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Liquid crystals of hard rectangles on flat and
cylindrical manifolds

Christoph E. Sitta,a Frank Smallenburg, ab Raphael Wittkowski cd and
Hartmut Löwen a

Using the classical density functional theory of freezing and Monte Carlo computer simulations, we

explore the liquid-crystalline phase behavior of hard rectangles on flat and cylindrical manifolds.

Moreover, we study the effect of a static external field which couples to the rectangles’ orientations,

aligning them towards a preferred direction. In the flat and field-free case, the bulk phase diagram

involves stable isotropic, nematic, tetratic, and smectic phases depending on the aspect ratio and

number density of the particles. The external field shifts the transition curves significantly and generates

a binematic phase at the expense of the tetratic phase. On a cylindrical manifold, we observe tilted

smectic-like order, as obtained by wrapping a smectic layer around a cylinder. We find in general good

agreement between our density functional calculations and particle-resolved computer simulations and

mention possible setups to verify our predictions in experiments.

I. Introduction

There are many ways to control structural ordering and topological
defects in liquid crystals. One way is to expose them to an external
field which aligns the particle orientations and therefore favors the
formation of orientationally ordered phases.1–11 Another way is to
confine liquid crystals on a curved manifold which enforces the
formation of defects due to topological constraints.11–23 Our
fundamental understanding of the structuring of liquid crystals
has been strongly aided by simulation studies of hard anisotropic
particles, the minimal model required to obtain liquid-crystalline
phase behavior.24–32 Moreover, dating back to the seminal work
of Onsager,33 these systems have been studied extensively by the
density functional theory of freezing (DFT).26,32,34–47

Although most studies on liquid crystals of hard particles are
performed in three spatial dimensions, two-dimensional systems
have been considered extensively as well.27,28,32,35–37,39,41,43,48,49 In
two dimensions, the phase behavior is often more subtle: even
the phase behavior of hard disks differs significantly from that of
hard spheres, due to the intervention of a hexatic phase between
the fluid and crystalline states.50,51 An additional source of
complexity can be formed by the shape of the substrate

supporting the particles. For example, two-dimensional sheets
of liquid crystals can be constrained on a curved manifold
resulting in liquid-crystalline shells52,53 with many novel structural
ordering phenomena.54,55 These structures can be further tuned by
aligning fields to, e.g., control the number of defects in the liquid-
crystalline structure.56 One of the simplest substrate shapes is a
cylindrical manifold, where one of the principal curvatures
vanishes. Interestingly, systematic studies for highly ordered
liquid-crystalline phases (like smectics) on cylinders are not
available for freely orientable rods or rectangles. Previous work
addressed liquid crystals confined between two planar walls
(see, e.g., ref. 57) and the anisotropic dynamics of isotropic
disks58,59 or parallel cylinders60 on a cylindrical manifold.

In this article we combine two aspects of controlling liquid-
crystalline ordering, namely aligning external fields and con-
straints by curved manifolds. We do this for a two-dimensional
system of hard rectangles and first study its bulk phase behavior
in the flat and field-free case as a function of the particles’
aspect ratio and number density. To tackle this problem, we
propose a new DFT and perform complementary Monte Carlo
(MC) computer simulations, showing stable isotropic,36,49,61

nematic,36,37,43,46,49,62 tetratic,27–29,35–37,39,43,46,62–64 and
smectic36,41,43,62 phases. Upon applying an aligning external
field, the phase transition curves are shifted significantly and
a binematic phase occurs at the expense of the tetratic phase.
We then consider the same system on a cylindrical manifold,
adjusting the external field to favor orientation along the
cylindrical perimeter. Interestingly, a new tilted smectic-like
order is observed, which emerges from wrapping a smectic layer
around a cylinder. This is similar in spirit to helical hard-sphere
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configurations inside cylinders.65,66 In general, we find good
agreement between our DFT calculations and the particle-
resolved computer simulations. Our predictions can be verified
in real-space experiments on strongly confined colloidal rods67–74

and granulates.62–64,75,76

The paper is organized as follows: in Section II, we present
our new DFT and describe the MC simulations. The results
from the DFT calculations and MC simulations are presented in
Section III, including the phase diagrams for the flat bulk
system of hard rectangles with and without an external field
as well as the extension towards a cylindrical manifold. Finally,
we conclude in Section IV.

