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Spontaneous membrane formation and self-encapsulation of active rods
in an inhomogeneous motility field
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We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface
between two regions of constant but different motility, a smectic rod layer is spontaneously created through
aligning interactions between the active rods, reminiscent of an artificial, semipermeable membrane. This “active
membrane” engulfes rods which are locally trapped in low-motility regions and thereby further enhances the
trapping efficiency by self-organization, an effect which we call “self-encapsulation.” Our results are gained by
computer simulations of self-propelled rod models confined on a two-dimensional planar or spherical surface with
a stepwise constant motility field, but the phenomenon should be observable in any geometry with sufficiently
large spatial inhomogeneity. We also discuss possibilities to verify our predictions of active-membrane formation
in experiments of self-propelled colloidal rods and vibrated granular matter.
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I. INTRODUCTION

Active materials are composed of autonomously moving
agents that steadily consume energy while they are in mo-
tion. With only a small set of physical ingredients, they can
mimic the complex behavior seen in living systems, such
as swarming and flocking, directional motion, energy-fueled
transport, clustering, and bacterial turbulence [1–4]. Over the
past decade, numerous artificial active-matter systems have
been designed and intensely studied, ranging from synthetic
colloidal microswimmers on the micron scale to self-propelled
vibrated granulates on the macroscopic scale. In many cases,
the interactions between neighboring active particles are align-
ing such that they propel towards the same direction, giving
rise to a flocking effect [5]. A relatively new avenue of research
focuses on inhomogeneous motility fields, in which the particle
self-propagation speed depends on the spatial coordinate. This
is frequently encountered in actual biological or artificial
systems where the swimming speed depends on an external
stimulus, such as an externally imposed chemical [6–11],
light [12,13], or flow field [14,15] of the solvent. Both linear
gradients in motility [6,13,16] and stepwise constant motility
fields [17] have been studied but also more complicated
motility ratchets [13,18] and even motility waves propagating
in time [19–22]. In general, in regions of low motility, active
particles are dynamically trapped as they move much slower
there, causing them to become locally pinned. The trapping
efficiency has been recently studied in detail for nonaligning
self-propelled spheres [17].

Here we explore the behavior of self-propelled rods with
aligning interactions in inhomogeneous motility fields that
are stepwise constant. We demonstrate that the combination
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of alignment and spatial inhomogeneity allows active matter
to self-organize into nonequilibrium membranelike stuctures,
reminiscent of colloidal [23,24] and biological lipid mem-
branes [25,26]. In fact, at the interface where two regions of
constant but different motility meet, a smectic-like rod layer is
spontaneously created that acts as an effectively semiperme-
able “active membrane.” In analogy to lipid membranes, this
active self-organized structure leads to spontaneous compart-
mentalization and can be penetrated by other particles, and
the number of particles forming the membrane is not fixed
but fluctuating. The active membrane engulfes rods which
are stuck in low-motility regions, an effect which we call
self-encapsulation. Self-encapsulation can be understood as a
self-organized “fence” around trapped rods which drastically
enhances the trapping efficiency and thus naturally leads to
compartmentalization of active particles [27]. It is worthwhile
to mention that this self-organized trapping is qualitatively
different from motility-induced phase separation, which occurs
in homogeneous motility fields [28] and from capturing self-
propelled rods in wedgelike obstacles where the trapping is in-
duced by geometry [29–31]. Moreover, the active membranes
found here are different from active nematic films driven by
anchoring and patterning [32–34].

