastic polymeric matrix were obtained this way. The 
data were collected for different particle concentrations [40, 
81]. They are then used as input to an adequately enhanced 
version of our recent dipole-spring approach [45] of deter­
mining the dynamical elastic moduli under varying magnetic 
interactions.

For this purpose, the elastic polymer matrix in which the 
particles are embedded is discretized by a randomized net­
work of linear elastic springs. Each magnetic particle forms 
a node of the resulting elastic network. In addition to that, 
extra nodes not carrying magnetic particles are included to 
allow for a more homogeneous elastic network. The particles 
are assumed of spherical shape, with radii set according to 
the experimentally measured volumes. For simplicity, when 
magnetized, e.g. by an external magnetic field, we assume all 
particles to show the same magnetization. Together with the 
particle volume, it sets the magnetic dipole moment of each 
particle that leads to magnetic interactions.

As a consequence of this approach, we can theoretically 
analyze the competition between magnetic and elastic interac­
tions in the experimental particle arrangement for increasing 
magnetization. Particularly, this concerns the internal restruc­
turing and the formation of chain-like aggregates [40, 81, 
98–100]. Moreover, we can calculate the changes in dynamic 
elastic storage and loss moduli for increasing magnetization 
as a function of the frequency of the stress imposed onto the 
boundaries of the system [45]. Here, we concentrated on a 
compressive/elongational deformation along the magnetiza­
tion and a shear deformation containing the magnetization 
in the shear plane but with boundary displacements perpend­
icular to it. Switching on the magnetic interactions, we found 
that the evaluated static elastic moduli first slightly decreased. 
However, at high magnetization values, we observed the for­
mation of chain-like aggregates in the system, in which the 
particles are strongly magnetically bound to each other. This 
leads to significant increase in elastic Young and shear storage 
moduli at low and high frequencies. Interestingly, a decrease 
in the elastic shear storage modulus is obtained at intermediate 
frequencies. Nonmonotonous behavior as a function of fre­
quency, when switching on the magnetization, is also found for 
the resulting changes in the Young loss modulus. Additionally, 
we find an increasing magnetization to reduce the out-of-phase 
lag between the applied stress and the strain response.

As mentioned above, a detailed quantitative comparison 
between the experimental investigation and theoretical results 
is not possible at the present stage. However, good qualitative 
agreement is found with experimental observations accessible 
so far. Particularly, the formation of chain-like aggregates 
under increasing magnetization [40, 81] as well as the increase 

in the elastic moduli upon chain formation [40] have been 
reported in the experimental investigations.

 On the experimental side, a further improvement of the 
evaluation algorithm will provide increased precision on the 
particle positions and volumes. A tracking of the particles for 
stepwise increase of external magnetic fields and mechanical 
deformations may further support this effort. Yet, a simulta­
neous measurement of structure and dynamics will be very 
challenging using our set-up. However, simultaneously meas­
uring structural changes under deformation and quasi-static 
stress-strain behavior will provide further insight. We hope 
that our predictions of the dynamical properties, which are not 
always easily accessible in experiments, will stimulate further 
discussions and investigations.

On the theoretical side, an important next task will be to 
introduce non-spherical particle shapes into the formalism. 
Moreover, including rotational degrees of freedom [43, 44], 
surface-bound springs [62], induced dipole effects [60, 101], 
or many-body elastic interactions [66, 67] will continuously 
take us towards our goal of combined efforts to study the 
properties of this class of materials. Furthermore, we could 
extend our formalism to take into account thermal effects, for 
instance, by applying stochastic forces to the nodes. In this 
context, appropriate fluctuation-dissipation relations are nec­
essary [102]. The effect of thermal fluctuations on the overall 
behavior can be nontrivial [103] and shall be worked out in a 
broader effort in the future. Spatially inhomogeneous mechan­
ical properties arising, for instance, from inhomogeneous con­
centrations of the crosslinks or of the embedded rigid particles 
could be included to some degree by spatial variations of the 
spring constants. In the longer term, also more sophisticated 
situations such as deformation or actuation of prestretched 
states [104] may be addressed.

Altogether, we have presented an approach to quickly 
estimate for a given sample the internal restructuring and its 
influence on the macroscopic behavior using the basic but effi­
cient dipole-spring model. For this purpose, for a given piece 
of material, we need to know as an input the initial particle 
arrangement, which the x-ray micro-computed tomography 
can provide. In principle, the experimental analysis could 
simultaneously provide the data of internal restructuring under 
magnetization and the effect on the moduli under a given 
overall static deformation as well. However, each such data 
acquisition and particularly its evaluation is very time con­
suming and requires handling of large data files. The dipole-
spring approach provides an efficient alternative to evaluate at 
least the qualitative trends, even if, due to its involved approx­
imations, it is not fully exact quantitatively. Particularly, the 
dynamic tracking under a given frequency, simultaneously 
resolving the structural internal changes, seems out of reach 
at the moment in the experimental analysis, while the dipole-
spring approach provides an effective evaluation.

Moreover, to extract a general material behavior and if the 
details of the statistics for arranging the particles are known, 
one could quickly generate numerically different realiza­
tions of certain particle arrangements in the dipole-spring 
model, evaluate them, and then average over the results. 
In this way, an ensemble average would be obtained over 
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different realizations of the system that could more clearly 
identify, for instance, transitions in the general behavior of 
the systems. Experimentally, such a procedure would again 
be very time consuming and tedious. Still, if, as is the case 
in the present work, we are interested in the properties of 
one given piece of material that could be used practically, we 
have to work with the one given particular realization of this 
sample, which due to the permanently crosslinked nature of 
the elastic matrix does not change over the considered time 
scales. In further integrating the corresponding experimental 
and theoretical approaches, we aim at an ongoing process of 
enhancing the tools to develop and design these appealing 
materials.
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