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Abstract
Themajority of studies on self-propelledparticles andmicroswimmers concentrates onobjects that do
not feature a deterministic bending of their trajectory.However, perfect axial symmetry is hardly found
in reality, and shape-asymmetric activemicroswimmers tend to showapersistent curvature of their
trajectories. Consequently,wehere present a particle-scale statistical approach to circle-swimmer
suspensions in terms of a dynamical density functional theory. It is basedon aminimalmicroswimmer
model and, particularly, includes hydrodynamic interactions between the swimmers. After deriving the
theory, wenumerically investigate a planar example situationof confining the swimmers in a circularly
symmetric potential trap. There,wefind that increasing curvature of the swimming trajectories can
reverse the qualitative effect of active drive.More precisely,with increasing curvature, the swimmers less
effectively pushoutwards against the confinement, but instead formhigh-density patches in the center
of the trap.We conclude that the circularmotion of the individual swimmers has a localizing effect, also
in the presence of hydrodynamic interactions. Parts of our results could be confirmed experimentally,
for instance, using suspensions of L-shaped circle swimmers of different aspect ratio.

1. Introduction

On the scales of active colloidal particles and self-propelled biologicalmicroswimmers [1–10], thermal
fluctuations and other perturbations play a prominent role. They lead to continuous reorientation of the self-
propelling objects and therefore to stochastically shaped trajectories [2, 3, 11]. Evenmore extreme events are
given by stochastic run-and-tumblemotions. For instance, certain bacteria or alga cells are observed to stop their
migration, reorient basically on the spot, and then continue their propulsion [1, 12]. Such events lead to kinks on
the trajectory. The statistics of both types of buckledmotion has been studied in detail, both in experiment and
in theory [1, 3, 11, 13–19]. Yet, in the absence of any noise,fluctuations, and perturbations, the self-propelling
agents considered inmost theoretical analyses would show a deterministic straightmotion.

Here, we concentrate on activemicroswimmers that feature a different behavior. Their individual
trajectories are systematically curved. Such a situation can arise only, if for each swimmer the axial symmetry
around its propulsion direction is broken.

On the one hand, the symmetry breaking can be induced fromoutside. For instance, ifmicroswimmers are
exposed to local surrounding shearflows, the rotational component of the fluid flow can couple to the
orientation of the suspended swimmer [15, 20–25]. Continuous reorientation of the propulsion direction leads
to curved trajectories. Similarly, the symmetry is broken in the presence of a nearby surface. If during propulsion
a swimmer shows rotations of its body around its axis, these rotations can on one side hydrodynamically interact
with the surface. Via such hydrodynamic surface interactions the self-rotation couples to the propulsion
direction and the trajectory bends. Also steric interactions can support or induce the effect. Thus circular
trajectories are observed formany sperm cells and bacteria close to a substrate [26–30].

On the other hand, real swimmers often bring along a broken axial symmetry by themselves [31]. Hardly any
object is really perfectly axially symmetric in shape.On purpose, L-shaped activemicroswimmers have been
fabricated and their persistently curved trajectories were analyzed [32–35]. If the trajectories, including their
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persistent bending, are confined to a plane, then circular paths arise. This is what we understand by circle
swimmers [36]. Apart from that, for deformable self-propelled particles and self-propelled nematic droplets, the
symmetry breaking in shape or structuremay also occur spontaneously [37–39].Moreover, imperfections in the
self-propulsionmechanism can lead to the symmetry breaking and thus to bent trajectories. An example are cells
of the algaChlamydomonas reinhardtii. If one of the two beating flagella generating self-propulsion is weaker or
absent, the cellular paths curve [40, 41]. Apart from that, near surfaces bent self-propelled objects tend to follow
circular trajectories [42, 43]. Inmodeling approaches, circle swimmers are often realized by simply imposing an
effective torque or rotational drive in addition to the self-propulsionmechanism [15, 31, 35, 44–59].

We havementioned above that studies on circle swimmers are relatively rarely encounteredwhen compared
to the numbers of works on objects propelling straight ahead. Even less frequent are studies on the collective
behavior of circle swimmers [29, 43, 50, 52, 54]. Particularly, this applies when hydrodynamic interactions in
crowds of suspendedmicroswimmers are to be included.

When the collective properties ofmany interacting agents are investigated, such statistical approaches
become important [60–66]. Recently, we have derived and evaluated amicroscopic statistical description for
straight-propellingmicroswimmers in terms of a classical dynamical density functional theory (DDFT) [66].
Microscopic heremeans that the description is based and operates on the length scales of the individual agents.
Thus, for instance, when classical density functional theory (DFT) or its variants are used to describe the
properties of crystalline structures [67–80], individual crystal peaks can be resolved in the statistical density field.

In equilibrium, i.e., for passive systems, DFT [81–85] is, in principle, an exact theory. It can be extended to
overdamped relaxational dynamics in terms ofDDFT [85–88] by assuming at each instant an effective
equilibrium situation to evaluate the involved potential interactions. For example, solidification processes are
addressed in this way [71, 72, 74, 78]. Sincemicroswimmers by construction operate at lowReynolds numbers
[89], their dynamics is overdamped. ThismakesDDFT a promising candidate to study their statistical behavior.

ExtendingDFT to intrinsically non-equilibrium systems, DDFTs for ‘dry’ self-propelling agents had already
been developed before [90–92] and tested against agent-based simulations [90, 92].Moreover, to characterize
passive colloidal particles in suspensions, hydrodynamic interactions had been incorporated intoDDFT [93–99]
and agreementwas foundwith explicit particle-based simulations [93, 94, 96, 97]. Our recently developedDDFT
formicroswimmers incorporates and combines all the central previous ingredients, i.e., self-propulsion, steric
interactions between the swimmers, hydrodynamic interactions between the swimmers, as well as exposure to
and confinement by external potentials [66]. Aswe have demonstrated and as further detailed below, this
dynamical theory qualitatively reproduces previous simulation results [100, 101] inwhich combined action of
all these ingredients determines the overall behavior.

