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1.  Introduction

Active Brownian particles (ABP) are a widely used model 
system to study the statistical physics of swimming micro-
organisms [1–3]. In the ABP model, particles undergo 
Brownian translational and rotational motion, and in addi-
tion possess an ‘active’ mechanism of self-propulsion along 
a fixed body axis. The simplest such model is that of active 
hard spheres (AHS), where particle interactions are spheri-
cally symmetric and only enforce no-overlap conditions. In 
particular, no direct interactions between the swimming direc-
tions of AHS exist. Despite this simplification, AHS still show 
interesting non-equilibrium phase behavior that allows to 
investigate many principles of actively driven systems. They 
can also be realized to good approximation in experiments on 
colloidal ‘Janus’ particles [4–6].

For equilibrium (‘passive’) fluids, the basic quantity 
revealing the structural correlations in the disordered fluid 
state is the structure factor S(q), or alternatively the radial 

pair-distribution function g(r) [7]. Since the early days of 
liquid state physics, the structure factor has been measured by 
scattering experiments and computed by simulations and int
egral equation theory. In this respect the hard-sphere system 
(including its two-dimensional version of hard disks) has 
played a pivotal role to understand fluid structure and to test 
approximative theories. The hard-sphere potential does not 
have an energy scale and therefore, temperature is irrelevant 
in determining the phase behavior. This allows to examine the 
role of structural correlations in fluids most clearly. The struc-
tural properties of active fluids have been much less studied 
(but see [8] for a recent exception). This is a significant gap, 
because the homogeneous active fluid can provide a clear-
cut testing ground to extend the well-established concepts 
of classical statistical physics to regions far from thermal 
equilibrium.

In this contribution, we provide reference simulation data 
for the static structure factor S(q) and the pair distribution 
function g(r) of active Brownian hard disks in two spatial 
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dimensions. As stated above, hard-sphere like interactions are 
the least arbitrary starting point to describe sterical repulsion 
between particles, and in equilibrium fluids, the approach to 
start from hard spheres and extend to other types of interac-
tions has been hugely successful. In active fluids, there might 
be a subtle interplay between the softness of repulsion and 
active driving [8], so that it is important to establish the hard-
sphere reference case. We restrict ourselves to two-dimen-
sional systems for simplicity. To date, most experiments on 
Janus colloids are done in quasi-2D settings, and many simu-
lation studies of the phase behavior of ABP have also been 
performed in 2D. Brownian dynamics simulations of strict 
hard disks are not straightforward as already known from pas-
sive systems (see e.g. [9–11]) so special care is needed for the 
algorithm used. Here we choose an event-driven scheme [11] 
which is particularly designed to be efficient for Brownian 
hard disks.

Sufficiently strong self propulsion induces clustering 
of ABP, so that for a large range of densities, ABP systems 
evolve into inhomogeneous states of very dense clusters sep-
arated by very dilute regions [12, 13]. This phenomenon is 
called motility-induced phase separation (MIPS) as it shares a 
number of qualitative features with the liquid–gas phase sepa-
ration known from equilibrium fluids. MIPS has been studied 
in great detail for various spherical ABP models with different 
interactions between the particles [14–16], since recently 
also including the hard-sphere case (using the same simula-
tion algorithm as ours) [17]. Here we deliberately restrict our 
attention to the homogeneous fluid state outside the spinodal 
of MIPS.

2.  Methods and techniques

The active Brownian hard-disk system obeys the following 
equations  of motion for the positions �rj and the orientation 
angles θj of the particles (relative to a fixed laboratory coor-
dinate frame):

d�rj =
√

2Dt d�Wj + v0�e(θj) dt, |�rj −�rk| � σ ∀j, k,� (1a)

dθj =
√

2Dr dWθ
j .� (1b)

Here, j = 1, . . .N  labels the particles. Brownian translational 
and rotational diffusion is described by uncorrelated Wiener 
processes d�Wj and dWθ

j ; their amplitude is given by the trans-
lational diffusion coefficient Dt and the rotational diffusion 
coefficient Dr. Self propulsion is modeled by a fixed swimming 
speed v0 along the particles orientation, �e(θ) = (cos θ, sin θ)T . 
The hard-sphere interactions translate into no-overlap condi-
tions |�rj −�rk| � σ for all particle pairs.

