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The hydrodynamic flow field generated by self-propelled active particles and swimming microor-
ganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple
model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall
reveal various scenarios of motion depending on the initial orientation and the distance separating
the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely
escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using
a far-field approximation, we find that, at leading order, the wall-induced correction has a source-
dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer
decay as inverse third and fourth powers with distance from the wall, respectively. The resulting
equations of motion for the trajectories and the relevant order parameters fully characterize the tran-
sition between the states and allow for an accurate description of the swimming behavior near a
wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first
order discontinuous, whereas the transition between the trapping and escaping states is continuous,
characterized by non-trivial scaling exponents of the order parameters. In order to model the circular
motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo
rotational motion around the swimming axis. We show that the general three-dimensional motion can
be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the
order parameters governing the transition between the swimming states. Published by AIP Publishing.
https://doi.org/10.1063/1.5021027

I. INTRODUCTION

Swimming microorganisms use a variety of strategies
to achieve propulsion or stir the suspending fluid.1 To cir-
cumvent the constraint of time reversibility of the Stokes
equation governing the small-scale motion of a viscous fluid,
known as Purcell’s scallop theorem,2 many of them rely on
the non-reciprocal motion of their bodies. To understand the
nature of this process, a number of artificial designs have
been proposed to construct and fabricate model swimmers
capable of propelling themselves in a viscous fluid by inter-
nal actuation. Among these, a particular class is simplis-
tic systems with only few degrees of freedom necessary to
break kinematic reversibility, as opposed to continuous irre-
versible deformations or chemically powered locomotion.3–8

A famous example of such a design is the swimmer of Najafi
and Golestanian9 encompassing three aligned spheres; their
distances vary in time periodically with phase differences,
thus leading to locomotion along straight trajectories.10–13

This system has been also realized experimentally using opti-
cal tweezers.14,15 Notably, a number of similar designs have
been proposed: with one of the arms being passive and
elastic,16 both arms being muscle-like17 or using a
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bead-spring swimmer model.18–20 Variations of this idea lead-
ing to rotational motion have been proposed: a circle swimmer
in the form of three spheres joined by two links crossing at
an angle,21 linked like spokes on a wheel,22 or connected in
an equilateral triangular fashion.23 An extension to a collec-
tion of N > 3 spheres has also been considered.24 Further
investigations include the effect of fluid viscoelasticity,25–31

swimming near a fluid interface32–34 or inside a channel,35–39

and the hydrodynamic interactions between two neighboring
microswimmers near a wall.40 Intriguing collective behavior
and spatiotemporal patterns may arise from the interaction
of many swimmers, including the onset of propagating den-
sity waves41–48 and laning,49–52 the motility-induced phase
separation,53–57 and the emergence of active turbulence.58–64

Boundaries have also been shown to induce order in collective
flows of bacterial suspensions,65–67 leading to potential appli-
cations in autonomous microfluidic systems.68 A step towards
understanding these collective phenomena is to explore the
dynamics of a single model swimmer interacting with a
boundary.

The long-range nature of hydrodynamic interactions in
low Reynolds number flows results in geometrical confine-
ment significantly influencing the dynamics of suspended par-
ticles or organisms.69 Interfacial effects govern the design
of microfluidic systems,70–72 they hinder translational and
rotational diffusion of colloidal particles73–81 and play an
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important role in living systems, where walls have been shown
to qualitatively modify the trajectories of swimming E. coli
bacteria82–87 or microalgae.88,89 Simplistic two-sphere near-
wall models of bacterial motion have revealed that the dynam-
ics of a bead swimmer can be surprisingly rich, including
circular motion in contact with the wall, swimming away from
the wall, and a non-trivial steady circulation at a finite distance
from the interface.90 This diverse phase behavior has also been
corroborated in systems of chemically powered autophoretic
particles,91–98 leading to a phase diagram also includes trap-
ping, escape, and a steady hovering state. Swimming near a
boundary has been addressed using a two-dimensional singu-
larity model combined with a complex variable approach,99

a resistive force theory,100 and a multipole expansion tech-
nique.101 It has further been demonstrated that geometric
confinement can conveniently be utilized to steer active col-
loids along arbitrary trajectories.102 The detention times of
microswimmers trapped at solid surfaces have been studied
theoretically, elucidating the interplay between hydrodynamic
interactions and rotational noise.103 Trapping in more com-
plex geometries has particularly been analyzed in the context
of collisions of swimming microorganisms with large spher-
ical obstacles104,105 and scattering on colloidal particles.106

The generic underlying mechanism is thought to play a role
in a number of biological processes, such as the formation of
biofilms.107,108

In order to analyze the dynamics of a neutral three-sphere
model swimmer near a no-slip wall, Zargar et al.109 calculated
the phase diagram, finding that the swimmer always orients
itself parallel to the wall. In their calculation, they expand the
hydrodynamic forces in the small parameter ε = L/z, where
L is the length of the swimmer and z is the wall-swimmer
distance, arriving at the conclusion that the dominant term is
proportional to z�2. In this contribution, we revisit this prob-
lem and demonstrate that the dominant term in the swimming
velocities scales rather as z�3. This allows us to calculate the
full phase diagram that shares qualitative features seen in the
aforementioned artificial microswimmers, that is, steady glid-
ing, trapping, and escaping trajectories, based on the initial
conditions of the swimmer.

The paper is organized as follows. In Sec. II, we intro-
duce a theoretical model for the swimmer and derive the
governing equations of motion in the low-Reynolds-number
regime. We then present in Sec. III a state diagram of swim-
ming near a hard wall and introduce suitable order parameters
governing the transitions between the states. In Sec. IV, we
present a far-field theory that describes the swimming dynam-
ics in the limit far away from the wall. We then discuss in
Sec. V the effect of the rotation of the spheres on the swim-
ming trajectories and show that the general 3D motion can be
mapped onto a 2D generic model by properly redefining the
order parameters. Finally, concluding remarks are contained in
Sec. VI.