Here, we proceed by an additional step forward.We extend ourmicroscopic statistical characterization
(DDFT) to circle swimmers. In this way, we can now characterize the collective behavior of such non-straight-
propelling agents, including the effect of hydrodynamic interactions. Only then, for instance and aswewill show
below, can the symmetry breaking induced by hydrodynamic interactions in a radial confinement be described
qualitatively correctly.

Wefirst introduce ourminimalmodel for circle swimmers in section 2.Next, in section 3, we list the
extension of the theory. It is evaluated numerically in section 4 to study the behavior of circle swimmers under
radial confinement as a function of the bending of their trajectory. A short summary and outlook are given in
section 5.

2.Minimalmodel circle swimmer

As outlined above, our goal is to establish amicroscopicDDFTof circle-swimmer suspensions. The term
‘microscopic’here refers to the length scales of an individualmicroswimmer. To base ourDDFTon such scales,
we need tofirst introduce an explicitminimalmodel for amicroscopic circle swimmer.

Our statistical theory will apply to (semi)dilute suspensions ofmicroswimmers based on their far-field
hydrodynamic interactions. Therefore, aminimalmodelmicroswimmer is needed that shows the correct
leading-order far-field hydrodynamic fluid flows together with a self-consistent description of its self-
propulsion. Yet, at the same time, itmust be simple enough to still be efficiently included into the statistical
description. Figure 1 represents our corresponding swimmermodel. The unit vector n̂ identifies the principal
swimmer axis and orientation.

Any activemicroswimmer exerts forces onto the surrounding fluid. Amongst them are the spatially
distributed active forces that initiate self-propulsion. They are generated, for instance, by the rotation offlagella
or beating of cilia [12, 14, 40, 41]. In ourmodel, all these active forces are thought to be gathered and
concentrated in one spot. Infigure 1, this leads to the active point force-f acting on the surrounding fluid.
Instantly, due to the nature of the considered low-Reynolds-numbermotion, see below [89], for a freely
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suspendedmicroswimmer all these active forces are balanced by frictional forces distributed over its body.We
consider all these counteracting frictional forces to be concentrated in another spot, leading to the point force
+f infigure 1. These two spots in general do not coincide, depending on the actual swimmer geometry.Here,
they are separated by a distance L, see figure 1.However, since no net force nor torquemay act on a freely
suspendedmicroswimmer, the two forcesf need to be of samemagnitude but oppositely oriented, located
and aligned along a common axis.Wemay thus parameterize them as =  ˆf f n. They act onto thefluid and
set it intomotion as indicated by the small arrows in the background offigure 1. In analogy to straight-
swimming terminology [4], for >f 0, i.e., the depicted case, we call the object a pusher. For <f 0, we term it a
puller.

Next, we place a spherical swimmer body of effective hydrodynamic radius anearby the two force centers.
Thewhole construct is a rigid object, i.e., the force centers and forces have to rigidly translate and rotate together
with the sphere,maintaining theirmutual distances and orientations. The role of the sphere is purely to realize
self-propulsion of thewhole object. Since all forces exerted by the swimmer onto the fluid have already been
concentrated into the two force centers (ignoring all forces that lead to higher-order contributions to the
hydrodynamic far-field) the sphere is considered not to exert any remaining force onto thefluid any longer. Its
sole role is to be convected by the self-induced fluid flow, leading to the overall self-propulsion. Unless it is
positioned into the exact point of symmetry between the two force centers, a net transport of the swimmer
results in the induced fluid flow. For a shift of the sphere along n̂ out of the symmetry plane between the two
force centers, thewhole object propels into the direction of one of the two forces. This shift is quantified by the
parameterα, with a = 1 2 marking the symmetric configuration.

In addition to our swimmermodel in [66], we now consider an extra shift of the spherical swimmer body
into a direction perpendicular to n̂. The parameter γ quantifies this shift, see figure 1, so that the axial symmetry
is broken for g ¹ 0. Consequently, for a ¹ 1 2 and g ¹ 0, the swimmer in the absence of anyfluctuations
starts to circle, as quantified below.Moreover, it is nowbiaxial, with the additional axismarked as û, see figure 1.

Sincewe consider the hydrodynamic interactions at a far-field level, we need to hinder themicroswimmers
from coming too close to each other. Therefore, we consider spherically symmetric soft steric interactions
between the swimmer bodies of effective radius s a a g> - +[( { }) ] L2 max , 1 2 2 1 2 tomaintain an effective
distance between them.Altogether, thewhole rigid swimmer object infigure 1 is force- and torque-free, as
mandatory for amicroswimmer suspended in a bulkfluid, see also the appendix.

2.1.Hydrodynamic interactions
Wenow considerN identical circlemicroswimmers suspended in the fluid and use indices i= 1,K,N to label
them.As described above, for ¹f 0, each circle swimmer sets the surrounding fluid intomotion due to its active
forces exerted by the active force centers. In addition to that, the swimmer bodiesmay be subjects to forces Fi

and torques Ti. Thesemay, for instance, be stochastic in nature, result from steric interactions between the circle
swimmers, or be imposed fromoutside. Since the dynamics ofmicroswimmers is usually determined by low
Reynolds numbers [89], it is described by the linear Stokes equation [102]. That is, their dynamics is
overdamped, and the forces Fi and torques Ti are directly transmitted to the surrounding fluid, setting it into

Figure 1.Minimalmodel of a circlemicroswimmer. Two active force centers separated by a distance L exert the active forces
 =  ˆf f n onto thefluid, where n̂ marks the direction of the principal swimmer axis. The resulting fluidflow is indicated by the small
light arrows that are rescaled to identical length for visualization. A spherical swimmer body of effective hydrodynamic radius a is, in
general, asymmetrically placed between the force centers. Its shift along n̂ out of the symmetry center, quantified by a ¹ 1 2, leads to
forward (or backward) propulsion. An additional transversal shift, quantified by γ, implies circular trajectories for a ¹ 1 2 and
g ¹ 0. This circle swimmer is biaxial, the secondary axis denoted by û.We impose spherically symmetric steric interactions between
the swimmers, with an effective interaction radius s 2.