The hard-core diameter σ and the translational diffusion 
coefficient Dt are used to set the units of length and time in the 
following. There remain three parameters to specify the state 
of the system: the density n  =  N/V, expressed as a dimen-
sionless packing fraction η = (π/4)nσ2, the self-propulsion 
velocity v0 (in units of Dt/σ), and the rotational diffusion 
coefficient Dr (in units of Dt/σ

2). For 3D passive hard spheres, 
the Stokes–Einstein relation fixes Dr = 3Dt/σ

2, assuming 

Stokes flow in the solvent and stick boundary conditions on 
the particle surface. However, for active systems, the effec-
tive rate of change of particle orientations may be significantly 
different from this passive value, depending on the swimming 
mechanism. We will therefore fix Dr = 1 as a reference case 
for most simulations, and also explore the effect of changes in 
Dr, i.e. changes in the persistence of active motion.

Given the particle positions, one obtains the static structure 
factor,

S(q) =
1
N

〈
N∑

j,k=1

e−i�q·(�rj−�rk)

〉
,� (2)

where the angular brackets denote an average over the non-
equilibrium stationary state, and �q  is the wave vector of the 
density fluctuations that are probed by S(q). Note that in the 
homogeneous, isotropic fluid, S(q) depends on �q  only through 
its magnitude q = |�q|. The static structure factor is intimately 
related to the radial distribution function g(r) defined by

g(r) =
1

nN

〈∑
j�=k

δ(�r − (�rj −�rk))

〉
,� (3)

which quantifies the probability density for finding a par-
ticle at distance r from a given particle, irrespective of their 
orientations. Again, g(r) quantifies structural properties of 
the isotropic homogeneous fluid, although for ABP systems, 
the angle-resolved pair distribution function provides further 
information [8].

In addition to S(q) and g(r), we quantify the emergence of 
clusters in low-density systems by measuring cluster size dis-
tributions. Here, two particles are considered to be part of the 
same cluster if their center-to-center distance is smaller than 
rc = 1.5σ. This value is a reasonable estimate of the first min-
imum in g(r) for the entire regime of investigated parameters. 
We obtain cluster size distributions by calculating a histogram 
of the number Nn of clusters of size n in the system, averaged 
over many configurations. We then define the average cluster 
size 〈n〉 for a randomly chosen particle as

〈n〉 =

〈
1
N

N∑
i=1

ni

〉
,� (4)

where ni is the size of the cluster particle i is in, and the angular 
brackets denote an average over many configurations.

Finally, we measure the global hexagonal bond order 
parameter ψ6

ψ6 =
1
N

∣∣∣∣∣∣
N∑

i=1

1
Nb

Nb∑
j=1

e6iθij

∣∣∣∣∣∣
,� (5)

where Nb is the number of nearest neighbors (i.e. particles 
within a distance rc = 1.5σ), and θij is the angle between the 
x̂-axis and the vector connecting particle i to one of its nearest 
neighbors j. This parameter is 1 for a perfect hexagonal 
crystal, and close to 0 in an isotropic fluid.

Simulations were carried out using an event-driven 
Brownian dynamics (ED-BD) algorithm [11]. In the ED-BD 
simulation, a fixed ‘Brownian’ time step ∆t  is introduced, 
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and at each time step, Gaussian trial displacements ∆�ri  and 
angle increments ∆θi are drawn for all the particles. The self-
propulsion term is included by drawing the ∆�ri  from appro-
priately shifted Gaussians. To propagate the system to the 
next time steps, the trial displacements have to be modified to 
avoid particle overlaps. This is done by assigning to the parti-
cles pseudo-velocities �vi = ∆�ri/∆t , and by performing event-
driven molecular dynamics using these pseudo-velocities in 
the time interval [t, t +∆t]. This way, the ED-BD algorithm 
guarantees no-overlap conditions at any time, and thus incor-
porates hard-sphere interactions exactly.

In the passive case, the ED-BD algorithm has been shown 
to accurately describe the Brownian motion of hard spheres, 
if the time step is reasonably small, ∆t < 0.1σ2/Dt, say [11]. 
Note however that for strong self-propulsion and/or fast reori-
entational diffusion, significantly smaller time steps may be 
required. The extension to active particles has been used to 
study glassy dynamics of dense AHS systems [18], and more 
recently also MIPS [17].