II. THEORETICAL MODEL
A. Stokes hydrodynamics

We consider the (sufficiently slow) motion of a swim-
mer moving in the vicinity of an infinitely extended planar

hard wall. Since systems of biological or microfluidic rele-
vance are typically micrometer-sized, the Reynolds number is
low, and the dynamics are dominated by viscosity. For small
amplitude and frequency of motion, the fluid flow surround-
ing the swimmer is governed by the steady incompressible
Stokes equations,110 which for a point force acting on the
fluid at position r0 relate the velocity v and pressure field,
p, by

η∇2v(r) − ∇p(r) + Fδ(r − r0) = 0, (1)

∇ · v(r) = 0, (2)

where η denotes the dynamic viscosity of the fluid.
In an unbounded fluid, the solution of this set of equa-

tions for the velocity field is expressed in terms of Green’s
function

vα(r) = Gαβ(r, r0)Fβ , (3)

for α, β ∈ {x, y, z}, referred to as the Oseen tensor, and given
by

GO
αβ(r, r0) =

1
8πη

(
δαβ

s
+

sαsβ
s3

)
, (4)

where summation over repeated indices is assumed following
Einstein’s convention. Moreover s B r � r0 and s B |s|. The
flow due to a point force, called a Stokeslet, decays with the
distance like 1/s.

The solution of the forced Stokes equations in the pres-
ence of an infinitely extended hard wall can conveniently be
determined using the image solution technique111 and contains
Stokeslets and higher-order flow singularities—force dipoles
and source dipoles. The corresponding Green’s function sat-
isfying the no-slip boundary conditions at the wall is given in
terms of the Blake tensor and can be presented as a sum of
four contributions110,111

G(r) = GO(s) − GO(R) + 2z2
0G

D(R) − 2z0GSD(R), (5)

wherein r0 = (0, 0, z0) is the point force position, R B r − r0

with r0 = (0, 0,−z0) is the position of the Stokeslet image with
respect to the wall. Moreover, r B |r| and RB |R|. Here GD is
the force dipole given by

GD
αβ(R) =

(1 − 2δβz)

8πη

(
δαβ

R3
−

3RαRβ
R5

)
, (6)

and GSD denotes the source dipole given by

GSD
αβ(R) =

(1 − 2δβz)

8πη

( δαβRz

R3
−
δαzRβ

R3

+
δβzRα

R3
−

3RαRβRz

R5

)
. (7)

The translational and rotational motion of the particles is
related to the forces F and torques L acting upon them via the
hydrodynamic mobility tensor. In the presence of a background
flow with velocity v0 and vorticity 2ω0, this relation takes the
form (

V − v0

Ω − ω0

)
=

(
µtt µtr

µrtµrr

) (
F
L

)
. (8)
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The indices indicate the translational (tt), rotational (rr),
and translation-rotation coupling (tr, rt) parts of the mobil-
ity tensor. The mobility tensor contains contributions relative
to a single particle (self-mobilities), in addition to contri-
butions due to interactions between the particles (hereafter
approximated by pair mobilities). Owing to the linearity of
the Stokes equations and the reciprocal theorem, the hydro-
dynamic mobility tensor is always symmetric and positive
definite.112–114

B. Swimmer model

In low-Reynolds-number hydrodynamics, swimming
objects have to undergo non-reciprocal motion in order to
achieve propulsion. In the present work, we use a simple
model swimmer, originally proposed by Najafi and Golesta-
nian,9 which is made of three aligned spheres. The spheres
are connected by rod-like elements of negligible hydrody-
namic effects in order to ensure their alignment. This system
is capable of swimming forward when the mutual distances
between the spheres are varied periodically in such a way that
the time-reversal symmetry is broken (see Fig. 1 for an illus-
tration of the linear swimmer model). In the present article,
we focus our attention on the behavior of a neutral swimmer
for which the three spheres have equal size. The behavior of a
general three-sphere microswimmer with different sphere radii

FIG. 1. (a) The frame of reference associated with a neutral three-linked
sphere low-Reynolds-number microswimmer, relative to the laboratory frame.
The swimmer is oriented along the unit vector t̂ defined by the azimuthal angle
φ and polar angle θ. The spheres are connected to each other by dragless rods
where the instantaneous distances between the spheres 2 and 3 relative to the
sphere 1 are denoted g and h, respectively. The side and top views are shown
in the subfigures (b) and (c), respectively, where t̂‖ stands for the projection
of orientation vector t̂ on the plane z = 0. Here ψ B θ � π/2.

to discriminate between pushers and pullers will be reported
elsewhere.115

1. Mathematical formulation

Assuming that the fluid surrounding the swimmer is at
rest, the translational velocity of each sphere relative to the
laboratory (LAB) frame of reference is related to the internal
forces Fλ and torques Lλ via the hydrodynamic mobility tensor
as [c.f. Eq. (8)]

Vγ =
drγ
dt
=

3∑
λ=1

(
µtt
γλ · Fλ + µtr

γλ · Lλ
)

, (9)

for γ ∈ {1, 2, 3}. These internal forces and torques can be actu-
ated, e.g., by imaginary motors embedded between the spheres
along the swimmer axis. Analogously, the angular velocity of
each sphere with respect to the LAB frame is

Ωγ =

3∑
λ=1

(
µrt
γλ · Fλ + µrr

γλ · Lλ
)

. (10)

We note that µtr
γλ = µrt

λγ as required by the symmetry of the
mobility tensor.

Since the swimmer has to undergo autonomous motion,
its body has to be both force-free and torque-free in total.
Accordingly,

3∑
λ=1

Fλ = 0,
3∑
λ=1

(
(rλ − rR) × Fλ + Lλ

)
= 0, (11)

where×denotes the cross product. The moments of the internal
forces can be taken with respect to any reference point, rR, that
we chose here for convenience as the position of the central
sphere.

We now assume that the instantaneous relative distance
vectors between the spheres are prescribed at each time
as

r1 − r3 = h(t) t̂, (12a)

r2 − r1 = g(t) t̂, (12b)

where t̂ is the unit vector pointing along the swimming direc-
tion such that t̂ = sin θ cos φ êx + sin θ sin φ êy + cos θ êz

(c.f. Fig. 1). Here φ and θ stand for the azimuthal and
polar angles, respectively, in the spherical coordinate sys-
tem associated with the swimmer. We further define the
unit vectors θ̂ = cos φ cos θ êx + sin φ cos θ êy − sin θ êz and
φ̂ = − sin φ êx + cos φ êy. We note that the set of vectors
(t̂, θ̂, φ̂) forms a direct orthonormal basis satisfying the relation
θ̂ × φ̂ = t̂. Throughout this work, we assume that the lengths
of the rods change periodically in time relative to a mean
value L,

g(t) = L + u10 cos(ωt), (13a)

h(t) = L + u20 cos(ωt + δ), (13b)

where ω is the frequency of motion, δ ∈ [0, 2π) is the phase
shift, and u10 and u20 are the amplitudes of the length change
such that |u10| � L and |u20| � L. For δ < {0, π} and non-
vanishing u10 and u20, this constitutes a non-reciprocal motion,
which—as noted before—is needed for self-propulsion at low
Reynolds numbers.
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By combining Eqs. (9), providing the instantaneous
velocities of the spheres with Eq. (12), we readily
obtain