II. Methods
A. Density functional theory

DFT77–79 provides a versatile framework for determining the
equilibrium density profile req(-r,f) of a system of interacting
particles. The one-particle density profile r(-r,f) represents the
probability density for finding a particle with orientation f at
position -

r = (x,y)T. For the rectangular particles considered in
this work, f denotes the angle measured counterclockwise
from the positive x axis to the long axis of a particle. The key
expression in DFT is the grand-canonical free-energy functional

O½rð~r;fÞ� ¼ F½rð~r;fÞ� þ
ð

R2

d2r

ð2p
0

dfrð~r;fÞ Vextð~r;fÞ � mð Þ;

(1)

which is minimized by req(-r,f) and whose value O[req(-r,f)] matches
the equilibrium value of the grand potential of the system. In
eqn (1), F½rð~r;fÞ� is the Helmholtz free-energy functional, Vext(

-
r,f)

is the external potential acting on the particles, and m is the
chemical potential. Unfortunately, F½rð~r;fÞ� is rarely known except
for a few special cases (e.g., for monodisperse hard particles in one
spatial dimension80) and therefore usually needs to be approxi-
mated. It is commonly split as F = F id þ F exc into a sum of the
analytically known ideal-gas contribution F id and an unknown
excess term F exc. The ideal-gas term is given by

bF id ¼
ð

R2

d2r

ð2p
0

dfrð~r;fÞðlnð2pL2rð~r;fÞÞ � 1Þ (2)

with the inverse thermal energy b (also called thermodynamic beta)
and the thermal de Broglie wavelength L.

For the excess term we propose a phenomenological approxi-
mation

bF exc ¼
ð

R2

d2rFð~rÞ (3)

with the rescaled excess free-energy density F(-r), which features
all phases that were observed by simulations27–29,37 and
experiments62–64 for a fluid of hard rectangles, i.e., an isotropic,
a nematic, a tetratic, and a smectic phase. An illustration of the
different phases is given by Fig. 1 further below. We write F(-r) as
a sum of four terms,

F(-r) ¼ FOns(-r) + FFMT(-r) + FT(-r) + FP(-r), (4)

which are explained and justified in detail in the following.
To equip our functional with an appropriate low-density

limit, we start by using the Onsager approximation33

FOnsð~r Þ ¼ �
1

2

ð2p
0

dfrð~r;fÞ
ð

R2

d2r0
ð2p
0

df0rð~r 0;f0Þf ð~r�~r 0;f;f0Þ

(5)

with the Mayer function

f ð~r�~r 0;f;f0Þ

¼
�1; if particles with coordinates ð~r;fÞ and ð~r 0;f0Þoverlap;

0; otherwise;

(

(6)

which should perform well in the low-density limit of long rods.
As this term scales with second order in density, our functional
F exc will inherit this low-density behavior as long as all other
terms on the right-hand side of eqn (4) scale with third or
higher order in density. The term FOns(-r) already yields an
isotropic and a nematic phase but does not feature a stable
tetratic phase except for squares. For high densities and spatial
density modulations, which are necessary, e.g., for a smectic
phase, functionals based on fundamental measure theory are
known to perform better than the Onsager functional.81

Thus, another term is needed to model a smectic phase at
high densities. As the particles should be well aligned at high
densities, we adopt the excess free-energy functional for parallel
hard rectangles, which was derived by Cuesta and Martı́nez-Ratón
by a dimensional crossover,82,83 and therefore introduce the term

FFMTð~rÞ ¼ n2ð~rÞ �n0ð~rÞ ln 1� n2ð~rÞð Þ þ n1xð~rÞn1yð~rÞ
1� n2ð~rÞ

� �
(7)

in our rescaled free-energy density. Here, the ni(
-
r) with i A {0, 1x,

1y, 2} are weighted densities as typical for fundamental measure
theory.79,84 In the case of freely orientable rectangles, they are
defined as in ref. 36 by the angle-integrated cross-correlations

nið~rÞ ¼
ð2p
0

df r ? oðiÞ
h i

ð~r;fÞ

¼
ð2p
0

df
ð

R2

d2r0rð~r 0;fÞoðiÞð~r 0 �~r;fÞ

(8)

of the one-particle density r(-r,f) with the geometric weight
functions

oð0Þð~r;fÞ ¼ 1

4
d

D

2
� xf
�� ��� �

d
L

2
� yf
�� ��� �

; (9)

oð1xÞð~r;fÞ ¼ 1

2
d

D

2
� xf
�� ��� �

Y
L

2
� yf
�� ��� �

; (10)

oð1yÞð~r;fÞ ¼ 1

2
Y

D

2
� xf
�� ��� �

d
L

2
� yf
�� ��� �

; (11)

oð2Þð~r;fÞ ¼ Y
D

2
� xf
�� ��� �

Y
L

2
� yf
�� ��� �

: (12)
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Here, d(x) is the Dirac delta function and Y(x) is the Heaviside
function; D and L with D o L denote the width and length of the
rectangular particles, respectively, and xf and yf are defined as
xf = x cos(f) � y sin(f) and yf = x sin(f) + y cos(f). Except for
the prefactor n2(-r), eqn (7) is identical to the corresponding
expression from Cuesta and Martı́nez-Ratón.82,83 As their original
expression scales with O r2