Our results are gained by computer simulations of self-
propelled rod models [35–38] confined on a two-dimensional
(2D) surface. We consider two geometries: a spherical surface
in which the region of lower motility covers one hemisphere or
a smaller surface area, and a 2D planar surface with periodic
boundary conditions, in which one half of the surface is
associated with a lower motility. We will focus mainly on the
topology of the compact sphere, since it naturally gives rise to
only a single interface and has also recently attracted interest
due to its rich curvature- and topology-induced active-particle
dynamics [39–46]. However, for the membrane-formation
process reported here, the spherical topology is not a crucial
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ingredient: Indeed, we will show that self-encapsulation at
the interface between two different motilities also occurs
similarly for rod motion in the plane and that in fact the
aligning interactions are the crucial factor. Moreover, we will
discuss the similarity between the self-encapsulation process
and the growth of smectic phases out of an isotropic phase
that is impeded by rods lying perpendicular to the smectic
layer [47], an effect known as “self-poisoning” in passive
systems [48]. Our predictions may be verified in experiments
of, e.g., self-propelled colloidal Janus rods steered by external
light intensity [49,50], active microtubuli in a motility assay
with varying kinesin motor concentrations [51], and vibrated
granular matter [52]. Furthermore, our findings are of relevance
for rodlike bacteria in different motility environments [53].

The paper is organized as follows. We first give an overview
of the model systems used in the simulations, followed by a
discussion of the structural and dynamical properties of the
self-organized active membrane. We pay special attention to
the encapsulation dynamics by probing time-correlation func-
tions of the particle density on one side of the membrane. Last,
we establish the robustness of the spontaneous membrane-
formation process by varying several parameters of the motility
field. We close with concluding remarks and a perspective on
possible experimental realizations of our system.

II. SIMULATION MODEL

Our simulation model describes self-propelled particles
undergoing Brownian motion on a 2D surface with space-
dependent motility. Explicitly, we have extended the models
used by Janssen et al. [44] and Wensink et al. [37], which
provide a minimal description for microswimmers confined
to a spherical and 2D planar square surface with periodic
boundary conditions, respectively, to the inhomogeneous case.
In all simulations, the system is composed of N rods of length
� that all experience a space-dependent self-propulsion force
along their longitudinal rod axis ûi , where i is the particle
index [see Fig. 1(a)]. We choose the magnitude of the active
force, F (xi), to be stepwise dependent on the Cartesian x

coordinate of the rods’ center-of-mass positions ri ≡ (xi,yi,zi)
[see Fig. 1(b)]:

F (xi) =
{
F1 if xi � 0
F2 if xi > 0 , (1)

with F1 and F2 denoting constants. For both the spherical and
planar confining surface, we place the origin of our coordinate
system in the center, so that the low- and high-motility
regions comprise equal surface areas. The special case F1 = F2

reduces to the homogeneous scenarios of Refs. [37,44]. To
account for steric repulsion among the particles, we represent
each rod as a rigid chain of m spherical segments and let
all segment-segment pairs belonging to different rods interact
through a repulsive Yukawa potential. The total interaction
energy between two rods is given by

Uij = U0

m2

m∑
α=1

m∑
β=1

exp(−rij,αβ/λ)

rij,αβ

, (2)

where U0 is the potential amplitude, rij,αβ is the Euclidean
distance between segment α of rod i and segment β of rod j ,

ℓ

λ

rij,αβ
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FIG. 1. (a) Sketch of the active-rod model. A light-gray back-
ground corresponds to a region with higher activity F1, and dark-gray
shading corresponds to a lower activity F2. (b) Illustration of the
coordinate system used for simulations on a spherical surface. The
sphere is centered around the origin, and the region associated with
the higher self-propulsion speed F1 lies on the negative x axis. The
angle ϕi represents the angle between a rod’s orientation vector ûi

and the rotated meridian perpendicular to the boundary. (c) Average
fraction of particles N1/N residing on the “fast” x � 0 hemisphere
as a function of packing fraction φ for a system of N = 200 rods
with particle aspect ratio a = 10 and activity ratio F1/F2 = 10. (d)
Representative snapshots of steady-state configurations at various
packing fractions, obtained after a total simulation time of 60 000τ .

and λ is the screening distance that also serves as the unit of
length [see Fig. 1(a)]. For the spherical topology, we follow
Ref. [44] and constrain the rods such that ri always lies on the
sphere and ûi lies in the plane tangent to the sphere at position
ri . Within such a local tangent plane, the dynamics can be
treated as effectively two dimensional, and hence we simulate
all dynamics by integrating the 2D overdamped Langevin
(Brownian) equations of motion,