3∑
λ=1

(
Gtt
λ · Fλ + Gtr

λ · Lλ
)
= ġ t̂ + g

dt̂
dt

, (14a)

3∑
λ=1

(
Htt
λ · Fλ + Htr

λ · Lλ
)
= ḣ t̂ + h

dt̂
dt

, (14b)

where, for convenience, we have defined the tensors

Gαβ
λ B µαβ2λ − µ

αβ
1λ , (15a)

Hαβ
λ B µαβ1λ − µ

αβ
3λ , (15b)

with αβ ∈ {tt, tr, rt, rr}. The time derivative of
the unit orientation vector t̂ relative to the LAB frame
is

dt̂
dt
= θ̇ θ̂ + φ̇ sin θ φ̂. (16)

In order to model the circular trajectories observed in
swimming bacteria near surfaces, we further assume that the
spheres can freely rotate around the swimming axis at rotation
rates ϕ̇γ. The frame of reference associated with the swim-
mer can be obtained by Euler transformations,116 consisting
of three successive rotations. Accordingly, the Euler angles,
φ, θ, and ϕγ represent the precession, nutation, and intrinsic
rotation along the swimming axis, respectively. The angu-
lar velocity vector of a sphere γ relative to the LAB frame
reads

Ωγ = −φ̇ sin θ θ̂ + θ̇ φ̂ + (φ̇ cos θ + ϕ̇γ) t̂. (17)

The dynamics of the swimmer are fully characterized by
the instantaneous velocity of the central sphere in addition to
the rotation rates θ̇ and φ̇. For their calculation, we require the
knowledge of the internal forces and torques acting between
the spheres.

By projecting Eqs. (14) onto the spherical coordinate basis
vectors and eliminating the rotation rates θ̇ and φ̇, four scalar
equations are obtained. The force- and torque-free conditions
stated by Eq. (11) provide us with six additional equations.
Moreover, the projection of the angular velocities (17) along
the θ̂ and φ̂ directions yields

Ωγ · θ̂ = −φ̇ sin θ, (18a)

Ωγ · φ̂ = θ̇, (18b)

for γ ∈ {1, 2, 3}, providing six further equations. For a closure
of the system of equations, we prescribe the relative angular
velocities between the adjacent spheres as

(Ω1 −Ω3) · t̂ = ϕ̇1 − ϕ̇3 =: ω13, (19a)

(Ω2 −Ω1) · t̂ = ϕ̇2 − ϕ̇1 =: ω21. (19b)

The determination of the internal forces and torques acting
on each sphere is readily achievable by solving the resulting
linear system composed of 18 independent equations given
by (11), (14), (18), and (19), using the standard substitution
method. In the remainder of this paper, all the lengths will be
scaled by the mean length of the arms L and the times by the

inverse frequency ω�1. Finally, the swimming velocity can be
calculated as

V B V1 =

3∑
λ=1

(
µtt

1λ · Fλ + µtr
1λ · Lλ

)
(20)

and the rotation rates as

θ̇ =
1
h

3∑
λ=1

(
Htt
λ · Fλ + Htr

λ · Lλ
)
· θ̂, (21)

φ̇ =
1

h sin θ

3∑
λ=1

(
Htt
λ · Fλ + Htr

λ · Lλ
)
· φ̂. (22)

The swimming trajectories can thus be determined by integrat-
ing Eqs. (20)–(22) for a given set of initial conditions (r0, θ0,
φ0).

2. Swimming in an unbounded domain

In an unbounded fluid domain, i.e., in the absence of
the wall, the swimmer undergoes purely translational motion
along its swimming axis without changing its orientation. In
order to proceed analytically, we assume that the radius of the
spheres a is much smaller than the arm lengths. The inter-
nal forces acting on the spheres averaged over one swimming
period are

F1 =
a2

4

(
5 +

11
2

a

)
πηK t̂, F2 = F3 = −

F1

2
, (23)

wherein
K B 〈gḣ − hġ〉 = −u10u20 sin δ, (24)

and 〈·〉 denotes the time-averaging operator over one complete
swimming cycle, defined by

〈·〉 B
1

2π

∫ 2π

0
(·) dt. (25)

Clearly, no net swimming motion is achieved if δ = 0 or π.
Moreover, the swimming speed is maximal when δ = π/2,
a value we consider in the subsequent analysis. The internal
torques exerted on the rotating spheres read

L1 =
8π
3

a3 (ω13 − ω21) t̂, (26a)

L2 =
8π
3

a3 (2ω21 + ω13) t̂, (26b)

L3 = −
8π
3

a3 (ω21 + 2ω13) t̂. (26c)

By making use of Eq. (20) and averaging over a swimming
cycle, the translational velocity up to the second order in a
reads

V1 = V0 t̂, V0 B −
a
24

(7 + 5a) K , (27)

while θ̇ = 0 and φ̇ = 0 so that the swimmer’s orientation
remains constant. Evidently, the averaged swimming speed
is a function of just the swimmer’s properties and does not
depend on the fluid viscosity.9 The fluid viscosity would nev-
ertheless have to be accounted for to calculate the power
needed to perform the prescribed motions of the three spheres.
In the following, we will address the swimming behavior
near a hard wall and investigate the possible scenarios of
motion.
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III. SWIMMING NEAR A WALL
A. State diagram

We now consider the swimming kinematics in the vicinity
of a hard wall and examine in details the resulting swimming
trajectories. For that aim, we solve numerically the linear sys-
tem of equations described in Sec. II to determine the internal
forces and torques acting between the spheres. The time-
dependent position and orientation of the swimmer are then
calculated by numerically integrating Eqs. (20)–(22) using a
fourth-order Runge-Kutta scheme with adaptive time step-
ping.117 For the particle hydrodynamic mobility functions,
we employ the values obtained using the multipole method
for Stokes flows.118,119 This method is widely used and has
the advantage of providing precise and accurate predictions
of the self-mobilities, which are reasonable even at distances
very close to the wall. The time-averaged positions and incli-
nations are determined numerically using the standard trape-
zoidal integration method. As the vertical position of one of
the spheres gets closer to the wall such that z ∼ a, an addi-
tional soft repulsive force Fz = κ(z � a)�n is introduced, where
κ = 10�5η|K | and n = 2 are taken as typical values. We have
checked that changing these values within moderate ranges
results in qualitatively similar outcomes. Moreover, we take a
= u10 = u20 = 1/10.