� �
, we need the dimensionless pre-

factor n2(-r), which scales with order OðrÞ, in eqn (7) to maintain
the low-density behavior from the Onsager term in eqn (4).

Since the two previous terms do not feature a stable tetratic
phase yet, we introduce an empirical term FT(-r), which sup-
presses nematic order and favors tetratic order. We make use of
the squared Fourier coefficients |A2(-r)|2 and |A4(-r)|2, which are
defined as

Anð~rÞj j2¼ 1

�rð~rÞ2
ð2p
0

dfrð~r;fÞe�inf
� � ð2p

0

dfrð~r;fÞeinf
� �

(13)

with the angle-integrated center-of-mass density (i.e., concen-

tration field) �rð~rÞ =
Ð 2p
0 dfrð~r;fÞ. On the one hand, |A2(-r)|2 - 1

and |A4(-r)|2 - 1 holds for twofold nematic order in a perfect

nematic phase. On the other hand, |A2(-r)|2 - 0 and |A4(-r)|2 - 1
holds for fourfold tetratic order in a perfect tetratic phase. Thus
a term as simple as FT p a|A2|2 � |A4|2 will favor tetratic order
while suppressing nematic order if a 4 0, whereas a o 0 will
favor nematic order. Since tetratic order is present only in the
tetratic phase, while the nematic and smectic phases include
nematic order, we require the switching coefficient a = a(L/D,n2)
to dependent on both the aspect ratio L/D and the weighted
density n2(-r) in order to adjust the phases at the correct
positions in the phase diagram. Choosing a = wT(L/D) � n2(-r)
allows a to switch between negative values for local area
fractions n2(-r) above an aspect-ratio-dependent threshold area
fraction wT(L/D) 4 0 and positive values below this threshold.
For the area fraction wT(L/D) describing the transition between
nematic and tetratic states, we shift a tanh to positive values by
writing wT(L/D) = 0.5c1(1 + tanh(c2(c3 � L/D))). The parameter c1

corresponds to the largest area fraction where tetratic order
is still possible, the parameter c2 describes the steepness of
wT(L/D) at its inflection point, and the parameter c3 sets the
position of the inflection point. c3 should be close to the largest
aspect ratio where tetratic order is still observed. Testing several

Fig. 1 Typical equilibrium density profiles �r(r~) and orientation fields indicating the local particle alignment (green dashes) obtained from DFT
calculations as well as snapshots of MC simulations are shown for all observed types of structures of hard rectangular particles in two spatial dimensions.
When V0 a 0, an external field that aligns the particles parallel to the x axis is present. Perfect isotropic and tetratic phases were only found without such
an external field, while a binematic phase was only found in the presence of an external field.
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values for these parameters, the choice c1 = 0.85, c2 = 2/3, and
c3 = 9 resulted in the best agreement of the phase diagram
obtained from the functional (1) and the MC simulation data.85

The full tetratic term then reads

FT ¼
5

2
�rð~rÞn2ð~rÞ2 1þ wTðL=DÞ � n2ð~rÞð Þ A2j j2

�

� wTðL=DÞ A4j j2
� (14)

with the threshold area fraction

wTðL=DÞ ¼ 0:425 1þ tanh
2

3
ð9� L=DÞ

� �� �
: (15)

In eqn (14), the summand 1 in the outer parentheses and the
positive prefactor wT(L/D) in front of |A4|2 are included to
improve numerical stability. The prefactor (5/2)�r(-r)n2(-r)2 with
the angle-integrated local density �r(-r) ensures both that the
dimensions of FT are correct and that FT scales with O r3

� �
so

that the low-density behavior of the Onsager term is main-
tained in eqn (4). In this prefactor, the proportionality constant
5/2 is chosen to match the MC simulation data and constitutes
the fourth fitted parameter in this model.