ṙi = μT [−∇ri
U + F (xi)ûi],

(3)
˙̂ui = −μR∇ûi

U,

where the dots denote time derivatives, U = 1
2

∑
i,j �=i Uij , and

∇ûi
is the gradient on the unit circle. The matrices μT and μR

represent inverse translational and rotational friction tensors,

022608-2



SPONTANEOUS MEMBRANE FORMATION AND SELF- … PHYSICAL REVIEW E 97, 022608 (2018)

respectively, which are defined as

μT = μ0[μ‖ûi ⊗ ûi + μ⊥(I − ûi ⊗ ûi)], (4)

μR = μ0μRI. (5)

Here μ0 is a mobility coefficient, I is the 2 × 2 unit matrix,
and ⊗ stands for the dyadic product, and for the parameters
μ‖, μ⊥, and μR we use the standard expressions for rodlike
macromolecules as given in Ref. [54]. We adopt characteristic
units such that λ = 1, μ0 = 1, and for the unit of activity
we set F0 = 1, so that time is measured in units of τ =
λ/(μ0F0). For the potential we take U0 = 250 and a cutoff
distance of rc = 6λ, and the number of segments per rod is
chosen as m = �14a/8	, where a = �/λ is the rod aspect ratio.
Equation (3) is propagated using a Euler integration scheme
with a discrete time step of 0.01τ . For simplicity we have
ignored any stochastic noise and hydrodynamic interactions
(HI)—implying that the dynamics is governed solely by the
repulsive pair interactions and self-propulsion forces—but we
have verified that the membrane is also stable against small
thermal noise, as will be shown below. Due to the neglect of
HI, our model is particularly suitable for dry active matter, but
we note that HI-free simulations can also accurately reproduce
the complex behavior seen in hydrodynamic models, including
active turbulence [37] and compartmentalization of active
spinners [27].

III. MEMBRANE FORMATION AND STRUCTURE

We first explore the emergent structural and dynamical
properties as a function of the packing fraction φ, defined
for the spherical surface as φ = N�λ/(4πR2), where R is the
radius of the confining sphere, and for the planar surface as
φ = N�λ/�2

box, where �box is the width of the square simulation
box. Let us first focus on the spherical-surface case. Figure 1(c)
shows the fraction of rods on the high-motility x � 0 hemi-
sphere, N1/N , as a function of φ for a system of N = 200
rods with aspect ratio a = 10 and self-propulsion strengths
F1 = 1F0 and F2 = 0.1F0. In the dilute limit of φ → 0, all
rods behave as free particles that spend a fraction F2/(F1 + F2)
of the time on the left hemisphere, implying N1/N = 0.09,
which indeed we observe numerically. As the density increases
up to φ ≈ 0.2, however, we find a remarkable effect: The
“fast” region with x � 0 becomes depleted and an excessive
amount of particles will reside at the hemisphere with the lower
self-propulsion speed F2. The reason for this becomes evident
from the particle snapshots, Fig. 1(d): At the boundary between
the two hemispheres, particles self-organize into a membrane-
like structure that effectively prevents particles from leaving
the “slow” x > 0 region, thus acting as a self-encapsulation
mechanism. The formation of this membrane arises from
three crucial ingredients: (i) the spatial inhomogeneity of the
motility, F1 > F2, which naturally imposes an inhomogeneous
density profile; (ii) a sufficiently high packing fraction, which
allows for saturation of rods on the x > 0 hemisphere; and
(iii) aligning interactions, which emerge from pair collisions
between the active rods. Indeed, we have verified that the mem-
brane structure disappears if F1 ≈ F2, φ � 0.2, or a � 10. We
also note that the formation of the membrane is fostered by the

periodicity of the sphere: If a rod is able to permeate through
the interface and move into the x � 0 region, then it will
swim across the entire hemisphere and eventually collide with
membrane-forming particles on the other side, consequently
causing it to align and becoming part of the membrane itself.
Through a similar mechanism, we see that for higher packing
fractions φ > 0.2, where the “slow” x > 0 hemisphere is fully
saturated with particles, “hedgehog” structures [36] appear on
the “fast” x � 0 side of the membrane. Thus, a polar ordering
of particles oriented toward the domain associated with lower
motility emerges naturally near the interface.