We begin with the relatively simple situation in which the
spheres do not rotate around the swimming axis, so we take
ω21 = ω13 = 0. In this particular case, the problem becomes
two dimensional as the swimmer is constrained to move in the
plane defined by its initial azimuthal orientation φ0. Without
loss of generality, we take φ0 = 0 for which the swimmer moves
in the (x, z) plane.

In Fig. 2, we show the swimming state diagram con-
structed in the (z0, ψ0) space, where ψ B θ � π/2 defines the
angle relative to the horizontal direction. Hence, the swimmer
is initially pointing towards (away from) the wall for ψ0 > 0
(ψ0 < 0). We observe that three different possible scenarios of
motion emerge depending upon the initial distance from the
wall and orientation. The swimmer may be trapped by the wall,

FIG. 2. State diagram illustrating the possible swimming scenarios in the
presence of a hard wall for the 2D motion, i.e., forω21 =ω13 = 0. The dashed
line corresponds to impermissible situations in which one of the spheres is in
contact with the wall. Here a = u10 = u20 = 1/10.

totally escape from the wall, or undergo a nontrivial oscilla-
tory gliding motion. In the trapping state (shown as red circles
in Fig. 2), the swimmer moves towards the wall following
a parabolic-like trajectory to progressively align perpendicu-
lar to the wall as ψ → π/2. In the final stage, the swimmer
reaches a stable state and hovers at a constant height above
the wall. This behavior occurs for large initial inclinations
when ψ0 > 0.3 and that regardless of the initial distance that
separates the swimmer from the wall. However, trapping can
also take place for ψ0 ∼ 0 if the swimmer is initially located
far enough from the wall, at distances larger than z0 = 1.5.
Notably, the swimmer is trapped by the wall if it is released
from distances z0 < 0.25 with a vanishing initial inclination
ψ0 = 0.

The escaping state (green triangles in Fig. 2) is observed
if the swimmer is directed away from the wall with ψ0

< �0.5. In this state, the swimmer moves straight away from the
wall beyond a certain height at which the wall-induced hydro-
dynamic interactions die away completely. In the oscillatory
gliding state (blue rectangles in Fig. 2), the swimmer under-
goes a sinusoidal-like motion around a mean height above the
wall. This state occurs in a bounded region of initial states
when z0 ∼ 1 and ψ0 ∼ 0.

In Fig. 3, we show the transition from the trapping to the
escaping states upon variation of the initial inclination for a
swimmer initially positioned a distance z0 = 1 above the wall.
For initial inclinationsψ0 > �0.39, the swimmer moves along a
curved path following a projectile-like trajectory before ending
up hovering at a steady height z ' 1.12 above the wall. Accord-
ingly, the swimmer velocity normal to the wall vanishes and

FIG. 3. Transition from the trapping to the escaping states upon variation of
the initial inclination angleψ0 while keeping the initial distance from the wall
constant at z0 = 1. (a) shows the averaged swimming trajectories for the 2D
motion in the plane (x, z) and (b) shows the inclination angle ψ as a function
of x.
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the inclination angle approaches the steady value correspond-
ing to ψ ' π/2. Indeed, this final state is stable and is found to
be independent of the initial orientation of the swimmer with
respect to the wall. For ψ0 = �0.39, the swimmer manages
to escape from the attraction of the wall and moves along a
straight line maintaining a constant orientation, i.e., just as it
would be the case in an unbounded fluid.

Figure 4 illustrates the swimming trajectories in the oscil-
latory gliding state for (a) ψ0 = 0 and (b) ψ0 = 0.2 and various
initial heights ranging from z0 = 0.5 to 1.25. We observe that
the amplitude of oscillations is strongly dependent on z0 and
eventually vanishes for ψ0 = 0 and z0 ' 0.75 giving rise to a
steady sliding motion at a constant velocity. The mean incli-
nation angle over one oscillation period amounts to zero and
thus the swimmer undergoes motion at a constant mean height
above the wall. We further note that the frequency of oscil-
lations has nothing to do with ω which is several orders of
magnitude larger.

For future reference, we denote by µ the magnitude of the
scaled swimming velocity parallel to the wall averaged over

one oscillation period, µ B V‖/V0 where V‖ B
(
V2

x + V2
y

)1/2

and V0 is the magnitude of the bulk swimming velocity given
by Eq. (27).

B. Transition between states

We now investigate the swimming behavior more quanti-
tatively and analyze the evolution of relevant order parameters
around the transition points between the states.

FIG. 4. Typical swimming trajectories in the oscillatory gliding state for dif-
ferent initial distances from the wall where (a) ψ0 = 0 and (b) ψ0 = 0.2. For
z0 = 1.25 and ψ0 = 0.2, the swimmer is trapped by the wall and thus the
trajectory has not been shown here. The swimmer inclination angle shows a
similar oscillatory behavior around a mean angle ψ = 0.

1. Transition between the trapping
and escaping states

In order to probe the transition between the trapping and
escaping states, we define an order parameter z−1

P as the inverse
of the peak height achieved by the swimmer before it is trapped
by the wall [c.f. Fig. 3(a)]. Additionally, we define a second
order parameter δ�1 as the inverse of the distance along the
x direction at which the peak height occurs. Clearly, both z−1

P
and δ�1 amount to zero for the escaping state and thus can
serve as relevant order parameters to characterize the transition
between the trapping and escaping states.

In Fig. 5, we present the evolution of the order param-
eters z−1

P and δ�1 around the transition point between the
trapping and escaping states along three different horizontal
[subfigures (a)–(c)] and vertical [subfigures (d)–(f)] paths in
the state diagram presented in Fig. 2. We observe that the
inverse peak height z−1

P exhibits a scaling behavior around the
transition points with an exponent of 1/3. Similar behavior
is displayed by the inverse peak position around the transi-
tion points with a scaling exponent of 5/6. We will show in
Sec. IV B that these scaling laws can indeed be predicted
theoretically by considering a simplified model based on the
far-field approximation. It can clearly be seen that even beyond
ψ � ψ0 = 0.1 from the transition points, the scaling law is
still approximatively obeyed. Despite its simplicity, the pre-
sented far-field model leads to a good prediction of the scaling
behavior of these two order parameters around the transition
points.