We performed runs with N  =  1000 and N  =  5000 particles 
to estimate finite-size effects. These are found to be small for 
the structural quantities we study for state points sufficiently 
far from the spinodal of MIPS. Results are shown for the 
N  =  5000 system. The Brownian time step was chosen to be 
∆t = 0.001σ2/Dt, and some runs with ∆t = 0.01σ2/Dt were 
performed to confirm that no significant finite-time step effects 
remain in S(q). From individual runs with a specific choice of 
parameters, after an initial transient time of ti = 333σ2/Dt 
to reach a stationary state, 133 configurations in [ti, tf ] with 
tf = 1000σ2/Dt were stored and analyzed to obtain S(q) and 
g(r). To obtain S(q), a set of 5000 �q-vectors compatible with 
periodic boundary conditions were used to evaluate equa-
tion (2), which were afterwards binned according to |�q|. For 
g(r), bins of width 0.01σ were used in evaluating equation (3).

3.  Results

3.1.  Passive hard disks

We begin by recalling the features of the passive reference 
system. The only relevant parameter in the passive hard-disk 
system is the packing fraction η. Hard disks are known to 
order at high densities, transforming first from the fluid to 
a hexatic phase, and later to a crystalline phase. The nature 
and phase-transition boundaries of the fluid–hexatic and the 
hexatic–solid transitions have only recently become clear 
in large-scale simulations [19] and experiments [20]: in the 
regime 0.700 � η � 0.716, coexistence between a fluid and 
the hexatic phase was found. There is a further continuous 
transition to a solid at η � 0.720. In the following, we will 
restrict the discussion to packing fractions η � 0.7.

The static structure factor of the fluid displays the standard 
features known from simple fluids (figure 1): with increasing 
packing fraction, intermediate-range order in the fluid 
becomes more pronounced, and this gives rise to damped 
oscillations in S(q) that become increasingly pronounced. The 
ordering is reflected in a pronounced first of S(q) at q∗ ≈ 6/σ 

(for η = 0.6). The position of this peak (or rather, the period 
of the oscillations) reflects a typical interparticle distance. 
The sharpness of the peak is an indicator for how pronounced 
ordering is.

For 3D hard spheres, several well known approximation 
schemes exist for S(q). For example, a widely used analytical, 
albeit approximate, expression is the Percus–Yevick (PY) 
structure factor [7]. In 2D, no closed analytical form of the 
PY approximation for S(q) is known. An empirical expression 
has been proposed by Baus and Colot [21]. The Baus–Colot 
expression provides an excellent description of the data, as 
shown by the dashed lines in figure 1.

3.2.  Active hard disks

We now turn to the discussion of the active hard-disk system 
with rotational diffusivity Dr = 1. For self-propulsion veloci-
ties v0 that are below the onset of motility-induced phase sepa-
ration (estimated to be around v0  =  12 in the present system 
[17]), a similar evolution of S(q) with increasing packing frac-
tion is seen as in the passive system. This case is shown in 
figure 2 for v0  =  10.

In particular the evolution of the first and second peaks in 
S(q) does not differ qualitatively from the one in the passive 
system. For η = 0.7, the second peak around qσ = 12 exhibits 
an asymmetric shape, which we interpret as a precursor of 
incipient ordering. It is known that two-dimensional ABP sys-
tems crystallize at high densities (seen, for example, in active 
hard-core Yukawa systems [22]). For the hard-disk case dis-
cussed here, the passive system displays much stronger sig-
natures of ordering in S(q) at η = 0.7 than the active system 
does. This is consistent with the expectation that—at least for 
self-propulsion velocities small enough to prevent MIPS—the 
ordering transition sets in at higher densities in the presence 
of active motion.

The main difference of the active S(q) to the passive one is 
in the low-q behavior. At densities comparable to the critical 
density of MIPS, a strong increase of S(q → 0) is seen in the 
active system. This is the signature of impending phase sepa-
ration that is expected from the analogy with equilibrium sys-
tems. Precursors of this low-q increase are seen at all densities 
shown in figure 2.