3

New J. Phys. 19 (2017) 125004 CHoell et al



motion.Moreover, since the swimmers are suspended in thefluid, they are translated and rotated by the induced
fluid flows. The instantly resulting swimming velocities vi and angular velocities wi are calculated from amatrix
equation as [66]
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In (1), the first product on the right-hand side includes the influence of the passive swimmer bodies.mij

tt,mij
tr,

mij
rt, andmij

rr are the familiarmobilitymatrices that express how swimmer i is translated and rotated due to the

forces and torques transmitted by the swimmer body j onto thefluid [66, 102–104]. These expressions are the
same as for suspended passive colloidal particles and result from an expansion in the inverse separation distance
between the swimmer bodies, where herewe proceed up to the third order, i.e., the Rotne–Prager level.

Then, for i=j, we have [66, 102–104]
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Here, η is the viscosity of the fluid.
For ¹i j, themobilitymatrices read [66, 102–104]
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where = -r r rij j i, with ri and rj marking the swimmer positions, = ∣ ∣rrij ij , =ˆ r rrij ij ij, and ‘×’ is the vector
product.

The second product on the right-hand side of (1) arises because of the active forces that the swimmers exert
onto thefluid.Naturally, these actively induced fluid flows likewise contribute to the velocities vi and angular
velocities wi of all swimmer bodies.Lij

tt andLij
rt are the correspondingmobilitymatrices. The entries 0 in these

expressions arise because our swimmers do not exert active torques onto the suspending fluid.
More precisely, themobilitymatricesLij

tt andLij
rt describe how the active forces exerted by the two force

centers of swimmer j onto thefluid influence the velocity vi and angular velocity wi of swimmer i, respectively.
Since swimmer j carries two active force centers exerting the two forces =  ˆf f nj j, bothLij

tt andLij
rt split into

two contributions [66],
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In contrast to the passive swimmer bodies, the active force centers are point-like. Therefore, the expressions for
the fourmobilitymatricesm 

ij
tt andm 
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rt are slightlymodifiedwhen compared to the corresponding expressions

for the hydrodynamic interactions between the passive swimmer bodies in (4) and (6) [66],
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Here, rij are thedistance vectors between thepassive bodyof swimmer i and the active force centers of swimmer j,

exerting the forces =  ˆf f nj j onto thefluid, respectively.Again, = ∣ ∣rrij ij and =  ˆ r rrij ij ij . In contrast to [66],
where straight-propellingmicroswimmerswere investigated,weheremust take into account the additional
transversal shift of the active force centerswith respect to the swimmerbodies, seefigure 1. Therefore,wenowobtain

a g= + ++ ˆ ˆ ( )r r L Ln u , 11ij ij j j
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a g= - - +- ( ) ˆ ˆ ( )r r L Ln u1 . 12ij ij j j

Naturally, the values ofα and γmust assure that the force centers of each swimmer are located outside the
hydrodynamic radius a of the swimmer body, i.e., a a g- + >[( { }) ] L amin , 1 2 2 1 2 .

We consider our spherical swimmer body to exclusively act as a probe particle. Therefore our activemobility
matrices for interactions between different swimmers ( ¹i j) are given to lowest order in a -( )/1 2 and/or
a/L. In a next step, the distortion of the flowfield by the rigid swimmer body could be included by considering
the image systemwithin a rigid sphere [105, 106].

Moreover, for i=j, (1) togetherwith (7)–(12) describe the self-propelledmotion of one individual circle
swimmer. At themoment not considering any fluctuations, one such isolatedmicroswimmer (N = 1) keeps
self-propellingwith constant translational speed vs and constant angular speed ws along a closed circular
trajectory of radius w=R vs s s for all times. Since both vs and ws depend on the position of the swimmer body
relative to the two force centers,Rs can smoothly be tuned between almost zero and infinity by altering the
parametersα and γ; seefigure 2.Moreover, bothLii

tt andLii
rt are independent of f. Thus, both vs and ws scale

linearly with f, see (7)–(12). Therefore,Rs is independent of the active force f. Swimming faster does not change
the radius of the circle.

Technically, ourmobilitymatrices represent the solutions to the underlying Stokes equation for the flowof
the suspending fluid at lowReynolds number [102]. In this way, the role of the fluid is implicitly included in our
description.

2.2. Stochastic forces, external forces, and steric interactions
Our remaining task is to specify the forces Fi and torques Ti acting on the swimmer bodies in (1). The forces are
set to

= -  -  ( )F k T P Uln . 13i i iB

Here, thefirst contribution represents the effective influence of the stochastic forces due to thermalfluctuations
[107]. kB is the Boltzmann constant,T the temperature,  = ¶ ¶ri i, and = ¼( ˆ ˆ ˆ ˆ )r rP P tn u n u, , , , , , ,N N N1 1 1

is the probability density tofind at a certain time t the swimmers at positions ri with orientations n̂i and ûi,
i=1,K,N. From this form, the correct diffusional behavior is reproduced in the statistical approach, see
below.

The overall potential in the second part of (13) reads

å å= +
= ¹ =

( ) ( ) ( )r r rU u u
1

2
, . 14

k l k l

N

k l
k

N

k
, 1; 1

ext

In this expression, the first termdescribes the steric interactions between the swimmer bodies.We here choose a
soft GEM-4 potential of the form [78, 108]

Figure 2.RadiusRs of the circular trajectory at vanishingfluctuations for one single isolated circlemicroswimmer as introduced in
figure 1 ( =L a 3). The colormap indicatesRs as a function ofα and γ. For g  0,  ¥R as and the swimmer self-propels
straight ahead.We donot allow a force center to be placedwithin the hydrodynamic radius a from the center of the swimmer body,
reflected by thewhite area on the top right.
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where 0 sets the strength of the interactions. uext is an external potential acting on each swimmer body and
further addressed below.

Finally, the only torques that we consider to act on our spherically symmetric swimmer bodies are stochastic
ones,

= -  ( )T k T Pln . 16i iB
or

Here, the operator i
or contains the derivatives with respect to the particle orientations. If the swimmers and

their orientations are confined to aflat plane, for instance, the xy plane inCartesian coordinates, one angleji is
sufficient to characterize the orientation of each swimmer i. Then the operator reduces to j = ¶ ¶ẑi i

or ,
where ẑ is the (oriented)Cartesian unit vector perpendicular to the xy plane in a three-dimensional Euclidean
space. In three dimensions, explicit expressions using Eulerian angles exist [91, 109].