Finally, we add the penalty term

FPð~rÞ ¼ �
n2ð~rÞ2
D2

ln 1� n2ð~rÞð Þ; (16)

which diverges for local area fractions n2(-r) - 1, avoiding
unphysical overlap of the hard particles and enhancing the
numerical stability of the full functional. Again, a prefactor
(n2(-r)/D)2 is chosen for reasons of dimensionality and to maintain
the low-density limit described by the Onsager term in eqn (4)
through FP(-r) scaling with O r3

� �
.

After inserting eqn (5), (7), (14) and (16) into the rescaled
excess free-energy density (4) and choosing an expression for
the external potential Vext(

-
r,f), the equilibrium density req(-r,f)

can be obtained by a free minimization of the functional (1)
with respect to r(-r,f). When an aligning external field is taken
into account, we choose the external potential as

Vext(
-
r,f) ¼ V0 sin(f)2 (17)

with the amplitude V0. Otherwise, Vext(
-
r,f) is set to zero. Note

that these expressions for Vext maintain the f - f + p
invariance of the system.

As in ref. 61 and 86, the minimization of the functional (1) is
performed numerically in real space by using a Picard iteration
scheme79

rðiþ1Þð~r;fÞ ¼ ð1� aÞrðiÞð~r;fÞ

þ a
2pL2

exp b mðiÞ � Vextð~r;fÞ �
dF exc

drð~r;fÞ

� �� �
(18)

with the mixing parameter a r 0.01, L set to D
	 ffiffiffiffiffiffi

2p
p

, and the
functional derivative dF exc=drð~r;fÞ. To maintain a constant
area fraction, the chemical potential m(i) is recalculated in every
iteration step i. It converges to a finite value during the

iteration. As in previous works,61,86–88 we combine this iteration
with a direct inversion in the iterative subspace89–92 to improve
the convergence. The orientations of the rectangles are discretized
in equidistant steps of Dfr p/24 and a spatial Cartesian grid with
step sizes Dx = Dy E 0.03D is used. For the simulation box, a
rectangular domain with a size much larger than that of a particle
and with periodic boundary conditions is used. When considering
a flat system, we minimize the grand-canonical free energy per
area also with respect to the width and length of the simulation
box. In the case of particles on a cylindrical manifold, the width of
the box is kept constant and equal to the circumference of the
cylinder, while its length is varied. In both cases, the width and
length of the box shall correspond to the x and y directions of our
Cartesian coordinate system, respectively.

B. Monte Carlo simulations

In order to estimate the bulk phase behavior of hard rectangles
in the regime of interest, we make use of MC simulations. In
particular, we simulate perfectly hard rectangular particles
in rectangular boxes with periodic boundary conditions, at
constant number of particles N, pressure P, and temperature
T p 1/b. Overlaps between rectangles are detected using the
separating axis theorem (see, e.g., ref. 93). Simulations consist
of single-particle translations and rotations, as well as cluster
movements that collectively rotate all particles whose centers
lie in a small circular region around the center of a random
particle by 90 degrees. Additionally, in order to keep the
pressure fixed, the simulations include volume changes which
adapt the length of the simulation box along either the x or y
direction. We estimate the isotropic-to-nematic and isotropic-to-
tetratic transitions by measuring the average nematic and tetratic
order parameters in the system, which are defined as

Sk ¼
1

N

XN
j¼1

exp ikfj

� ������
�����
2

(19)

with k = 2 for the nematic and k = 4 for the tetratic order
parameter. Here, fj is the angle measured from the x axis of the
system to the long axis of the jth particle. These order para-
meters are zero for an isotropic system. In a perfectly nematic
phase, where all particles are aligned along one axis, S2 = 1 and
S4 = 1, while in a perfectly tetratic phase S2 = 0 and S4 = 1. Since
the boundary between the smectic phase and the lower-density
phases is a first-order phase transition, the simulation results
typically exhibit hysteresis. In particular, the transition from a
tetratic to a smectic phase upon increasing density is often
kinetically prevented, as the system gets trapped in a state with
multiple small smectic domains. The effect of hysteresis is
weaker on decompression, as the smectic phase always eventually
transforms into a tetratic phase at sufficiently low density. Hence,
to estimate the transition curve for the smectic phase, we start
simulations in the smectic phase and determine at which density
the layering disappears by visual inspection. This approach is
expected to overestimate the stability range of the smectic phase,
and hence will underestimate the transition density by up to a
few percent. Note that while we refer to this phase as smectic in
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this work, we did not closely examine the decay of translational
ordering in the system and hence do not resolve any distinction
between a crystalline and a smectic phase, which would both
show similar layering.