The structure factors shown in figure 2 are exemplary for 
the active hard-disk fluid. At higher v0, only the low-density 
regime remains, because MIPS sets in; our simulations con-
firm that phase separation prevails for large v0 up to very high 
densities. It is therefore, at least for Dr ≈ 1, not possible to 
prepare a homogeneous monodisperse hard-disk fluid for 
large v0 and large η.

To understand the effect of activity on the static structure 
of the fluid, it is instructive to discuss cuts in parameter space 
where the packing fraction is fixed. Increasing the self-pro-
pulsion velocity v0 for a low-density system (η = 0.2 shown 
in figure 3(a)) causes two prominent changes: first, the main 
peak of S(q) shifts to larger q and increases in amplitude (and 
the subsequent peaks undergo a similar change). The increase 
of the peaks in S(q) signals that structural order in the more 
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active fluid is more pronounced, while the shift to larger q 
indicates that the average particle distance is reduced. This is 
consistent with a visual inspection of the simulation snapshots 
illustrated in figure 3(b), which shows the formation of local 
areas with both higher ordering and density.

Second, the low-q region of S(q) increases with increasing 
self-propulsion speed. This latter effect is attributed to 
the emergence of a phase-separated region, as discussed 
above. If one defines the isothermal compressibility κT  of 
the active fluid system in terms of the particle-number fluc-
tuations by extending the well-known equilibrium relation, 
κT = S(q → 0)/nkBT  (where kBT  is the thermal energy 
needed to define an energy scale for the compressibility), to 
the non-equilibrium stationary state, the active fluid is much 
more compressible than the passive one.

Interestingly, the S(q) appear to approach a limiting curve 
for large v0: in figure 3(a), the strongest change is seen upon 

increasing v0 from zero to about 10, while a further increase 
by a factor of 10 (up to v0  =  100) only causes small further 
changes in the average fluid structure. Also the MIPS spinodal 
is nearly vertical in the v0-versus-η plane [17], indicating that 
there is a regime where self-propulsion effects saturate. The 
shift in the peak positions of S(q) indicate that the average 
particle distance decreases from about 2π/5σ ≈ 1.26σ to 
about 2π/6σ ≈ 1.05σ . Hence, the saturation may stem from 
the fact that for true hard disks, a further increase in activity 
cannot cause particles to stay closer than σ on average. The 
saturation effect may thus be masked for soft spheres.

The radial distribution function g(r) provides more intui-
tive information on the average structure. At the low density 
discussed here, η = 0.2, the equilibrium g(r) is relatively 
featureless: it shows a weak enhancement over the ideal-gas 
value at particle contact, but quickly decays to unity for larger 
r. Increasing v0 for the low-density system leads to a strong 

Figure 1.  Static structure factor S(q) of passive hard-disk systems with packing fractions η = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 (top to bottom 
around qσ = 2). Solid lines: results from ED-BD simulations. Dashed lines represent the Baus–Colot expression for S(q).

Figure 2.  Static structure factor S(q) of active Brownian hard disks with self-propulsion velocity v0 = 10 Dt/σ and rotational diffusion 
coefficient Dr = 1 Dt/σ

2, for packing fractions η = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7.

J. Phys.: Condens. Matter 30 (2018) 074001
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enhancement of g(r) near contact, see figure  4. This is in 
line with the interpretation that the average particle distance 
decreases with increasing self-propulsion velocity.

At sufficiently large v0 there emerges a second peak around 
r = 2σ . Hence, active particles form small transient clusters. 
However, no pronounced peaks are seen at r ≈ nσ  with n  >  2. 
Thus, the system does not (yet) form large clusters with a 
statistically significant probability, and it also does not form 
pronounced intermediate-range order. This observation is 
confirmed by examining the distribution of cluster sizes in the 
system at different self-propulsion velocities (see figure  5). 
Regardless of the value of v0, the number density ρn of clus-
ters of size n decays exponentially with n for sufficiently large 
clusters. With increasing v0, the average cluster size any par-
ticle is in (shown in the inset) increases from approximately 
4 particles to 13, consistent with the emergence of a shell of 
next-nearest neighbors in the g(r).

The changes in g(r) that are visible in figure 4 can be con-
trasted to those found in ABP systems with soft interactions 
[23]. There, a comparable change of v0 only led to a relatively 
mild change in g(r), and the main effect was a shift of the 
nearest-neighbour peak to smaller distances.