For rods residing on a flat 2D surface with periodic boundary
conditions, the observed behavior is very similar to that on the
sphere: At packing fractions φ ≈ 0.2 a clear membrane struc-
ture appears at the interface between the regions of different
motilities. Due to the periodic boundary conditions, we now
find two separate membranes at x = 0 and |x| = �box/2 which
encapsulate the rods in the low-motility region from opposing
sides. Figure 2(a) shows a typical snapshot of this scenario
for N = 800 rods with aspect ratio a = 16 and F1/F2 =
10. As in the spherical case, a membrane is formed only
when the rods are sufficiently elongated to induce sufficiently
strong aligning pair collisions, and indeed the membrane
structure becomes increasingly distorted as the rod aspect ratio
decreases.

To unambiguously confirm that aligning interactions are
crucial, we have also performed 2D calculations for spherical
particles with a = 1 that experience no torque during collision.
In this case, particle reorientation may only occur through
rotational Brownian diffusion. In order to account for such
diffusional motion and thus to allow for a fair comparison be-
tween the dynamics of rods and spheres, we have extended our
simulation model to finite Péclet number Pe = μ0F1/

√
D‖DR ,

where D‖ = μ0μ‖kBT and DR = μ0μRkBT are translational
and rotational diffusion coefficients, respectively, kB is the
Boltzmann constant, and T is a temperature. For elongated
rods, we have verified that the membrane structure is robust
against thermal Brownian translational and rotational noise.
For spherical particles, however, we find a markedly different
pattern: In the absence of explicitly aligning interactions,
the particles form an active crystalline phase at φ = 0.2 that
covers the entire surface homogeneously. Figure 2(b) shows
a snapshot of such a phase for N = 800, a = 1, μ‖ = μR =
1, Pe = 100, and F1/F2 = 10. Here the average number of
particles is the same in the x < 0 and x > 0 regions, and,
consequently, the lattice constants are identical for the high-
and low-motility domains. We have checked that the observed
crystalline pattern for this packing fraction also appears for
lower Pe values and higher particle numbers (up to N = 4000),
thus ruling out possible finite-size effects. As the packing
fraction decreases to φ = 0.1, however, the high-motility
region becomes fluidized, as shown in Fig. 2(c). Thus, rather
than forming a membrane, the motility edge for spherical
particles becomes a fluid-crystal interface, with the fluid on
the high-activity and the hexagonal crystal on the low-activity
side. This reveals that, at the appropriate density range, one
can steer fluid and crystal phases at wish by inhomogeneous
motility fields. We note that the formation of a hexagonally
ordered phase of active Brownian particles in a low-motility
region has also been reported by Magiera and Brendel [17] for
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(a)
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FIG. 2. Representative snapshots of steady-state configurations
for N = 800 particles and activity ratio F1/F2 = 10 on a 2D surface
with periodic boundary conditions. (a) Particle aspect ratioa = 16 and
packing fraction φ = 0.2; (b) particle aspect ratio a = 1 and packing
fraction φ = 0.2, with μ‖ = μR = 1 and Pe = 100; and (c) particle
aspect ratio a = 1 and packing fraction φ = 0.1, with μ‖ = μR = 1
and Pe = 100. In the latter two cases, the particles are spherically
shaped and experience no aligning torques during collision.

spherical particles with a shorter-ranged repulsive interaction
potential. The detailed Brownian dynamics of spherical active
particles in inhomogeneous motility fields will be discussed in
a separate publication; for the present work, we only emphasize
that aligning torques are necessary to form the here-reported
membrane structure.