We follow the same approach for determining the phase
diagram for rectangles in an aligning field, where we apply the
external potential (17). To explore self-assembly on a cylindrical
surface, we fix the width of the periodic simulation box to the
desired circumference C of the cylinder and allow volume
fluctuations only along the perpendicular direction. The length
of the simulation box is always much larger than C. To compare
more directly to the DFT results with constant area fraction, we
first compress the system from a low-density isotropic fluid to
the desired density by slowly ramping up the pressure, and
then fix the volume once the desired volume is reached. In this
effectively one-dimensional system, there are no true phase
transitions. As a result, the system typically fluctuates between
qualitatively different structures during a single simulation,
and even forms domains with different structures in different
parts of the simulation box. Hence, we usually find a variety of
likely states for a given combination of the cylinder circumference
in units of particle length C/L, the aspect ratio L/D of the particles,
their total area fraction Z, and the amplitude V0 of the external
potential. To address this ambiguity, we perform multiple
independent simulation runs at each state point and collect
data on the observed structures by visual inspection. The
simulations involve N = 1000–4000 particles for the flat space
and N = 120 particles on a cylindrical surface.

III. Results

In this section, we explore the self-assembly of hard rectangles.
We first test the developed functional on flat systems without
an aligning external field and then apply it to both flat systems
with an external field and to systems on a cylindrical manifold.

A. Phase behavior on a plane without an external field

For flat systems of hard rectangles in the absence of any
aligning fields, we find four distinct phases in the parameter
range considered here: an isotropic phase, a nematic phase, a
tetratic phase, and a smectic phase. Typical equilibrated systems
of rectangular particles obtained from DFT calculations and MC
simulations are shown in Fig. 1 for all observed phases.

In the isotropic phase (see Fig. 1a), the particles are dis-
ordered with respect to both position and orientation. This
phase is observed at low densities for all aspect ratios. Also the
nematic and tetratic phases are disordered in space, but they
show an anisotropic distribution of the orientation. We find a
nematic phase (see Fig. 1b) at intermediate area fractions for
large aspect ratios, which are L/D \ 7 in DFT calculations and
L/D \ 9 in MC simulations. Although spatially disordered
(i.e., spatial correlations are absent in DFT results and decay
exponentially in MC simulations), the orientational distribution
shows a twofold symmetry, indicating that most particles are
aligned parallel to a certain axis. On the other hand, the tetratic

phase (see Fig. 1d) shows a fourfold symmetry in the orientational
distribution, which indicates alignment along two perpendicular
axes. This phase is found at intermediate area fractions for small
aspect ratios. For high area fractions, we observe a transition to a
spatially ordered smectic phase (see Fig. 1e), where aligned
particles form layers, with their orientations perpendicular to the
layers. This is also known as a smectic A phase. In this phase, we
also find particles that are located between and oriented parallel to
the layers, which is in agreement with observations in three spatial
dimensions.26

Fig. 2 shows the DFT and MC results for the phase diagram
of rectangular particles on a plane. Both approaches lead to
qualitatively similar phase diagrams that include the same
phases. Note that, in principle, we expect crystalline phases at
very high area fractions for all aspect ratios, including a solid
where the particles are tetratically ordered27 and a periodic
crystal of aligned particles on a rectangular lattice. However, it
is difficult to distinguish these phases from the tetratic fluid
and smectic phases, respectively. Hence, we do not attempt to
distinguish between the tetratic solid and fluid or between the
orientationally ordered crystal and smectic phase in this work.
Instead, we refer to them simply as tetratic and smectic phases,
respectively.

B. Phase behavior on a plane with an external field

We now extend our approach to systems of hard rectangles on a
plane that are exposed to an aligning external potential (see
eqn (17)), which acts purely on the orientation of each particle.
To investigate the effect of the potential’s amplitude V0 on the
phase diagram, we now keep the aspect ratio of the particles

Fig. 2 Bulk phase diagram of freely orientable hard rectangular particles
on a plane without an external field obtained from both DFT calculations
and MC simulations. The aspect ratio L/D and area fraction Z of the
particles are varied.
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fixed at L/D = 4 and show the phase diagram for varying
potential amplitudes V0 and area fractions Z in Fig. 3. A striking
effect of the aligning field is the complete absence of the
isotropic and tetratic phases for potential amplitudes V0 4 0.
As the field favors alignment of the particles along the x axis, it
makes a purely isotropic phase impossible. Likewise, the tetratic
phase with four equally pronounced peaks in the orientational
distribution is no longer possible, as the probability of align-
ment along the x axis will always be larger than the probability
of alignment along the y axis. When considering, for example, a
system with L/D = 4 and Z = 0.7, the tetratic phase is stable
without an external field, but turns smoothly into a nematic
phase (with preferred orientation along the x axis) when increasing
the potential amplitude V0. During this transition, the peaks in the
orientational distribution that correspond to the y direction
gradually decrease. As long as the height of the former tetratic
peaks is still at least 10% of the height of the main peaks
corresponding to the x direction, we call this intermediate
phase binematic (see Fig. 1c). Note that these isotropic–nematic
and tetratic–binematic transitions are not true thermodynamic
phase transitions, since they do not involve jumps in the order
parameters or their derivatives.