An appealing concept is to map activity onto an effective 
interaction between the particles. Quite robustly for a number 
of different ABP models, activity induces effective attractions 
that become increasingly strong when v0 is increased [23–26]. 
For soft-sphere ABP, the interaction range was found to be 
around 20% of a particle diameter at moderate densities [23].

To describe the effects of attractions in passive colloidal 
systems, the square-well system (SWS) is a canonical starting 
point [27]. In this model, a hard-sphere repulsion is supple-
mented by an attraction of fixed strength Γ and range δσ. For 
the 3D SWS, the static structure factor S(q) can be obtained 
analytically within the mean-spherical approximation for δ 

Figure 3.  (a) Low-density fluid regime: static structure factor S(q) for active hard disks with Dr = 1 Dt/σ
2 and at packing fraction η = 0.2. 

Different curves corresond to different self-propulsion velocity: v0 = 0 Dt/σ to v0 = 100 Dt/σ increasing in steps of 10 (blue to green). (b) 
Simulation snapshots at the indicated self-propulsion velocities. The self-propulsion of each particle is directed towards its red side. Note 
that the total simulation box is significantly larger than the region depicted here.

Figure 4.  Radial distribution function g(r) of an active Brownian hard-disk system at packing fraction η = 0.2, for self-propulsion 
velocities v0 ∈ [0, 20] (in steps of two, from bottom to top at r  =  1+ ).

J. Phys.: Condens. Matter 30 (2018) 074001
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not too large [28]. At low density, the SWS-S(q) displays a 
change upon increasing the attraction strength Γ that is similar 
to the one seen for the low-density AHS in figure 3: increasing 
attraction causes increased structural order, and a shift of the 
average particle separation to lower distances. This confirms 
earlier findings that activity can be mapped to an effective 
attraction in describing the fluid structure [24]. The mapping 
v0 ↔ Γ is however quite nonlinear, because the saturation 
effect we find for the AHS upon increasing v0 is not found in 
the SWS upon increasing Γ.

We now turn to the high-density fluid, limited to small 
enough v0 so that the system remains homogeneous. As the 
phase diagram confirms [17], there opens a small window 
where the system is not yet crystallized and not yet phase-
separated. We discuss two packing fractions for this case, 
η = 0.6 and η = 0.7. The latter case represents the upper end 
of the equilibrium fluid regime in passive hard disks, and the 
structure functions for this system already show precursors of 
a phase transition to the hexatic phase.

The S(q) at high densities, figure 6, demonstrate an inter-
esting trend upon increasing v0 that is absent at low densities: 
while the main peak of S(q) monotonically shifts to the right 
with increasing v0, it first weakens, and then increases with 
v0. The corresponding effect in g(r) is an interplay between 
a sharpening of the contact-value peak and an increasing 
depletion of the region between the first neighboring shells. 
However, this structural change is too subtle to be clearly vis-
ible in the simulation snapshots. The initial decrease in the 
amplitude of S(q) is much more pronounced at η = 0.7, but 
already noticable at η = 0.6, where precursors of hexatic 
ordering are not yet obvious. We therefore attribute the non-
monotonic change to a genuine change in the way activity 
influences the fluid structure, and not to the vicinity of a phase 
transition.

In figure 7, we show the full behavior of the position and 
height of the main peak as a function of η and v0. Note that at 
η = 0.5 and lower, the peak height monotonically increases 
with v0. The sharp increases in peak position and height for 
strongly active particles at high packing fraction are associ-
ated with the formation of crystalline regions. This is con-
sistent with the increase of 〈ψ6〉 observed in this regime, 
shown in figure 7(c).

The non-monotonic trend revealed in figures 6 and 7 indi-
cates that the effect of activity in the high-density hard-disk 
system is twofold: first, activity reduces ordering in the dense 
system. This is also expected from simulation studies of 
glassy dynamics, where a shift of the glass transition to higher 
densities with increasing activity was seen [18]. Similar trends 
are confirmed for various other model systems [29, 30] and 
predicted by theory [31]. Such a ‘fluidization’ of the system 
is usually associated with a weakening of the peak ampl
itudes in S(q). It is reminiscent of the reentrant melting of 
glass-forming systems with short-ranged attraction, where a 
similar decrease of peak height in S(q) with increasing attrac-
tion strength describes the structural changes of the system 
[28]. Second, stronger activity in the high-density system 
restores the effects that also prevail at lower densities. Here, 
activity favors structural order. For the case we study here, the 
crossover between the two effects occurs around v0 = 5 Dt/σ, 
slightly depending on the packing fraction.