In order to characterize the structure of the self-organized
membrane of active rods, we calculate the density profile
ρ(x), the polar order parameter P (x), and the nematic order
parameter S(x), which are defined as

ρ(x) =
N∑

i=1

〈δ(x − xi)〉, (6)

P (x) = 1

N

N∑
i=1

〈cos(ϕi)〉x, (7)

S(x) = 1

N

N∑
i=1

〈2 cos2(ϕi) − 1〉x, (8)

where 〈·〉 denotes an ensemble average and 〈·〉x an average
under the constraint that the position of the ith rod is at xi = x.
For the spherical confining surface, ϕi is the angle between the
rod axis ûi and rotated meridian perpendicular to the boundary
[see Fig. 1(b)], while for the 2D plane ϕi represents the angle
between ûi and the positive x axis. In both cases, the values of
P (x) and S(x) can range from +1 to −1. Figure 3 depicts the
ρ(x), P (x), and S(x) profiles for systems with a fully developed
membrane on a spherical and planar 2D surface, respectively,
all calculated for N = 800, φ = 0.2, and F1/F2 = 10. The
data are averaged over 30 and 50 independent trajectories,
respectively.

The average density profiles, Figs. 3(a) and 3(d), indicate
that almost all particles reside on the region with low motility,
x > 0, confirming a high trapping efficiency on both the spher-
ical and planar surface. Moreover, in both cases, the membrane
at x ≈ 0 is composed of a large number of particles with nearly
perfect parallel alignment along the x axis, since P (0) ≈ 1
[Figs. 3(b) and 3(e)] and S(0) ≈ 1 [Figs. 3(c) and 3(f)].
Note that by symmetry, the membrane at |x| = �box/2 on the
planar surface has the opposite polarization. Furthermore, in
the 2D planar case, a second, third, and even fourth row of
parallel-oriented particles is clearly visible at x/� � 1,2, and
3, respectively. For the spherical surface, however, this smectic
ordering is frustrated by the curvature of the sphere, and
only one additional layer of particles is apparent at x/� � 1.
We have verified that the smectic layering on the sphere is
further enhanced when the inhomogeneity ratio increases,
F1 � F2.

Curiously, on both sides of the membrane, at x/� ≈ −0.8
and x/� ≈ 0.8, we find a subset of particles aligned perpendic-
ular to the membrane-forming rods, as evidenced by the locally
strongly negative nematic order parameter S(x). Note that this
occurs similarly for the spherical and planar case. The origin
of the transverse order in the high-density (i.e., low-motility)
region is, however, qualitatively different from that occuring in
the low-density region. In the high-density region, intralayer
particles with perpendicular ordering arise from packing: This
effect occurs already in bulk equilibrium [47,55] and was also
found as a “self-poisoning” scenario for crystallizing hard-rod
liquids by Schilling and Frenkel [48]. The perpendicularly
oriented particles effectively hamper permeation of rods across
the membrane, thus partially shielding the self-organized
structure. On the low-density side, perpendicular ordering has
mainly a dynamical origin. Particles which are perpendicular
just repeatedly move around more times contributing therefore
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FIG. 3. Structural order parameters for N = 800 active rods with aspect ratio a = 16 at packing fraction φ = 0.2 and activity ratio F1/F2 =
10, calculated for [(a)–(c)] a spherical confining surface, and [(d)–(f)] a 2D surface with periodic boundary conditions. [(a) and (d)] Average
density profile ρ(x)λ2, [(b) and (e)] polar order parameter P (x), and [(c) and (f)] nematic order parameter S(x). In all panels, the x coordinate
is normalized by the rod length � = 16λ.

more strongly to the average (both in the circular and planar
situation). As the distance from the interface increases, the
structural ordering becomes less distinct. For the spherical
surface, this means that at the poles with |x| = R, the order
parameters S(x) and P (x) both level off to zero due to
symmetry. It may be seen in Fig. 3(c) that, when approaching
the x = −R pole of the low-density region, the nematic order
parameter S changes again sign at x/� � −2.3. This is due
to the definition of the latitudinal reference orientation, as a
typical trajectory nearby the pole will be on average more likely
to be parallel than perpendicular to the latitudinal direction. For
the 2D planar case, the rods moving in the high-motility region
(x < 0) have a weak propensity to remain perpendicular to the
membrane-forming rods, leading to a net negative value of the
nematic order parameter even in the middle between the two
opposing membranes, at x = −�box/4; this is attributed to the
finite size of the simulation box, which we have verified by
comparing simulations for N = 800 and N = 2000. The net
polarization is negligible; however, P (−�box/4) ≈ 0, which
naturally follows from the absence of any symmetry-breaking
mechanism along the y axis. Overall, we can conclude that
the structure and encapsulation function of the membrane,
which forms at the interface between a high- and low-motility
region, is qualitatively similar for a spherical and planar
surface, but the details of the particle ordering away from
the membrane depend on the geometry and symmetry of the
imposed confinement.