2. Transition between the trapping
and oscillatory-gliding states

In the oscillatory-gliding state, the swimmer remains on
average at the same height above the wall such that Vz = 0 and
translates at a constant velocity parallel to the wall. In order
to study the transition between the trapping and oscillatory-
gliding states, we utilize the scaled mean swimming velocity
parallel to the wall, averaged over one oscillation period as a
relevant order parameter, µ = Vx/V0, where again V0 is the
magnitude of the swimming velocity in an unbounded fluid
domain. Additionally, we define a second order parameter A
as the amplitude of oscillations.

In Fig. 6, we present the evolution of the order parameters
µ and A at the transition points between the oscillatory-gliding
and trapping states along three different horizontal paths in
the state diagram. The mean swimming velocity [Fig. 6(a)]
is found to be about 5% lower than the bulk velocity and is
weakly dependent on the initial orientation or distance from
the wall. In the trapping state, the swimmer points toward
the wall and remains at a constant height above the wall
to attain a stable hovering state. Therefore, in this situa-
tion, both of the two order parameters µ and A vanish. The
transition from the oscillatory-gliding and trapping states is
thus first order, characterized by a discontinuity in the rel-
evant order parameters. We further remark that the ampli-
tudes of oscillations [Fig. 6(b)] reach a maximum value of
about 1.2 around the transition points between the oscillatory-
gliding and trapping states. Moreover, for ψ0 = 0, the ampli-
tude of oscillations is minimal and eventually vanishes for
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FIG. 5. Log-log plots of order param-
eters z−1

P and δ�1 at the transition
point between the trapping and escaping
states in the 2D case forω13 =ω21 = 0,
as obtained from the numerical simula-
tions. Here zT and ψT denote, respec-
tively, the swimmer height and incli-
nation at the transition point between
the trapping and escaping states. For the
sake of readability, the curves associated
with the green and blue paths are shifted
on the vertical scale by factors of 3 and 9,
respectively. The solid lines are a guide
for the eye.

z0 ' 0.75, leading to a pure gliding motion of vanishing ampli-
tude, parallel to the wall. Both order parameters are found to be

FIG. 6. Evolution of the order parameters (b) µ and (c) A versus the initial
inclination angle ψ0 at the transition between the trapping and oscillatory
gliding states for various horizontal paths along the state diagram. (a) displays
a part of the state diagram shown in Fig. 2.

symmetric with respect to ψ0 = 0, and thus (z0, ψ0) and
(z0, �ψ0) represent identical dynamical states along these
considered paths.

In Sec. IV, we will present a far-field model for the near-
wall swimming and provide theoretical arguments for the scal-
ing behavior observed at the transition between the trapping
and escaping states.

IV. FAR-FIELD MODEL

In order to address the swimming behavior in the far-
field limit, we expand the averaged translational velocity and
rotation rate of the swimmer as power series in the ratio 1/z.
We further employ the far-field expressions of the hydrody-
namic mobility functions which can adequately be expressed
as power series in the ratio a/z. Up to the second order in a, and
by accounting for the leading order in 1/z only, the differential
equations governing the averaged dynamics of the swimmer
far away from the wall read

dx
dt
= −aK cosψ

(
7

24
+

3 sin2 ψ
(
12 − cos2 ψ

)
64z3

+ a

(
5

24
+

620 − 453 cos2 ψ + 120 cos4 ψ

1024z3

) )
, (28a)

dz
dt
= aK sinψ

(
7

24
+

3
(
8 − 16 cos2 ψ + cos4 ψ

)
64z3

+ a

(
5

24
+

158 − 111 cos2 ψ + 30 cos4 ψ

256z3

) )
, (28b)



134904-8 Daddi-Moussa-Ider et al. J. Chem. Phys. 148, 134904 (2018)

dψ
dt
= −

9aK

512z4
cosψ

(
56 − 52 cos2 ψ + 11 cos4 ψ

+
a
2

(
68 − 31 cos2 ψ + 8 cos4 ψ

) )
. (28c)

The wall-induced correction to the swimmer translational
velocities decays in the far field as z�3, whereas its angular
velocity undergoes a decay as z�4. Therefore, the flow field
induced by a neutral three-linked sphere swimmer near a wall
resembles that of a microorganism whose flow field is modeled
as a force quadrupole or a source dipole.

We recall that the swimming trajectories resulting from
quadrupolar hydrodynamic interactions as derived from
Faxén’s law for a prolate ellipsoid of aspect ratio γ tilted
an angle ψ and located a distance z above a rigid wall
read120

dx
dt
= cosψ *

,
V0 +

σ

16z3

(
27 cos2 ψ − 20

)+
-

, (29a)

dz
dt
= − sinψ *

,
V0 +

σ

4z3

(
9 cos2 ψ − 2

)+
-

, (29b)

dψ
dt
=

3σ cosψ

32z4

(
8(Γ − 1) + 6(Γ + 2) cos2 ψ − 3Γ cos4 ψ

)
,

(29c)

where V0 is the propulsion velocity in a bulk fluid, i.e.,
far away from boundaries and Γ B (γ2

� 1)/(γ2 + 1) is
the shape factor. In addition, σ is the quadrupole strength
(has the dimension of velocity × length3) where σ > 0 for
swimmers with small bodies and elongated flagella and σ
< 0 in the opposite situation.3,121 The equations governing
the dynamics of a swimming microorganism near a wall,
whose generated flow field is modeled as a source dipole,
read120

dx
dt
= cosψ *

,
V0 −

α

4z3
+
-

, (30a)

dz
dt
= − sinψ *

,
V0 −

α

z3
+
-

, (30b)

dψ
dt
= −

3α cosψ

16z4

(
2 + 3Γ(2 − cos2 ψ)

)
, (30c)

where α is the source dipole strength (has the dimension of
velocity × length3) such that α > 0 for ciliated swimming
organisms which rely on local surface deformation to pro-
pel themselves through the fluid3 and α < 0 for non-ciliated
microorganisms with helical flagella. Therefore, the effect
of the wall on the dynamics of a three-linked sphere swim-
mer can conveniently be modeled as a superposition of a
quadrupole of strength σ > 0 and a source dipole of strength
α < 0.

Notably, in the limit z→∞, Eqs. (28a) and (28b) reduce
to Eq. (27) providing the swimming velocity in an unbounded
bulk fluid. We further note that the asymptotic results derived
in Ref. 109 have been reported with an erroneous far field
decay that we correct here.