Again, the comparison with the passive square-well system 
allows to understand the qualitative mapping of activity to 
effective interactions. Specifically, the non-monotonic change 
in the first peak of S(q) allows to estimate the range of the 
effective attraction. For the SWS with an attraction range 
of, say, δ = 20%, the same trend is found at large densi-
ties as it was also found in the low-density state: increasing 
attraction strength Γ increases the peak height and shifts its 

Figure 5.  Cluster size distributions of systems with packing fraction η = 0.2 for self-propulsion velocities v0 ∈ [0, 20] (in steps of two, 
from bottom to top). The inset shows the typical cluster size 〈n〉 (defined as the average cluster size associated with a randomly chosen 
particle) as a function of v0.

J. Phys.: Condens. Matter 30 (2018) 074001



N de Macedo Biniossek et al

7

position to larger q (recall figure  3). The situation changes 
however, if one considers short-ranged attractions. For, say, 
δ = 10%, the dense SWS reproduces a decrease in peak 
height with increasing Γ up to about Γ = 5 kBT , followed 
by an increase upon further increasing Γ. (To exemplify this, 
figure 8 shows the corresponding S(q) for a 3D S(q), evalu-
ated in the mean-spherical approximation [28].) From this 
similarity in trends one may conclude that indeed, activity in 

the AHS can be mapped to an effective attraction, of a range 
around 10%. The SWS also offers a physical explanation for 
the different behavior of S(q) at high densities as compared to 
low densities: at η ≈ 0.6, the average particle separation is on 
the order of 10% of a particle diameter. If the attraction range 
and the interparticle separation are comparable, the effect of 
increasing attraction strength is to increase disorder, because 
some particles will be bounded more strongly, while others 

Figure 6.  High-density fluid regime: static structure factor S(q) (top row), radial distribution function g(r) (middle row), and snapshots 
(bottom row) of active hard disks with packing fraction η = 0.6 (left column) respectively η = 0.7 (right column). Different curves 
correspond to different self-propulsion speeds v0  =  0, 2, 4, 6, 8, 10, 12 (from blue to green; curves ordered by increasing first-peak position 
in S(q) from left to right).
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Figure 7.  (a) and (b): Position (left) and height (right) of the main peak in the structure factor of active Brownian particles with 
Dr = 1 Dt/σ

2, as a function of self-propulsion speed. Different lines indicate different packing fractions, ranging from η = 0.1 (bottom) to 
0.7 (top) in steps of 0.1. (c) Global hexagonal bond order parameter 〈ψ6〉 for the same parameters.

Figure 8.  Static structure factor S(q) of a 3D square-well system with short-ranged attraction (range 0.1σ), as a function of attraction 
strength (Γ = 0, 2, 4, 6, 8, and 10; blue to green), for moderate density (left panel; 3D packing fraction ϕ = 0.1) and for high density (right 
panel; ϕ = 0.55).
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can explore a larger configuration-space volume. Only if the 
attraction is sufficiently strong, the energetic increase in order 
offsets the entropic decrease.

3.3.  Influence of rotational persistence

Activity induces a coupling between Dr and the translational 
evolution. Thus, v0 and Dr are both relevant parameters for the 
active fluid. One way to describe ABP that is successful in the 
low-density limit is by assigning to the ABP system an effec-
tive temperature (or pressure) [32], based on the notion that a 
single ABP over long time and length scales undergoes diffu-
sion with a renormalized diffusivity that in two spatial dimen-
sions reads Deff = Dt + (1/2)v2

0/Dr. Here, only a specific 

combination of v0 and Dr enters. There are indications that 
the high-density dynamics of ABP on the contrary depends on 
both these parameters separately [18, 30, 31], because at high 
densities the average distance between ineracting particles 
is easily shorter than the persistence length associated to the 
swimming, �p = v0/Dr. It is therefore interesting to see the 
effect that varying both v0 and Dr has on the stationary static 
structure.