In the phase diagram (see Fig. 3), the results of the DFT
calculations and MC simulations show the same trends. When
increasing the external field from V0 = 0 to bV0 r 1, the
binematic phase becomes stable at lower densities for low
aspect ratios. At V0 = 0, the tetratic phase should be more
stable than the nematic phase but less stable than the isotropic

phase for densities just below the isotropic–tetratic transition
density. When imposing an external field, which helps the
particles to align parallel or antiparallel to the x axis, at this
density, some tetratic order is maintained if the field is weak
enough, giving rise to a minimum in the nematic–binematic
transition curve found for both methods. As the external field is
further increased, it eventually causes (nearly) full alignment of
the particles and a purely nematic phase becomes stable.
Similarly, increasing the field strength enhances the stability
of the smectic phase, where the particles are aligned along one
axis. At large field strengths with bV0 Z 4 in the case of DFT
calculations and bV0 Z 2 for MC simulations, this effect
saturates and no further stabilization of the smectic phase is
observed. In this parameter region, the particles in both the
nematic and smectic phases are essentially fully aligned, and
hence further increasing the field strength has no effect on the
relative stability of the phases. It is important to note that while
the parameters of our density functional were chosen in
eqn (14) to improve the agreement with the MC simulation
data for systems without an external field, we made no adaptations
to the functional for the case with an aligning field. Therefore, it is
remarkable that the phase behavior predicted by our DFT
calculations and MC simulations still shows good agreement
when an aligning external field is present.

C. Phase behavior on a cylinder with an external field

We now turn our attention from rectangles on the plane to
rectangles on the lateral surface of an infinitely long cylinder,
whose axis is parallel to the y axis. To investigate the effect of
the periodic confinement on a cylinder, we vary the radius
of the cylinder such that its circumference C ranges between
9D = 2.25L and 21D = 5.25L for a fixed aspect ratio L/D = 4 of the
rectangles. The lower limit is sufficiently large to avoid cases
where two particles could interact with each other on both sides
of the cylinder. In order to prevent the system from simply
forming nematic and smectic phases with the preferred particle
orientation parallel to the axis of the cylinder, which would
result in a phase diagram quite similar to that for the flat case,
we include an external field to align the particles along the x
direction. This promises interesting results, because it favors
the formation of smectic phases where the particles are aligned
along the (short) circumference of the cylinder. Such an align-
ment results in a competition between the favored layer spacing
of the smectic phase and the fixed circumference C, leading to
more complex self-assembled structures that attempt to satisfy
both constraints.

As on a plane, we observe a binematic phase without spatial
order and a smectic phase where the particles are aligned
according to the external field. In the latter phase, the layers
are parallel to the axis of the cylinder. In addition to these
phases, we observe two new phases that occur only on a
cylinder: firstly, a tilted smectic phase with layers along any
other direction than the cylinder axis and particle orientations
still orthogonal to the layers (see Fig. 4a) and, secondly, a
smectic C phase, where the particles are no longer oriented
perpendicular to the layers (see Fig. 4b). We observe these two

Fig. 3 Phase diagram of freely orientable hard rectangular particles on a
plane in the presence of an aligning external field for both DFT calculations
and MC simulations. The aspect ratio of the particles is now L/D = 4,
whereas the amplitude V0 of the external potential and the particles’ area
fraction Z are varied. Perfect isotropic or tetratic phases are found only for
V0 = 0.
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phases in both DFT calculations and MC simulations. In the
MC simulations, two further phases are found: a columnar
phase and a tilted columnar phase with particle layers parallel
to the particle orientation.