A. Approximate swimming trajectories

For small inclination angles relative to the horizontal plane
such that ψ � 1, the sine and cosine functions can be approx-
imated using Taylor series expansions around ψ = 0 where
sinψ ∼ ψ and cosψ ∼ 1. We have checked that account-
ing for the term with ψ2 in the series expansion of cos ψ
has a negligible effect on the swimming trajectories and thus
has been discarded here for simplicity. Further, restricting to
the leading order in a, Eqs. (28) can thus be approximated
as

dx
dt
= −

7
24

aK , (31a)

dz
dt
= aK

(
7

24
−

21
64

1

z3

)
ψ, (31b)

dψ
dt
= −

135
512

aK

z4
. (31c)

Based on these equations, we now derive approximate
swimming trajectories analytically. By combining Eqs. (31b)
and (31c) and eliminating the time differential dt, the equa-
tion relating the swimmer inclination to its vertical position
reads

ψdψ = −
405
56

dz

z(8z3 − 9)
, (32)

which can readily be solved subject to the initial condi-
tion of inclination and distance from the wall (ψ0, z0) to
obtain

exp

(
28
15

(
ψ2 − ψ2

0

))
=

z3

z3
0

8z3
0 − 9

8z3 − 9
. (33)

When the swimmer reaches its peak position, the inclina-
tion angle necessarily vanishes (provided that the swimmer is
initially pointing away from the wall such that ψ0 < 0). Solv-
ing Eq. (33) for ψ = 0, the peak height can thus be estimated
as

zP =
z0(

H + 8
9 (1 − H) z3

0

)1/3
, (34)

where we have defined the parameter H ' 1 + β ψ2
0 with

β = 28/15.

B. Order parameters
1. Inverse peak height z−1

P

We now calculate the first order parameter z−1
P gov-

erning the transition between the trapping and the escap-
ing states, defined in Sec. III B as the inverse of the peak
height,

z−1
P =

1
z0

(
H +

8
9

(1 − H) z3
0

)1/3

. (35)

At the transition to the escaping state, the order parameter z−1
P

amounts to zero. For a given initial inclinationψ0, the transition
height is estimated as

zT =
1
2

(
9H

H − 1

)1/3

. (36)
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Similarly, the inclination angle at the transition point between
the trapping and the escaping states for a given initial vertical
distance z0 reads

ψT = −
1

14
*
,

105
8
9 z3

0 − 1
+
-

1/2

. (37)

The scaling behavior of the order parameter z−1
P around

the transition point can readily be obtained by performing
a Taylor series expansion around ψ0 = ψT and z0 = zT to
obtain

z−1
P =

1
z0

(
2
−ψT

)1/3

(ψ0 − ψT)1/3 + O
(
(ψ0 − ψT)4/3

)
, (38a)

z−1
P =

(3H)1/3

z4/3
T

(zT − z0)1/3 + O
(
(zT − z0)4/3

)
. (38b)

Therefore, the transition between the trapping and escaping
states is continuous and characterized by a scaling exponent
1/3 of the order parameter.

2. Inverse peak position δ−1

We next calculate the second order parameter δ�1, defined
earlier as the inverse of the horizontal position δ corresponding
to the occurrence of the peak, i.e., z(x = δ) = zP. Combining
Eqs. (31a) and (31c) together, we obtain

dx
dψ
=

448
405

z4, (39)

where the ψ-dependence of the variable z can readily be
obtained from Eq. (33) and is expressed as

z =
r1/3z0(

1 + 8
9 (r − 1)z3

0

)1/3
, (40)

where we have defined

r ' 1 + β
(
ψ2 − ψ2

0

)
. (41)

By inserting Eq. (40) into Eq. (39), making the change of
variable r = 1 − βψ2

0v , and noting the relation between the
differentials,

dψ = −
1

2β
dr(

ψ2
0 + β−1 (r − 1)

)1/2
, (42)

the x-position corresponding to the occurrence of the peak
follows forthwith upon integration of both sides of the resulting
differential equation to obtain

δ = −
224
405

z4
0ψ0

∫ 1

0

*
,

1 − βψ2
0v

1 − 8
9 βψ

2
0z3

0v
+
-

4/3
dv

(1 − v)1/2
. (43)

Unfortunately, the latter integral cannot be solved ana-
lytically for arbitrary values of ψ0 and z0. In order to over-
come this difficulty, we may have recourse to approximate
analytical tools. Clearly, there are no issues coming from

the factor
(
1 − βψ2

0v
)4/3

(1 − v)−1/2 since it is well behaved
and integrable in the interval [0, 1]. However, difficulties

arise from the factor
(
1 − 8

9 βψ
2
0z3

0v
)−4/3

, in which, for ψ2
0z3

0

= 9/(8β), the denominator vanishes leading to a singularity
of order �4/3 in addition to �1/2 coming from the (1 − v)−1/2

factor.
In order to proceed further and probe the behavior

near the transition points, we approximate a factor which is

well behaved at the singular point and put
(
1 − βψ2

0v
)4/3

'
(
1 − βψ2

0

)4/3
since the singularity would be located at v

= 1. Accordingly, the integral in Eq. (43) can be evaluated
analytically, leading to

δ ' −
448
405

z4
0ψ0

(
1 − βψ2

0

)4/3
2F1

(
1,

4
3

;
3
2

;
8
9
βψ2

0z3
0

)
,

where 2F1 denotes the hypergeometric function122 which for
x→ 1 can conveniently be approximated as

2F1

(
1,

4
3

;
3
2

; x

)
∼

π3/2

Γ(1/6) Γ(4/3)
(1 − x)−5/6, (44)

where Γ denotes the Gamma function.122

The evolution of the second order parameter δ�1 around
the transition points reads

δ−1 ∼ −
Λ

z4
0ψ0

(
1 − βψ2

0

)−4/3
(
1 −

8
9
βψ2

0z3
0

)5/6

, (45)

with the prefactor

Λ B
405
448
Γ(1/6) Γ(4/3)

π3/2
. (46)

For a given initial distance from the wall, the transition

angle is estimated as ψT = −3/
(
8βz3

0

)1/2
and thus

δ−1 ∼ (ψ0 − ψT)5/6 , (47)

around the transition point, bearing in mind that ψ0 and ψT

are both negative quantities. Similarly, by considering a given
initial inclination ψ0, the transition is expected to occur at a

height zT =
1
2

(
9/(βψ2

0)
)1/3

and thus

δ−1 ∼ (zT − z0)5/6 , (48)

around the transition point. Indeed, these scaling behaviors of
the order parameters as derived from the far-field model are
in a good agreement with the numerical results presented in
Fig. 5.