3.DDFT for circle swimmers

Based on ourminimalmicroswimmermodel, we can nowderive amicroscopic statistical description in terms of
aDDFT for suspensions of identical circle swimmers. The derivation follows the same lines as in our previous
work on straight-propellingmicroswimmers [66]. However, several changes result from the present biaxiality of
the individual swimmers.

We start from themicroscopic Smoluchowski equation

å w¶
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P P , 17
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which states the conservation of the overall probability density. Here, we have to insert the swimmer velocities vi

and angular velocities wi as given by (1)–(16). Although vi and wi depend on Pln via (13) and (16), it is
important to stress that (17) is still linear inP. Using the chain rule in (13) leads to  = ( )P P Plni i , which in
combinationwith the factorP in (17) leads to the linear contribution Pi . The same argument applies to the
term i

or Pln in (16)when inserted into (17).
To obtain from (17) the n-swimmer density offinding n of the identicalN circle swimmers at a certain time

at certain positionswith certain orientations, wemust integrate out from (17) all but the degrees of freedomof n
swimmers.We denote by Xi all degrees of freedomof the ith swimmer. Then, the n-swimmer density is obtained
from the overall probability density P as

òr ¼ =
-

+( ) !
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( )( ) X X X Xt
N
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P, , , d ... d . 18n

n n N1 1

In the special case of all swimmers and their orientations being confined to aflat plane, j= ( )X r ,i i i
and j=X rd d di i i.

Our goal is to obtain an equation for the dynamics of the one-swimmer density r ( )( ) X t,1 tofind a circle
swimmer at time twith position and orientation X . However, the integration scheme in (18) leads to a non-
closed equation for the time derivative of r( )1 . Because of our pairwise hydrodynamic and steric interactions, r( )1

couples to the pair density r( )2 , and, in combination of both interactions, also to r( )3 [66, 93, 94]. This starts a
whole hierarchy of coupled dynamical equations, called BBGKYhierarchy [81]. To close the dynamical equation
for r( )1 , we need to express the densities r( )2 and r( )3 in this equation as a function of r( )1 . DDFTprovides a
strategy bymapping each state of the system instantaneously to a corresponding equilibrium situation [85–88].

For this purpose, we recall that an external potential enters the dynamical equation via (14). At eachmoment
in time, DDFT assumes that the instant state of the system is caused by an effective external potential Fext. This
Fext intermittently takes the place of our physical external potential uext.

In equilibrium,DFT implies that Fext is uniquely determined by the density r( )1 [81–88]. It follows by
minimizing the grand canonical potential functionalΩ

  r r r rW = + +[ ] [ ] [ ] [ ] ( )( ) ( ) ( ) ( ) 191
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1
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1
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with respect to r( )1 . Here,

 òr r l r= -[ ] ( )( ( ( )) ) ( )( ) ( ) ( )X X Xk T d ln 1 20id
1

B
1 3 1

is the entropic free-energy functional for ideal non-interacting particles, withλ the thermal de Broglie wave
length [110]. An exact expression for the excess free-energy functional  r[ ]( )

exc
1 , which contains all particle

interactions beyond the idealized non-interacting limit, is typically not known and needs to be approximated.
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The third functional

 òr r= F[ ] ( ) ( ) ( )( ) ( )X X Xd , 21ext
1

ext
1

describes the interactionswith the external potential, where the effect of a chemical potential is implicitly
included into Fext.MinimizingΩwith respect to r( )1 leads to the equilibrium relation


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X
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1

In equilibrium the swimmers are inactive ( f = 0). Then, wemay further argue that the correspondingN-
swimmer probability density Peq solely depends on the overall potential = ¼( )X XU U , , N1 as in (14), but with
Fext taking the place of uext. Thus, Peq should follow the Boltzmann form

bµ -( ) ( )P Uexp , 23eq

with b = -( )k TB
1. Applying to this relation the positional gradient for the ith swimmer, we obtain

åb = -  F + 
¹

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )r r rP P u , . 24r r ri

k i

N

k i
eq eq

exti i i

We then follow (18) and integrate out all coordinates from this relation except for those of the ith swimmer.
Since all swimmers are identical, this leads to the so-called YGB relations offirst order [81, 109],

òr r r = - F - ¢ ¢  ¢( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )X X X X X X r rk T ud , , . 25r r rB
1 1

ext
2

TheYGB relations of second order are obtained by integrating out from (24) all coordinates but those of the ith
and one other swimmer [81, 109], resulting in

ò
r r r

r
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We then eliminate Fext from the last two equations by inserting (22). The resulting relations
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have the same structure as the corresponding ones in [66].
DDFT assumes that these relations are still instantly satisfied in non-equilibrium at eachmoment in time. All

contained quantities are then assumed to be dynamical and non-equilibriumones. In this way, they are inserted
into the dynamical equation for r( )1 , which eliminates the dependence on r( )3 . Our assumption implies that the
higher-order swimmer densities relax quickly when compared to the lower-order ones [111]. Since ourmotion
at lowReynolds numbers is overdamped, it is conceivable that this adiabatic approximation leads to reasonable
results. Previous comparisonwith particle simulations has confirmed this assertion qualitatively [66].

Altogether, we obtain from this procedure

     r¶
¶

= - + + -  + +
( ) · ( ) · ( ) ( )

( ) X t

t
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, 29r

1

1 2 3
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4 5 6

where ¼, ,1 6 are current densities. Overall, they are of similar structure as the corresponding quantities in
[66], but particularly the active current densities3 and6 differ in the present case because of the transversal
shift of the active force centers, seefigure 1,
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Wenote that, in our case, = 02 in (31), and also the integral containing r( )2 in (34) vanishes. The reason is the
spherical shape of our passive swimmer bodies, resulting in passive hydrodynamic interactions that do not
depend on the swimmer orientations.