Fig. 5 displays the phase behavior close to the transition
between the binematic and the smectic phase obtained from
DFT calculations and MC simulations for different cylinder
radii. As one might expect, the smectic phase is most stable for
circumferences C just above an integer number of particle
lengths L and least stable for circumferences equal to or just
below an integer number of particle lengths. These circumferences
correspond to cases where an integer number of smectic layers fits,
or does not fit, onto the cylinder in the direction preferred by the
field, respectively. Although observed at Z = 0.75 on a plane, no
inhomogeneous density profiles with smectic layers are found at
circumferences 2.75L, 3L, and 4L, when using the DFT. In the
MC simulations, we observe multiple competing states for most
choices of the circumference and area fraction, indicated by the
presence of multiple colored slices at the same state point in
Fig. 5a. These fluctuations are a result of the quasi-one-dimensional
nature of our system: since the system size is limited in the direction

perpendicular to the cylinder axis, multiple structures can form in
the same system without macroscopically large interfaces between
them. Hence, fluctuations allow the system to partly or fully
transform to a different structure without large free-energy
penalties. Note that, since in the finite systems considered here
there are no true phase boundaries between different states,
classification of different phases is partially subjective.

Interestingly, for increasing area fractions we observe an
increasing tilt of the smectic layers away from the cylinder axis.
This is understandable, as at lower area fractions the system
can more easily distort or incorporate defects that allow for a
better total alignment of the system. The observed increasing
tilt of the particles is further characterized by Fig. 6. There, we
show the average particle orientation favg A [0, p) (see Fig. 6a)
relative to the x axis, i.e., to the direction along the circumference,
for the area fractions Z = 0.75 and 0.8 and for both the DFT
calculations and MC simulations. As extracting the average
particle orientation is difficult in MC simulations, where the
system continually shifts between configurations with different
average tilt angles, which can be both positive and negative, we
also show the average potential energy per particle Vavg (see
Fig. 6b). We typically find larger tilting and a higher potential
energy when we approach, but not exceed, an integer ratio C/L
from below. This effect is tendentially stronger at larger area

Fig. 4 As in Fig. 1, but now for a (a) tilted smectic phase and a (b) smectic
C phase, which are observed only on a cylinder in the presence of an
external field that favors particle alignment along the x direction. The plots
show the unrolled cylindrical surface (see Fig. 5b for the snapshots of MC
simulations on a cylinder). In both cases, the aspect ratio of the particles is
L/D = 4, their area fraction is Z = 0.8, and the amplitude of the external
potential is V0 = 1/b.

Fig. 5 (a) Phase diagrams obtained from DFT calculations and MC simulations
as well as (b) MC snapshots illustrating the individual phases for hard rectangular
particles of aspect ratio L/D = 4 on a cylinder, where an external field with
bV0 = 1 is present. We focus here on circumferences C and area fractions Z
close to the transition between spatially ordered and disordered phases.
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fractions. We observe these trends for both methods. The tilting
allows the system to reduce the size of the gaps between the
smectic layers. At larger area fractions, the lack of free space
makes gaps between the smectic layers even more unfavorable,
further favoring tilting over the formation of defects.

IV. Conclusions

We combined DFT and MC computer simulations to investigate
the phase behavior of two-dimensional orientable hard rectangular
particles both on a plane and on a cylindrical manifold for systems
with and without aligning external fields. As a basis for our DFT
calculations, we designed a new density functional that yields all
liquid-crystalline phases observed in experiments with layers of
hard rectangular particles.62–64 The resulting phase diagrams agree
well with our particle-resolved simulations.

Depending on the aspect ratio and number density of the
particles, we found stable isotropic, nematic, tetratic, and
smectic phases in the flat and field-free case. Applying an
aligning external field shifts the transition curves and enhances
nematic order at the expense of tetratic order, which generates
a binematic phase. For a cylindrical manifold, we observed in
our DFT calculations both untilted and tilted smectic-like order
around the cylinder. Additionally, the MC simulations showed
both untilted and tilted columnar phases.

Future studies could generalize our DFT towards a dynamical
density functional theory,94–101 which would provide insights
into the nonequilibrium Brownian dynamics of such systems. It
would also be interesting to consider other two-dimensional

manifolds like cones and spheres or other particle interactions
like those of ionic liquid crystals102 and magnetic nanorods.103

Our results can be verified in experiments using sterically-
stabilized rectangular colloidal particles67–72,74,103 or shaken
granular particles.75,76
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17 M. A. Bates, G. Skačej and C. Zannoni, Soft Matter, 2010,
6, 655.