Even though the far-field model is found to be able to cap-
ture the scaling behavior around the transition point between
the escaping and trapping states, it is worth mentioning that
this model nonetheless is not viable for predicting the swim-
ming trajectories accurately. As the swimmer gets to a finite
distance close to the wall, the far-field approximation is not
strictly valid. An accurate analytical prediction of the swim-
ming trajectories would thus require to account for the gen-
eral z-dependence of the averaged swimming velocities and
inclination.

V. EFFECT OF ROTATION
A. State diagram

Having investigated the state diagram of swimming near
a wall in the absence of rotation, and provided an analytical
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theory rationalizing our findings on the basis of a far-field
model, we next consider the situation where the spheres are
allowed to rotate around the swimming axis. For flagellated
bacteria, e.g., E. coli, which swim by the action of molecu-
lar rotary motors, the flagellum undergoes counterclockwise
rotation (when viewed from behind the swimmer) at speeds of
∼100 Hz,123,124 whereas the cell body rotates in the clock-
wise direction for the bacterium to remain torque-free, at
speeds of ∼10 Hz.125,126 Based on these observations, we
assume that the spheres 1 and 3 rotate at the same rota-
tion rate to mimic the rotating flagellum such that ω13 = 0,
whereas the sphere 2 represents the cell body that rotates
in the opposite direction. Accordingly, ω1 = ω3 < 0 and
ω2 > 0, and thus the relative rotation rate ω21 ≡ ω2 � ω1

has to be positive.
In Fig. 7, we present the state diagram of the swim-

ming behavior near a wall for two different values of the
relative rotation rate ω21. We observe that the state dia-
gram is qualitatively similar to that obtained in the 2D
case, shown in Fig. 2, where three distinct states of motion
occur depending on the initial orientation and distance from
the wall. The main difference is that the oscillatory-gliding
state found earlier is substituted by an oscillatory circling
in the clockwise direction, at a constant mean height above

FIG. 7. State diagram of swimming near a hard wall for a non-vanishing
angular velocity along the swimming axis where (a)ω21 = 1 and (b)ω21 = 4.
Hereω13 = 0. The dashed line displays the boundary at the transition between
the trapping and escaping states for the non-rotating system (ω21 =ω13 = 0).
The other parameters are the same as in Fig. 2.

the wall. Indeed, the clockwise motion in circles has been
observed experimentally for swimming E. coli bacteria near
surfaces83 and is a natural consequence of the fluid-mediated
hydrodynamics interactions with the neighboring interface
and the force- and torque-free constraints imposed on the
swimmer.126

Upon increasing the rotation rate, we observe that the
escaping state is enhanced to the detriment of the trapping
state. For instance, for ω13 = 4 [Fig. 7(b)], even though the
swimmer is initially pointing toward the wall at an angle
ψ0 = 0.05, it can surprisingly escape the wall trapping if z0

≥ 3.5. This behavior is most probably attributed to the wall-
induced hydrodynamic coupling between the translational and
rotational motions, which tends to align the swimmer away
from the wall. We further observe that increasing the rotation
rate favors the trapping of the swimmer if it is initially released
from distance close to the wall, for z0 < 0.5.

B. Transition between states
1. Transition between the trapping and escaping states

As in the 2D case, we define two relevant order param-
eters z−1

P and δ�1 quantifying the state transition between the
trapping and escaping states. We keep the definition of the
first order parameter z−1

P as the inverse of the peak height.
By considering the 2D projection of the trajectory on the
(xy) plane, we define the second order parameter δ�1 for the
3D motion as the inverse of the curvilinear distance along
the projected path, corresponding to the occurrence of the
peak.

In Fig. 8, we present a log-log plot of the order parameters
z−1

P and δ�1 versus ψ0 � ψT [subfigures (a)–(c)], and versus
zT � z0 [subfigures (d)–(f)] along example paths on the state
diagram shown in Fig. 7(a), for ω21 = 1. We observe that both
order parameters exhibit analogous scaling behavior around
the transition point as in the 2D case. We will show that the
general 3D case can approximatively be mapped into a 2D rep-
resentational model by considering the local reference frame
along the curvilinear coordinate line. Nevertheless, the power
laws predicted analytically may not be strictly obeyed as the
scaling exponents 1/3 and 5/6 derived above may not be dis-
played properly, notably along the vertical paths in the state
diagram [Figs. 8(e) and 8(f)]. This mismatch is most probably
a drawback of the simplistic approximations involved in the
analytical theory proposed here for the rotating system whose
derivation is outlined in Sec. V C 2.

2. Transition between the trapping
and oscillatory-circling states

We next consider the transition between the trapping and
oscillatory-gliding states and define in a similar way, as in the
2D case, two relevant order parameters controlling the state
transition. As before, we define the first order parameter as
the magnitude of the scaled swimming velocity parallel to the
wall averaged over one oscillation period, µ B V‖/V0. The
second order parameter A is defined in an analogous way as
the amplitude of the oscillations. The evolution of the order
parameters has basically a similar behavior to that shown in
Fig. 6 where the transition between the oscillatory-circling
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FIG. 8. Log-log plots of the first and
second order parameters at the transition
point between the trapping and escaping
states in the 3D case forω21 = 1 andω13
= 0, as obtained from the numerical sim-
ulations. The curves associated with the
green and blue paths are, respectively,
shifted for the sake of readability on the
vertical scale by factors of 3 and 9. The
solid lines are a guide for the eye.

and trapping states is found also to be first order discontin-
uous (see Fig. 1 in the supplementary material for further
details).

In the following, we present an extension of the far-
field model presented in Sec. IV in order to assess the effect
of the rotational motion of the spheres on the swimmer
dynamics.

C. Far-field model
1. Pure rotational motion

We first consider the situation where K = 0 and confine
ourselves for simplicity to the case where the swimmer is
aligned parallel to the wall for which ψ = 0. The system of
equations governing the swimmer dynamics at leading order
in a reads

dx
dt
= −a5M(z) sin φ, (49a)

dy
dt
= a5M(z) cos φ, (49b)

dφ
dt
= −a5Q(z), (49c)

dθ
dt
= 0, (49d)

where we have defined

Q(z) B
ω13 + 2ω21

24

(
1

z4
−

z

ξ5

)
+ 2M(z) (50)

and

M(z) B

(
1

24z4
−

4z

3ζ5

)
(ω13 − ω21), (51)

wherein ζ B
(
1 + 4z2

)1/2
and ξ B

(
1 + z2

)1/2
. It can be seen

that if ω13 = ω21, for which the rotation rate of the central
sphere is the average of the rotation rates of the spheres 2
and 3, the translational velocity vanishes and thus the swim-
mer undergoes a pure rotational motion around the central
sphere. For ω13 = 0, the rotation rate φ̇ has a maximum value
for z ≈ 0.2448 and exhibits a decay as z�6 in the far-field
limit.