For the excess functional, we choose amean-field approximation

 ò r r= ¢ ¢ ¢( ) ( ) ( ) ( )( ) ( )X X X X r rt t u
1

2
d d , , , , 36exc

1 1

which is reasonable in our case of soft GEM-4 steric interaction potentials. Still, some pair densities r( )2 remain
in (30)–(35). They are expressed in terms of r( )1 using a dilute-limit Onsager-like approximation [112]

r r r b¢ = ¢ - ¢( ) ( ) ( ) ( ( )) ( )( ) ( ) ( )X X X X r rt t t V, , , , exp , . 372 1 1

Here, ¢ = ¢( ) ( )r r r rV u, , , if ¹ ¢r r . For - ¢ r r 0, we let b  ¥V to avoid the hydrodynamic divergence
that appears in the unphysical situation of two swimmers being located at the same position. This corresponds to
setting b- ( )exp 00 for - ¢ r r 0. (For our typical choice of parameters, we obtain

b- = -( ) ( )exp exp 100 . Thus the procedure represents a relatively smallmodification).
In this way, our dynamical equation for r( )1 is derived and finally closed. To demonstrate the power of our

DDFT for circle swimmers, we now address the confinement in a spherically symmetric trap. In particular, we
focus on the effect of an increasing curvature of the swimming paths.

4. Circle swimmers in a spherically symmetric trap

To address planar geometries, we confine the center ofmass of each swimmer i aswell as its two orientation
vectors n̂i and ûi to theCartesian xy plane so that ´ =ˆ ˆ ˆn u zi i . Then, one angleji is sufficient to parameterize
the swimmer orientation, see our remarks below (16).Wemeasureji relatively to the x axis. Still, three-
dimensional hydrodynamic interactions apply. One possible realization of this geometry are swimmers confined
to the interface between two immiscible fluids of identical viscosity.

Next,we specify the spherically symmetric confining external potential in (14). As in [66],weuse aquartic potential

s
= ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )ru V

r
, 38k

k
ext 0

4

centered in the origin, where = ∣ ∣rrk k . This potential ismore shallow around the center and then shows a steeper
increase than a harmonic trap, which partially emphasizes the effects that we address in the following. Yet the
precise functional form is not relevant for their qualitative nature.

To evaluate ourDDFTnumerically, thefinite-volume-methodpartial-differential-equation solver FiPy [113]
is employed.Our numerical grid is regular, quadratic in the xy space, and typically consists of ´ ´80 80 16 grid
points for the x, y, andj coordinates, respectively. (Non-orthogonalmeshesmight produce significant numerical
errors due to the assumption of orthogonality by the solver [114, 115].Weavoid this byusing anorthogonal grid.)

Weonly analyze the behavior in one single isolated trap.Nevertheless, for the numerical solution, periodic
boundary conditions are imposed in all directions for technical reasons to allow for fast Fourier transformation.
To avoid unphysical feedback between particles through thewalls of the box, long-ranged hydrodynamic
interactions are cut at distances larger than half a box length. Care is taken that the extension of the density
cloud, before it basically decays to zero due to the external potential, is smaller than half a box length. In this way,
the density cloud does not interact with itself through the periodic box boundaries. However, the box is large
enough to account for all hydrodynamic interactions within the effective confinement by the spherical trap. The
steric interactions in (15) are not cut as they quickly decaywith increasing distance. If, instead of one single

8

New J. Phys. 19 (2017) 125004 CHoell et al



isolated trap, an array of periodically placed trapswere to be regarded, onewould have to account for the long-
ranged hydrodynamic interactions between the individual traps including the periodic images of the system,
e.g., via Ewald summation techniques [116–118].

To display our results, we extract the spatial swimmer density

òr j r j=( ) ( ) ( )( )r rt t, d , , 391

and the orientational vector field

ò j j r já ñ =ˆ ( ) ˆ ( ) ( ) ( )( )r rt tn n, d , , 401

fromour calculations. These twofields are indicated by color plots and bywhite arrows, respectively, in the
figures referred to below. In these plots, the spatial density r ( )r t, is normalized by the density r̄ averaged over
thewhole simulation box.

As an initial condition, we start from randomized density distributions. The system is then equilibrated in
the trapwith self-propulsion switched off, f=0. The density quickly relaxes into a radially decaying distribution
with a small central dip stemming from steric repulsion, see figure 3.Wemeasure time t in units of s m( )k Tt

2
B .

At t=0, self-propulsion is switched on. Such a process could be achieved in reality, for instance, using light-
activated synthetic swimmers [11, 16, 34, 119–121]. If, for example, activation of self-propulsion is sensitive to
thewavelength of the irradiated light [119], confinementmight be achieved simultaneously by optical trapping
using light of a different frequency.

To characterize the relative strength of self-propulsion, often the dimensionless Péclet number Petr is
introduced [101]. In our context, itmeasures the ratio of active to diffusive passivemotion on a relevant length
scale, here set byσ. Therefore,

s
m

= ( )v

k T
Pe . 41tr

s
t

B

In the following, we concentrate onmicroswimmers of significant activity, Pe 1tr .Moreover, wemay in the
case of circle swimming analogously define a rotational Péclet number,

w
m s

= = ( )
k T

a

R
Pe

4

3
Pe . 42rot

s
r

B

2

s
tr

For »Pe 0rot , the curvature of the swimmer trajectory is negligible. In our numerical scheme, we directly set the
parameters determining the geometry of the swimmers infigure 1. The corresponding Péclet numbers can then
be extracted by calculating vs and ws from (1) and (7)–(12) for i=j.

It turns out that increasing the character of circle swimming, i.e., decreasing the radius of the unperturbed
swimming path, see figure 2, has a qualitative effect on the appearance of the trapped swimmer suspension. To
demonstrate this, we first further analyze some results of straight swimming [66] obtained by ourmodified
simulation scheme and then compare with the results for circle swimming.

4.1. Straight swimming
Straightmotionof the individual swimmers is enforced inour approachby setting g = 0, seefigure 1 [66]. For
straight propelling objects under spherical confinement, the formationof ahigh-density ringhas been reported
several times [66, 100, 101, 122, 123]. In agreementwithprevious studies, the formationof a high-density ring canbe
reproduced after switchingon the active drive inour simulations. This ring is particularly symmetricwhenwe switch

Figure 3.Equilibrated initial state for the numerical evaluation of ourDDFT formicroswimmer suspensions, with a trapping strength
=V k T0.10 B . In this state, the active forces are still switched off, f=0. (a) Steric interactions not included,  = 00 . (b) Steric

interactions includedwith strength  = k T100 B . Brighter color reflects higher density as given by the scale bars, wherewe used a
logarithmic scale for illustration. The local density r ( )r is normalized by themean density r s= ´ - -¯ 2.78 10 2 2 in thewhole
simulation box.