The relevant dynamical rates of the AHS system thus are: 
the rate of passive Brownian diffusion, τ−1

0 = Dt/σ
2, the rate 

of self-propelled motion, τ−1
v = v0/σ , and the rate of active 

effective diffusion, τ−1
a = v0�p/σ

2. From these rates, three 
dimensionless parameters can be formed to quantify the amount 
of ‘activity’ in the system. (They are ratios of rates, and thus 

Figure 9.  Static structure factor of active hard-disks fluid at packing fraction η = 0.2 with different rotational diffusion coefficients 
Dr = 0.1, 1, and 10 (red, green, blue). Left: comparison at constant self-propulsion velocity (translational Péclet number) 
Pet = v0σ/Dt = 10; middle: comparison at constant Péclet number Pe = v2

0/DrDt = 100; right: comparison at constant persistence length 
(rotational Péclet number) Pe−1

r = v0/σDr = 10.

Figure 10.  Static structure factor of active hard-disks fluid at packing fraction η = 0.6 (top row) respectively η = 0.7 (bottom row) with 
different rotational diffusion coefficients Dr = 0.1, 1, and 10 (red, green, blue), at constant Pet = 10 (left), constant Pe = 100 (middle), and 
constant Pe−1

r = 10 (right). Results are omitted for the state point (Pet = 10, Dr = 0.1), where the system is already phase separated.
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called ‘Péclet’ numbers in analogy to hydrodynamic theory.) A 
natural choice from the equations of motion is the translational 
Péclet number that quantifies the rate of self propulsion in rela-
tion to passive diffusion, Pet = τ−1

v /τ−1
0 = v0σ/Dt. The low-

density theory suggests to use the rate of active over that of 
passive diffusion, Pe = τ−1

a /τ−1
0 = v2

0/DrDt ; at high densities 
one may expect the persistence length to play a crucial role, 
and thus the ratio of self-propelled motion relative to active 
difusion, Per = τ−1

v /τ−1
a . Note that Pe−1

r = �p/σ is some-
times also referred to by the symbol Pe in the context of MIPS; 
we stick to the notation introduced in [32] to avoid confusion.

We thus compare the static structure factors obtained for 
the system at moderate density, η = 0.2, for various rotational 
diffusion coefficients, while keeping one of the three param
eters (Pet, Pe, or Pe−1

r ) fixed. Varying Dr over two orders of 
magnitude shows (figure 9) that the static structure factors 
S(q) are in fact independent on Dr in the regime of moderately 
strong self propulsion. The curves for different Dr fall on top 
of each other within error bars at fixed Pet, with the exception 
of a small increase towards q → 0. The latter indicates that 
the appearance of MIPS is influenced by both v0 and Dr, while 
the dependence on Dr has no significant structural precursors 
in the fluid.

At fixed Pe (middle panel of figure 9), an increase in Dr 
has a similar effect as increasing v0 regarding the change in 
nearest-neighbor structure that is reflected in the change of 
the peak positions in S(q). A similar conclusion holds for the 
evolution of S(q) with increasing Dr at fixed persistence length 
(right panel of the figure). Note that one expects the dynamics 
for Dr → ∞ at fixed v0 to become identical to that of pas-
sive hard spheres, because in this limit the net effect of self 
propulsion vanishes. Figure 9 suggests that this is true only if 
the limit is taken such that the persistence length vanishes suf-
ficiently quickly: only for the case of fixed Pet, the structure 
factor approaches the passive one with increasing Dr at least 
at low q.

At high densities, the situation is less clear, because phase 
separation sets in at very different self-propulsion veloci-
ties for different Dr. Static structure factors for η = 0.6 and 
η = 0.7, shown in figure  10, confirm the observation made 
above: as long as the system remains in the homogeneous 
fluid state, Dr itself appears to have very little influence on the 
static structure. At fixed Péclet number or fixed persistence 
length, the increase of Dr does not render the system more 
passive-like, but rather induces a change in S(q) that is similar 
to the one seen upon increasing v0 at fixed Dr.