IV. PERMEATION DYNAMICS

We next turn our attention to the permeation dynamics of the
membrane and monitor how the concentration of particles in
the high-motility region (x � 0) evolves as a function of time.
For simplicity we focus here on the spherical-surface case,
since it gives rise to only a single membrane, but all results can
be assumed to be qualitatively similar to the 2D planar case.
We define an incoherent time-correlation function probing the
single-particle dynamics,

Cs(t) = 1

N

N∑
i=1

〈ni(0)ni(t)〉
〈n2

i 〉
, (9)

where ni measures on which hemisphere a particle resides,

ni =
{

1 if xi � 0
0 if xi > 0 , (10)

and a coherent time-correlation function probing the collective
dynamics,

Cc(t) = 〈N1(0)N1(t)〉
〈N2

1 〉 , (11)

where N1 = ∑N
i=1 ni . Furthermore, we also consider the aver-

age particle flux per unit time and unit length, J/(τλ), which
measures the net number of particles crossing the interface
towards the high-motility region. In all cases, the average
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is taken over a maximum of 700 independent trajectories
with a total simulation time up to 1.2 × 106τ each. In order
to expedite the statistical averaging process, we here focus
on smaller systems with N = 200, but we have verified that
the qualitative picture applies also for larger system sizes of
O(1000).

As a reference case, let us first consider the dynamics
in the dilute limit where particles behave as free swimmers
and no membrane structure is formed. In this scenario, every
rod will swim independently across a great circle of the
sphere, spending time periods of relative duration F2/(F1 +
F2) and F1/(F1 + F2) on the x � 0 and x > 0 hemispheres,
respectively. The corresponding canonically averaged time-
correlation function Cs(t) will, after a brief initial decay,
oscillate around the average value 〈n2

i 〉 ≡ 〈ni〉 = F2/(F1 +
F2) ≈ 0.09 with a period of τc, i.e., the time it takes a
free particle to cover one great circle. Our simulations at
φ = 0.01 numerically confirm this picture, as can be seen
from Fig. 4(a). While in this case all particles may cross the
interface at x = 0 without experiencing any steric hindrance,
the normalized particle flux J/(τλ) is still close to zero, as
shown in Fig. 4(e). This is simply due to the very low particle
density and correspondingly large interface length, resulting
in an almost negligible flux per unit of length.

At a slightly higher packing fraction of φ = 0.05, we
witness the onset of membrane formation: particle collisions
promote the formation of polar domains and rods accumulate
on the region with lower activity. While not forming a fully
developed membrane across the entire sphere, but rather
a dynamic polar structure that is constantly dissolved and
rebuilt locally, the membrane-like domains do transiently trap
particles and effectively delay the crossing time between the
two hemispheres. Indeed, the long-time value 〈ni〉 is slightly
lower than in the free-particle case, and, importantly, the
oscillation period of Cs(t) at φ = 0.05 is a factor of 1.5 larger
than the time τc expected for noninteracting particles. To
unambiguously establish that this is not merely a result of the
increased particle density, we also compare our results against
the homogeneous case with uniform activity F1 = F2 = 2

11 F0,
in which case the characteristic time τc is identical but the
membrane is absent. Figure 4(b) reveals that this scenario
would result in a Cs(t) oscillation period of approximately 1.2
times τc, thus confirming that the presence of the membrane
delays the dynamics and gives rise to enhanced trapping and
self-encapsulation. This trend continues as the packing fraction
further increases to φ = 0.1, in which case the homogeneous
reference scenario reveals oscillations in Cs(t) with a period of
1.5τc, while the inhomogeneous Cs(t) data show only a single
oscillation and decay to a lower long-time value, indicative of
the fact that particles become more strongly trapped behind the
membrane on the x > 0 hemisphere. Figure 4(e) also shows
that the net flux slightly decreases at φ = 0.1, consistent with
an enhanced trapping effect due to the partially permeable
membrane.