9

New J. Phys. 19 (2017) 125004 CHoell et al



off thehydrodynamic interactions between the swimmers, seefigure 4(a). Its approximate radius is determinedby
balancing the active forwarddriveof the swimmerswith the confining external potential force, leading
to s s m s~ =( ) ( )R v V k T V4 Pe 4ring s

t
0

1 3
tr B 0

1 3.
In thenext two rows,figure4 shows thebehaviorwhenhydrodynamic interactions between the swimmers are

included as prescribedbyourDDFT.Theyhave a qualitative impact. Thehigh-density ring at the investigated
propulsion strengthsdevelops a tangential instability and the circular symmetry is broken.Also this effect has been
describedbefore [66, 100, 101]. The swimmers tend topolarly order in the emerginghigh-density spotwhile
propagating against the confiningpotential.Consequently, they collectively pump the surroundingfluid into the
opposite direction.Thus the configurationwas referred to as a ‘hydrodynamicfluidpump’ [66, 101].Here,we
observe that the effect is stronger infigure 4(b), whichdepicts the result for pushers, >f 0. In contrast to that,
figure 4(c)wasobtainedwith the signof the active forcesflipped to <f 0, describing a suspensionof pullers, yetwith
all otherparameters unchanged.Obviously, the tangential symmetry breaking is restricted in the latter case.

The cause of this spontaneous symmetry breakingwas attributed in [101] to a positive feedbackmechanism.
If a spot of higher density appears on the ring, with the swimmers collectively pushing against the external
potential, the resulting oppositely oriented fluidflow rotates nearby swimmers towards the high-density area.
Consequently, they join the spot of higher concentration. In ourDDFT, this effect is included by the
contribution m~  ¢¢ ¢ ( )u rr r r,

rt
ext to the current density4 in (33). Additionally, pushers actively generate inward

flows from their sides, seefigure 1.When the swimmers are pointing outward on the ring, this further supports
their lateral concentration, see the illustration infigure 5(a). Here, these active contributions are represented by
the second term in the current density3 in (32). In contrast to that, for pullers, the actively induced flowfields
are inverted. This in effect repels outward pointing swimmers on the ring from each other, see also our
schematic illustration infigure 5(b). The qualitative schematics infigures 5(c)–(f) indicate that also the curvature
of the high-density ringmay have a significant impact via the current density6 and lead to differences between
pushers and pullers. The relativemagnitudes of all these different contributions basically involve all system

Figure 4.Each row represents a time series (from left to right) for a suspension of straight-propelling swimmers in a quartic external
trapping potential for the spatial density r ( )r normalized by themean density r s= ´ - -¯ 7.56 10 3 2 in the simulation box (color
plots, brighter color indicating higher density, logarithmic scale) and for the local swimmer orientation á ñˆ ( )rn (white arrows). Our
parameters are set to s=a 0.25 , s= =L a3 0.75 , a = 0.4, g = 0,N=4, =V k T0.10 B , and  = k T100 B . For each row, the system
was pre-equilibratedwith self-propulsion switched off, f=0. Then, self-propulsion is turned on at time t=0, with timesmeasured
in units of s m( )k Tt

2
B . (a) s= >f k T250 0B for pushers, implying »Pe 53tr , with hydrodynamic interactions between the

swimmers switched off. Snapshots provided for times =t 0.01, 0.05, 0.1, 0.3, where the last image already shows the steady state. (b)
Same as in (a), now including hydrodynamic interactions. The latter destabilize the high-density ring and lead to the formation of a
high-density spot. Over time, for the chosen parameters, the self-propulsion directions in this spot lean towards one side by another
spontaneous symmetry breaking. The spot then starts tomove along the ring contour, smearing out in the process. Times:
=t 0.01, 0.5, 1.4, 1.8. (c) Same as in (b), but for pullers s= - <f k T250 0B , which restricts the spot formation. Times:
=t 0.01, 0.05, 0.1, 0.3. Inverting fmakes the swimmers propel into the opposite direction-n̂, see figure 1, whichmakes thewhite

arrows point inward in the case of pullers. As in (a), the last picture shows the steady state of the system.
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parameters, i.e., temperatureT, the viscosity η of thefluid, the strength of the active force f, the nature of the
swimmer (pusher versus puller) togetherwith themagnitudes of the parameters that determine the swimmer
geometry, the strength and radius of the steric interactions, the overall density, and the strength of the
confinement.

After the formation of the high-density spot, see figure 4(b), at strong enough active drive >f 0, we observe
yet another spontaneous symmetry breaking. In the rightmost snapshot offigure 4(b), the averaged self-
propulsion directions do not point radially outward anymore. Instead, they have tilted to one side towards the
tangent of the previous high-density ring. For straight swimming objects, the selection of one of the two tilting
directions depends solely on small variations in the initialization of the system.

As a result of the tilting, the high-density spot starts to circle around the trap, smearing out the faded ring to
some extent. Depending on the parameters, wemay nearly recover a high-density ring, however, nowwith the
swimmer orientations not pointing outward. Interestingly, for suspensions of pullers at elevated ∣ ∣f , we so far
have not observed this behavior. Instead, again a ring of radially oriented swimmers emerges, seefigure 4(c). It
appears approximately in the sameway as for the case without hydrodynamic interactions infigure 4(a). This
behavior is in linewith our interpretation of the role of the current density ~ f3 of repelling pullers from each
other.