2. Combined translation and rotation

We next combine the translational and rotational motions
and write approximate equations governing the dynamics of
the swimmer. As can be inferred from Eqs. (49), the leading-
order terms in the swimming velocities for a pure rotational
motion scale as a.5 For the translational motion (K , 0), we
have shown that at leading order, these velocities scale linearly
with a [c.f. Eqs. (31)]. Therefore, the approximated govern-
ing equations about ψ = 0 for the combined translational and
rotational motions are given by

dx
dt
= −

7
24

aK cos φ, (52a)

dy
dt
= −

7
24

aK sin φ, (52b)

dz
dt
= aK

(
7

24
−

21
64

1

z3

)
ψ, (52c)

dψ
dt
= −

135
512

aK

z4
, (52d)

dφ
dt
= −a5Q(z). (52e)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-026813
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FIG. 9. Radius of curvature versus the scaled relative rotation rate ω21.
Solid line is the analytical prediction stated by Eq. (54) and symbols are
the numerical simulations. The inset shows the same plot in a log-log
scale.

Defining the curvilinear coordinate s along the projection
of the particle trajectory on the (xy) plane such that ds2 = dx2

+ dy2, Eqs. (52a) and (52b) yield

ds
dt
= −

7
24

aK . (53)

The system of equations composed of (52c), (52d), and
(53) is mathematically equivalent to that earlier derived in the
2D case and stated by Eqs. (31). In the far-field limit, the effect
of the rotation of the spheres along the swimmer axis intervenes
only through Eq. (52e) describing the temporal change of the
azimuthal angle φ. Therefore, by appropriately redefining the
second order parameter δ�1 as the curvilinear coordinate cor-
responding to the peak height, the order parameters z−1

P and
δ�1 are expected to exhibit the same scaling behavior as in the
2D case.

Finally, we calculate the radius of curvature of the swim-
ming trajectory in the special case when ψ0 = 0 and z0 = 0.75
for which the swimmer remains typically at a constant height
above the wall. According to Eq. (52e), the azimuthal angle
changes linearly with time, and thus the swimmer performs a
circular trajectory of radius

R =
7

24
|K |

a4Q(z0)
∼ ω−1

21 , (54)

for ω13 = 0. Interestingly, the radius of curvature decays as a
fourth power with a, while it decreases linearly with the relative
angular velocityω21. Figure 9 shows a quantitative comparison
between analytical predictions and numerical simulations over
a wide range of relative rotation rates. While the numerical
results show a slightly slower decay with ω21, the agreement
is reasonable considering the approximations involved in the
analytical theory.

VI. CONCLUSIONS

Inspired by the role of near-wall hydrodynamic interac-
tions on the dynamics of living systems, particularly swim-
ming bacteria127 and the formation of biofilms,107 we have
explored the behavior of a simple model three-sphere swim-
mer proposed by Najafi and Golestanian9 in the presence
of a wall. Modeling the swimmer by three aligned spher-
ical beads with periodically time-varying mutual distances,

we have analyzed the long-time asymptotic behavior of the
swimmer depending on its initial distance and orientation
with respect to the wall. We have found that there are three
regimes of motion, leading to either trapping of the swimmer
at the wall, escape from the wall, or a non-trivial oscillatory
gliding motion at a finite distance above the wall. We have
found that these three states persist also when we allow the
beads to rotate. The rotational motion of the beads, intro-
duced to mimic to the rotation of a cell flagellum and a
counter-rotation of its body, renders the near-wall motion of
the swimmer fully three-dimensional, as opposed to the quasi-
two-dimensional motion in the classic Najafi and Golestanian
design.

Having classified the swimming behavior, we have quan-
tified the transition between different states by introducing
the appropriate order parameters and measuring their scal-
ing with the initial height and orientation. Using the far-field
analytical calculations, we have shown that the scaling expo-
nents obtained from numerical solutions of the equations of
motion of the swimmer can be found exactly from the dom-
inant asymptotic behavior of the flow field. Moreover, we
have demonstrated that in the presence of internal rotation,
the three-dimensional dynamics in the far-field approach can
be mapped onto a quasi-two-dimensional model and thus
the scalings found in both cases remain the same. We have
verified the analytical predictions with numerical solutions,
finding very good agreement. This suggests that in order to
grasp the general complex dynamics of the swimmer near
an interface, it is sufficient to include the dominant flow
field.

In view of recent experimental realizations of the three-
sphere swimmer using optical tweezers,14,15 we hope that the
findings of this paper may be verified experimentally. On
one hand, it would be interesting to see the purely trans-
lational case, varying only the distances between spheres.
It might prove more challenging to construct a swimmer
that would actually be capable of performing an internal
rotation, yet it is an exciting perspective due to the rel-
evance of this simple model to the widely used singu-
larity representations for swimming microorganisms near
interfaces.101

SUPPLEMENTARY MATERIAL

See supplementary material for the elements of the matrix
resulting from the linear system of equations governing the
generalized motion of a three-sphere swimmer near a wall
given by (11), (14), (18), and (19). In addition, we provide
the far-field expressions of the mobility functions used in the
analytical model. Finally, we present the evolution of the order
parameters A and µ in the oscillatory circling state associated
with the 3D system.

The movies 1 and 2 illustrate a swimmer initially released
from z0 = 1 atψ0 =�0.38 (trapping) andψ0 =�0.39 (escaping).
The movies 3 and 4 illustrate the oscillatory-gliding state for
ψ0 = 0, for a swimmer initially released from z0 = 0.75 and
z0 = 1. The movie 5 shows the oscillatory circling state of a
swimmer initially located at z0 = 1 above the wall, released at
an angle ψ0 = 0 for ω21 = 2 and ω13 = 0.
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Aranson, “Transport powered by bacterial turbulence,” Phys. Rev. Lett.
112, 158101 (2014).

63S. Heidenreich, J. Dunkel, S. H. L. Klapp, and M. Bär, “Hydrodynamic
length-scale selection in microswimmer suspensions,” Phys. Rev. E 94,
020601 (2016).
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