18 T. Araki, M. Buscaglia, T. Bellini and H. Tanaka, Nat.
Mater., 2011, 10, 303.

19 H.-L. Liang, S. Schymura, P. Rudquist and J. Lagerwall,
Phys. Rev. Lett., 2011, 106, 247801.

20 T. Lopez-Leon, V. Koning, K. B. S. Devaiah, V. Vitelli and
A. Fernandez-Nieves, Nature, 2011, 7, 1745.

Fig. 6 (a) The average orientation angle favg A [0,p) due to the particle
alignment in the external field and (b) the average potential energy per
particle Vavg in a system of hard rectangular particles with aspect ratio
L/D = 4 on a cylinder are shown as a function of the cylinder circum-
ference C for different area fractions Z and the potential amplitude V0 = 1/b.
Circumferences that are exactly an integer multiple of the particle length
L are indicated by dashed lines.

Paper PCCP

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
18

. D
ow

nl
oa

de
d 

by
 H

ei
nr

ic
h 

H
ei

ne
 U

ni
ve

rs
ity

 o
f 

D
ue

ss
el

do
rf

 o
n 

14
/0

2/
20

18
 1

3:
40

:0
6.

 
View Article Online

http://dx.doi.org/10.1039/C7CP07026H


This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 5285--5294 | 5293

21 H.-L. Liang, J. Noh, R. Zentel, P. Rudquist and J. P. F. Lagerwall,
Philos. Trans. R. Soc., A, 2013, 371, 20120258.

22 G. Napoli and L. Vergori, Int. J. Non Linear Mech., 2013,
49, 66.

23 A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Žumer
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R. Wittkowski, U. Zimmermann, A. Kaiser and
A. M. Menzel, Eur. Phys. J.-Spec. Top., 2013, 222, 3023.

31 M. Dijkstra, Entropy-driven phase transitions in colloids:
from spheres to anisotropic particles, Advances in chemical
physics, John Wiley & Sons, Hoboken, NJ, 2014, ch. 2,
pp. 35–71.

32 M. Oettel, M. Klopotek, M. Dixit, E. Empting, T. Schilling
and H. Hansen-Goos, J. Chem. Phys., 2016, 145, 074902.

33 L. Onsager, Ann. N. Y. Acad. Sci., 1949, 51, 627.
34 A. Poniewierski and R. Hołyst, Phys. Rev. Lett., 1988,

61, 2461.
35 H. Schlacken, H.-J. Mogel and P. Schiller, Mol. Phys., 1998,

93, 777.
36 Y. Martı́nez-Ratón, E. Velasco and L. Mederos, J. Chem.

Phys., 2005, 122, 064903.
37 Y. Martı́nez-Ratón, E. Velasco and L. Mederos, J. Chem.

Phys., 2006, 125, 014501.
38 H. Hansen-Goos and K. Mecke, Phys. Rev. Lett., 2009,

102, 018302.
39 Y. Martı́nez-Ratón and E. Velasco, Phys. Rev. E: Stat., Non-

linear, Soft Matter Phys., 2009, 79, 011711.
40 H. Hansen-Goos and K. Mecke, J. Phys.: Condens. Matter,

2010, 22, 364107.
41 S. Belli, M. Dijkstra and R. van Roij, J. Chem. Phys., 2012,

137, 124506.
42 M. Marechal, U. Zimmermann and H. Löwen, J. Chem.
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44 M. Marechal and H. Löwen, Phys. Rev. Lett., 2013,

110, 137801.
45 R. Wittmann, M. Marechal and K. Mecke, Europhys. Lett.,

2015, 109, 26003.
46 A. Dı́az-De Armas and Y. Martı́nez-Ratón, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2017, 95, 052702.
47 M. Marechal, S. Dussi and M. Dijkstra, J. Chem. Phys., 2017,

146, 124905.

48 M. A. Bates and D. Frenkel, J. Chem. Phys., 2000, 112, 10034.
49 R. L. C. Vink, Phys. Rev. Lett., 2007, 98, 217801.
50 S. C. Kapfer and W. Krauth, Phys. Rev. Lett., 2015, 114, 035702.
51 A. L. Thorneywork, J. L. Abbott, D. G. A. L. Aarts and

R. P. A. Dullens, Phys. Rev. Lett., 2017, 118, 158001.
52 C. Knorowski and A. Travesset, Europhys. Lett., 2012, 100, 56004.
53 X. Xing, H. Shin, M. J. Bowick, Z. Yao, L. Jia and M.-H. Li,

Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 5202.
54 D. Coursault, B. Zappone, A. Coati, A. Boulaoued,

L. Pelliser, D. Limagne, N. Boudet, B. H. Ibrahim, A. de
Martino, M. Alba, M. Goldmann, Y. Garreau, B. Gallas and
E. Lacaze, Soft Matter, 2016, 12, 678.

55 R. Zhang, Y. Zhou, M. Rahimi and J. J. de Pablo, Nat.
Commun., 2016, 7, 13483.
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