Finally, at a packing fraction of φ = 0.15, a “perfect” mem-
brane is formed that covers the entire interface at x = 0, and
almost all remaining particles are encapsulated in the densely
packed x > 0 region. Here the membrane has completely lost
its permeability and instead acts as a self-organized trapping
barrier that fosters a maximal accumulation of rods on one side
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FIG. 4. [(a)–(d)] Time-correlation functions calculated for N =
200 rods with a = 10 at different packing fractions φ. The top
two panels show the incoherent Cs(t) functions [Eq. (9)] for (a)
inhomogeneous activity ratio F1/F2 = 10 and (b) homogeneous
activity, i.e., F1/F2 = 1. Insets illustrate the motility field. The lower
panels show the corresponding collective Cc(t) functions [Eq. (11)]
for (c) F1/F2 = 10 and (d) F1/F2 = 1. Time is given in units of
the characteristic time τc in which a free particle will swim across
one great circle of the sphere. All legends are as in panel (a). Panel
(e) shows the average particle flux J/(τλ) across the interface for
F1/F2 = 10 as a function of packing fraction φ.

of the sphere. A comparison of the time-correlation functions
in Figs. 4(a) and 4(b) for φ = 0.15 confirms this picture: in
the inhomogeneous (F1/F2 = 10) case, there is not a single
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oscillation in Cs(t) visible on the time scale considered in this
work, and instead we observe only a very slow decay pattern
in which a limited number of particles manages to change
hemispheres. Conversely, the homogeneous (F1/F2 = 1) case
exhibits an oscillatory pattern with a period of 1.8τc, implying
that here particles can depart and reenter the “slow” x > 0
hemisphere far more easily. From Fig. 4(c) we also see that the
coherent time-correlation function Cc(t) at φ = 0.15 decays to
a much lower long-time value than at lower packing fractions,
indicating that the particle number N1 exhibits far greater
fluctuations. This is due to the fact that N1 is minimal when the
encapsulation effect is maximal [cf. Fig. 1(a)], implying that
any particle crossing the interface at φ = 0.15 will constitute
a relatively large change in N1 and thus a relatively strong
decorrelation in Cc(t). We also note that for all packing
fractions considered here the permeation dynamics is governed
predominantly by single-particle crossing events, rather than
groups of collectively permeating particles, and indeed the
decay of Cc(t) is enslaved by Cs(t).

As a final confirmation of the strong trapping effect at
φ = 0.15, we observe a distinct drop in the particle flux at
this packing fraction [Fig. 4(e)]. Collectively, these results
thus unambiguously show that the self-organized membrane
structure leads to high trapping efficiency and slow permeation
dynamics, resulting in the spontaneous compartmentalization
of particles. We have verified for Péclet numbers of Pe =
100 and 300 that the inclusion of thermal translational and
rotational Brownian noise does not alter this qualitative picture
but does lead to a higher effective permeability.

V. DEPENDENCE ON GEOMETRIC PARAMETERS

Let us finally investigate how robust the spontaneous
membrane-formation process is against variations in the ge-
ometric parameters of the motility field, namely the surface
area of the region associated with lower activity and the
inhomogeneity ratio F1/F2. To vary the surface area we
consider the case

F (xi) =
{
F1 if xi � x0

F2 if xi > x0
, (12)

with x0 > 0, so that the region of lower self-propulsion speed
will become increasingly small as x0 increases. Figure 5 shows
representative shapshots for a system of N = 800 rods on a
spherical surface with φ = 0.2 and F1/F2 = 10, for different
interface locations x0 = 0.55R,0.78R, and 0.97R. We find
that up to x0 ≈ 0.9R, a membranelike smectic ordering is
consistently formed across the interface but becomes more
distorted as the low-motility region becomes smaller. For the
packing fraction considered here, the surface area available
in the low-motility domain is insufficient to accommodate all
particles, even for small values ofx0 > 0. Hence, particles must
inevitably reside in the region with higher activity, forming
distorted smectic layers and hedgehog-like structures around
the F2 domain—similarly to what we found for the x0 = 0
case at higher packing fractions. We thus conclude that the
low-motility region acts as a “nucleation” core around which
particles accumulate, even as this domain becomes completely
saturated with particles. This phenomenon is akin to the
behavior reported earlier for nonaligning active spheres in