We note that the active current density6 in (35) has the potential to drive the secondary spontaneous
symmetry breaking observed in the rightmost snapshot offigure 4(b). Comparing the strength of6 with the
one of4 may also explain the initial formation of the high-density spot as afirst instability and then the
observed secondary instability. First, on the high-density ring, the swimmers on average feature a largermutual
separation, in the second snapshot offigure 4(b). Then, at these larger interswimmer distances rij, the
contribution in the current density4 driving the spot formation scales as m~ ~ -∣ ∣ rij ij

rt 2. In contrast to that, in

the active current density6, we find a scaling~ -rij
3 at large interswimmer distances (the two oppositely

oriented active forces of each swimmer together appear as a force dipole at larger distances, which reduces the
exponent in the scaling ofLij

rt to~ -rij
3). Therefore4 dominates and can drive the spot formation. At reduced

separation in the high-density spot, the active forces are resolved individually and the influence of6 can
become substantial when comparingwith4. Nowboth scale as~ -rij

2, but for elevated ∣ ∣f the importance of6

grows.

4.2. Circle swimming
Wenow turn to increasingly biaxial swimmers for g ¹ 0, see figure 1.Depending on the values of both
parametersα and γ, the unperturbed individual swimmers then show circular trajectories, see figure 2.

Figure 5.Effects that can contribute to the observed varying tendency of forming a high-density spot for pushers and pullers in
figures 4(b) and (c), respectively. Large straight arrows of the same color as the swimmer bodies represent the active forces, while the
thinner curved arrows of the same color indicate the corresponding flow fields. (a)Due to their actively induced transversal inflowof
fluid, see figure 1, pushers laterally attract each other hydrodynamically. This supports spot formation in figure 4(b)when the
swimmers are aligned next to each other on a high-density ring. (b) In contrast to that, pullers laterally repel each other
hydrodynamically, which counteracts a spot formation, seefigure 4(c). Both effects are described by the contribution L~ ¢r r,

tt to the
current density3 in (32). (c)–(f)Different effects are possible for the active rotation–translation coupling described by the
contribution L~ ¢r r,

rt to the current density6 in (35). (c) For pushers next to each other on a high-density ring of high curvature, the
inward pointing force center of one swimmer is in close vicinity of the body of the other swimmer, and vice versa. This leads to actively
induced rotations of the swimmers and their propulsion directions towards each other, supporting the formation of a high-density
spot. (d)The situation is reversed for pullers, leading to effective rotations away from each other. (e) In contrast to the configuration in
(c), for low curvature of the high-density ring, the outward pointing active force of one swimmer is closer to the body of the other
swimmer, and vice versa. In this way, the swimmers tend to turn away from each other. (f)Along the same lines, pullers also for low
curvature of the high-density ring turn away from each other, again counteracting the formation of a high-density spot.
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Particularly, we analyze the changes in the behavior of the suspensionwhenwe stepwise increment γ. For each
value of γ, we again start from an equilibrated passive initial system and then switch on self-propulsion at t=0,
as before.

By and large, we do not observe abruptmodifications in the overall behavior. Instead it changes rather
gradually with increasing γ. For small g ¹ 0, the behavior of the straight swimming objects is reproduced

Figure 6. Influence of a (small)biaxiality, quantifiedby the parameterγ, on themotionof the high-density spot formedbypushers
( >f 0). The type of presentation is identical tofigure 4, but the parameters are given by s=a 0.5 , s= =L a8 4 , a = 0.4,N=4,

=V k T0 B ,  = k T50 B , and s=f k T100 B . In the plot, the local density r ( )r is normalizedby themeandensity r s= ´ - -¯ 6.47 10 2 2

in thewhole simulationbox. Self-propulsion is switchedon at t=0, the snapshots in each row are taken at =t 2, 2.3, 2.6, 2.9. (a) For
straight-swimming pushers (g = =0, Pe 23tr ) the high-density spot only slowlymigrates around the trap, the senseofmotion resulting
fromspontaneous symmetrybreaking. (b) Forweak circle swimmers (g = = =0.01, Pe 23, Pe 0.61tr rot ) the high-density spot
persistentlymoves around the trap,with the sense ofmotion affected by the sense of circle swimming.

Figure 7. Long-term behavior for different strengths of circle swimming, namely g = 0, 0.01, 0.02, 0.04 from left to right in each
row. The other parameters and the type of presentation are the same as infigure 4. In all depicted cases, a localizing effect of circle
swimming becomes obvious. Pronounced circle swimming leads to concentration of the swimmers around the center of the trap, see
the rightmost column. (a) Switching off hydrodynamic interactions supports the localization around the center of the trap. (b) For
pushers ( >f 0), we observewith increasing γ thatfirst the high-density spot smears out to a high-density ring that broadens and for
high γ collapses towards the center. (c) For pullers ( <f 0) the high-density ring appears a bitmore stable at lower values of γ, but
again a concentration around the center occurs at high γ.
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qualitatively. Only for pushers of stronger active drive >f 0, we note an illustrative alteration.While the sense
of circling of the high-density spot around the trap as illustrated in the rightmost snapshot offigure 4(b) resulted
from spontaneous symmetry breaking for g ¹ 0 and could be clockwise or counterclockwise, it is now
increasingly dictated by the sense of the circular swimming trajectory. A comparison between straight swimmers
andweak circle swimmers is included by figure 6.

Remarkably, the overall appearance of the suspension changes qualitatively when the nature of circle
swimming becomesmore pronounced. In our set of parameters we achieve this by increasing γ. The bending of
the swimmer trajectories has a localizing effect, as illustrated infigure 7. There, all snapshots show the long-term
behavior of the corresponding suspension. From left to right in each row, the strength of circle swimming grows.
Due to their persistent self-rotation, the outward propagation of the swimmers against the confining trapping
potential is restricted. As a consequence, the concentration of the swimmers in the center of the trap increases.
At high enough γ, the density is again peaked around the center of the trap. Comparing figure 7(a), where
hydrodynamic interactions have been switched off, tofigures 7(b) and (c), we infer that hydrodynamic
interactions significantly delay the localization around the center of the trapwith increasing γ. Yet, at high
enough values of γ (rightmost column in figure 7) the localization dominates in all cases. Comparing pushers
and pullers infigures 7(b) and (c), respectively, we note themore persistent nature of the high-density ring in the
case of pullers at smaller values of γ, before the collapse towards the center of the trap occurs.

To quantify themodified appearance of the suspensionwith increasing γ, we introduce the following order
parameters. First, we evaluate

ò j J r j=( ) ( ) ( ) ( )( )r rK t
N

t
1

d d exp i , , , 431

where in this expression spatial positions r are parameterized by polar coordinates J= ( )rr , .K(t) becomes
non-zerowhen a tangential instability occurs that breaks the circular symmetry of a high-density ring, leading to
an off-center high-density spot.