4.  Conclusions

We have obtained static structure factors and radial distribu-
tion functions from simulations of active Brownian hard-disk 
fluids. The system remains in the homogeneous fluid phase 
for all packing fractions η � 0.7 and low enough activities, 
v0 � 12 Dt/σ for Dr = 1 Dt/σ

2; it also remains a homoge-
neous fluid for low densities, η � 0.2, and all the self-propul-
sion velocities we have studied.

The evolution of the static structure factor with density, 
outside the region of MIPS, resembles that of the passive 
fluid at finite q. On the low-density side of the phase-sepa-
ration spinodal, increasing activity causes the fluid to exhibit 
slightly more pronounced ordering concommittant with a shift 
of typical interparticle separations to smaller distances. For 
the active hard-disk system, the static structure evolves from 
the passive one to an essentially v0-independent active one: 
the S(q) data with increasing v0 converge to a well-defined 
limiting curve.

The high-density fluid reveals an interesting non-mono-
tonic change in S(q) with increasing v0. Small self-propulsion 
velocities destroy the ordering that is present in the passive 
dense fluid, but further increasing the self-propulsion velocity 
reinstitutes more pronounced ordering at a shorter average 
particle separation. This highlights the interplay of a nearest-
neighbor length scale (that determines the fluid structure in 
equilibrium) and the length scale introduced by persistent 
swimming.

It is possible to qualitatively understand the active-fluid 
S(q) by analogy to the effects caused by an attractive interac-
tion in an equilibrium fluid. In particular the non-monotonic 
evolution of S(q) at high densities suggests an effective attrac-
tion of a range that is around 10% of the particle diameter. 
From this, an interplay between the effective activity-induced 
attraction width and the interparticle separation length arises. 
In the equilibrium fluid, such an interplay causes non-mono-
tonic changes in the dynamics that lead to a reentrant melting 
of the glass [28, 33]. Indeed, a similar reentrant behavior of 
the glassy dynamics of an active fluid (albeit not an ABP fluid) 
has been discussed [34]. It should, however, be stressed that 
the effective-attraction description of S(q) does not acknowl-
edge the non-equilibrium nature of the active fluid. While 
changes in the glassy dynamics of an equilibrum fluid are 
largely governed by changes in S(q), the same need not be 
true for the ABP system.

The fact that activity enhances structural order in the low-
density fluid might at first sight seem surprising: The single-
particle dynamics of ABP can be mapped onto diffusion with 
an enhanced diffusivity, Deff � Dt. This mapping suggests 
a description in terms of an enhanced effective temperature, 
and from such a mapping, one would expect the oscillations 
in S(q) to become less pronounced. The qualitative mapping 
to an effective attraction, instead of an effective temperature, 
much better explains the observed changes in S(q).

The effect of rotational diffusivity on the low-density static 
structure of the active hard-disk fluid is weak. At high den-
sities, the influence of Dr is masked by the onset of phase 
separation, so that the trends emerging in S(q) are less clear. 
As already known from studies of MIPS, it is not possible to 
maintain the high-density strongly active system in a homo-
geneous fluid state. Doing so may be possible in suitably 
polydisperse systems (either using size polydispersity or poly-
dispersity in self-propulsion speed).

Our data can be used as a reference for future theoretical 
studies which construct approximative closures for the struc-
ture based on the Smoluchowski equation [8, 35, 36] or for 
mode-coupling-like dynamical theories that either need static 
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structure factor data as an input [29, 36, 37] or can in prin-
ciple approximate it based on the equilibrium one [31]. As 
a remark, however, the extension of theoretical frameworks 
to calculate S(q) and related structural quantities that char-
acterize the non-equilibrium steady state of active particles 
is not obvious, even for radially-symmetric pair potentials. 
There are two basic reasons for that: first, active Brownian 
particles possess an internal orientational degree of freedom 
which represents the direction of their intrinsic motion. This 
orientational degree of freedom is irrelevant for spherical pas-
sive systems but similar to molecular liquids with rotational 
symmetric shape (such as rods). For these liquid-crystalline 
systems, it is much more difficult to derive and numerically 
solve integral equations  closures to access the orientation-
ally averaged structure factor for the particle centers [38–40]. 
Second, more importantly, active Brownian system are not in 
equilibrium which brings about complications in the descrip-
tion of the steady state.
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