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Representative snapshots for a system of N = 800 rods
with aspect ratio a = 16 and packing fraction φ = 0.2, with step
locations of the motility field located at [(a) and (b)] x0 = 0.55R,
[(c) and (d)] x0 = 0.78R, and [(e) and (f)] x0 = 0.97R, as indicated
by the white dashed lines. Left panels show the (x,z) plane and right
panels the (y,z) plane.

inhomogeneous media [17] and implies that even a small
inhomogeneity can effectively trap an excessive number of
particles. Consequently, this behavior may readily be exploited
in applications that require spatial control over active particles.
In the limit of x0 → R, i.e., a vanishing low-motility region,
we recover the homogeneous scenario of Ref. [44] which, for
the rod aspect ratios and densities considered here, gives rise
to a flocking state [cf. Figs. 5(e) and 5(f)].

Last, by varying the ratio between self-propulsion speeds,
F1/F2, we confirm that the membrane structure is fostered
by a strong inhomogeneity. Figure 6 shows the dimensionless
density profiles ρ(x)λ2 for a spherical surface with N = 800,
φ = 0.2, and x0 = 0 with activity ratios F1/F2 = 10,2, and
1.1. It is clear that a larger difference in motilities leads to a
more prominent membrane structure at the interface. As the
values of F1 and F2 approach each other, the rods experience
a smaller difference in self-propulsion speed and the density
profile becomes more homogeneous across the entire sphere.
In the limit of F1 = F2 we again recover the flocking state
of Ref. [44] for the spherical surface and of Ref. [37] for
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FIG. 6. Density profiles ρ(x)λ2 for a system of N = 800 rods with
aspect ratio a = 16, packing fraction φ = 0.2, and interface location
x0 = 0, for different activity ratios F1/F2 of (a) 10, (b) 2, and (c) 1.1.

the planar 2D surface. This unambiguously confirms that
spatial inhomogeneity is a crucial ingredient for the membrane
formation and self-encapsulation of active rods.

VI. CONCLUSIONS

In conclusion, we have established a link between the
physics of membranes and self-propelled particles: In an

inhomogeneous motility field, an active membrane is spon-
taneously formed by a competition between self-propulsion
and rod interactions. The effect is robust and occurs in any
geometry provided there is a steep jump in motility over the rod
length. The active membrane encapsulates particles trapped in
a low-motility region and significantly enhances the trapping
efficiency. This possesses applications to capture and steer
microswimmers efficiently via motility fields.

In principle it is possible to verify our predictions in ex-
periments. One feasible realization consists of colloidal Janus
rods driven by light [49,50], which can be exposed to almost
arbitrary motility landscapes [13]. Similar possibilities exist
for self-propelled droplets [11] or modular microswimmers
steered by an electrolyte gradient [56]. Moreover, rodlike
bacteria at high concentrations [37,53] may serve as another
model system to observe smectic ordering in motility land-
scapes. Last, macroscopic rodlike granulates can be made
active by vertical vibration [52,57] and different motilities
can in principle be controlled by imposing an upper frictional
zone parallel to the vibrating table. This kind of “dry” active
matter is in particular an excellent realization of our model
as hydrodynamic interactions are absent. For the future it
would be interesting to also incorporate solvent-mediated
hydrodynamic interactions between the rods into our model.
Due to the constrained motion of the rods on the spherical
surface this will be a highly nontrivial task.

Finally, there is an increasing interest in microscopic statis-
tical theories for interacting active particles. Dynamical density
functional theory [36,58–60] is an appropriate approach to
obtain predictions for layering of rodlike particles. In or-
der to describe the effects theoretically, these theories need
to be supplemented and generalized towards an inhomoge-
neous motility field, see Ref. [22] for a recent study in this
direction.
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