Figure 8.Order parametersK, measuring the degree of off-center density concentration in a high-density spot, as well asMr andMt,
measuring the degrees of swimmer orientations along the radial and one of the tangential directions, respectively, for the systems in
figure 7with increasing biaxiality parameter γ. Again, the situationwithout hydrodynamic interactions between the swimmers
(‘noH.I.’), the case of >f 0 (‘pusher’), and the case of <f 0 (‘puller’) are depicted. Generally, with increasing γ, off-center
concentration in non-rotationally symmetric structures diminishes (drop ofK ) and the swimmers tilt away from the radial direction
(decreasingMr).Wefind smooth intermediate transitions forMr andMt around the value of γ that leads to =R Rs ring, as indicated by
the vertical gray lines. For the parameters chosen here,K drops to zero already at very lowbiaxiality. Other parameter combinations
lead to less abrupt decrease inK, see, e.g., figure 6.

13

New J. Phys. 19 (2017) 125004 CHoell et al



Next, we define

ò j r j=( ) (ˆ · ˆ) ( ) ( )( )r rM t
N

tv r
1

d d , , , 44r s
1

with v̂s for each swimmer denoting the hypothetical instantaneous unperturbed direction of self-propulsion.
For g = 0, v̂s points alongn̂ according to the sign of f, but it becomes slightly tilted towards û for g ¹ 0.

( )M tr quantifies the overall degree of swimmer orientations along the radial direction.
In analogy to that, to quantify the ordering of the swimmer orientations along one of the two tangential

directions, the order parameter

ò j r j= ´( ) (ˆ · (ˆ ˆ)) ( ) ( )( )r rM t
N

tv r z
1

d d , , 45t s
1

is evaluated. In the absence of any local orientational order, both ( )M tr and ( )M tt vanish. For steady-state
systems, all three of the above order parameters no longer depend on time in the long-term limit.

Figure 8 shows the long-term values of the order parametersK,Mr, andMt with increasing biaxiality and
degree of circle swimming γ.When hydrodynamic interactions are switched off, for g = 0 a high-density ring is
formedwith the swimmers radially aligned, see figure 4(a). Therefore,K andMt are low, whileMr is high.

Including hydrodynamic interactions, pullers ( <f 0) here behave in a very similar way, see alsofigure 7(c).
In contrast to that, pushers ( >f 0) show a concentration in high-density spots for g = 0, see figures 6 and 7(b),
leading to an elevated value ofK.Moreover, the self-propulsion directions in this high-density spot by
spontaneous symmetry breaking can lean towards one of the two tangential directions, see figures 4(b) and 6.
Therefore,Mr andMt are reduced and elevated, respectively, when compared to the other systems infigure 8.

As the degree of circle swimming increaseswithγ and the swimmers tilt away from the radial outwarddirection,
Mr generallydecreases.Mtfirst increases as the orientational order shifts fromradial to tangential. It then saturates
and again slightly decays for highγ, i.e., for small swimming radii. The latter slowdecay is supported by the
increasing localization in the center of the trapwhere orientational order vanishes by the overall rotational
symmetry. The smooth changes ofMr andMt infigure 8 indicate that the transition fromoff-center high-density
rings or spots to centrally localized distributionswith increasingγ is rather continuous. This transition shouldoccur
when the radiusRs of the unperturbed swimmer trajectories and the characteristic radius of the trapRring become
approximately identical.Wehave indicated the corresponding value ofγ infigure 8by the vertical gray lines.

To also quantify the depletion of the swimmer density in the center of the trapwhen high-density rings or
off-center high-density spots occur, in contrast to the central accumulationwhen the localizing effect of circle
swimming becomes strong, we introduce additional order parameters

ò j r j=n n( ) ( ) ( ) ( )( )r rO t J r R td d , , 46ring
1

for n = 0 and 1.Here, Jν are the Bessel functions offirst kind. By construction, ( )O t0 is largewhen the density is
concentrated in the center of the trap, while ( )O t1 is elevated for off-center distributions.

Figure 9. Same as in figure 8, but for the order parametersO0 andO1 thatmeasure the degree of near-center and off-center
concentration, respectively. At smaller values of the biaxiality parameter γ,O0 is low andO1 is highwhen a high-density ring or a high-
density off-center spot has formed. In contrast to that, highO0 and lowO1 signal a localization of the density around the center of the
trap for pronounced circle swimming at high values of γ (see also the rightmost column in figure 7). Again, the vertical gray lines
indicate the value of γ implying =R Rs ring. Apparently, hydrodynamic interactions slightly counteract the concentration around the
center. For strong circle swimming, pullers appearmore concentrated around the center than pushers.
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As demonstrated by figure 9, the transitions as a function of the biaxiality parameter γ are again smooth. Yet,
the increasing localization in the center of the trap for increasing γ is obvious. Particularly in the transitional
regime, that is, for intermediate values of γ, hydrodynamic interactions apparently counteract localization in the
center of the trap.Moreover, for our set of parameters and at large γ, the central concentration of pushers is
slightly lower than the one for pullers, if only the sign of f is inverted and all other parameters are kept the same.

5. Conclusions

In summary, we have presented amicroscopic statistical approach in the framework ofDDFT for active circle
swimmers. Hardly any realmicroswimmer is a perfectly symmetric straight swimmer. Therefore, investigations
on the effect of bentmigration trajectories aremandatory.

Our theory captures self-propulsion along swimming paths of different preferred curvature, steric and
hydrodynamic interactions between themicroswimmers, as well as confinement by an external potential. In
contrast tomany previous descriptions, the curvedmotion in our case is not directly imposed by an effective
torque or angular frequency on the swimmer body.Here, it naturally follows from the geometric structure of our
microscopicminimal swimmermodel and resulting hydrodynamic effects.

Persistently bent swimming trajectories reduce the globalmobility of the swimmers. To study this localizing
effect, we analyzed the behavior ofmicroswimmer suspensions in a circularly symmetric trapping potential for
increasing degree of circle swimming.Moreover, we distinguished between pusher and puller circle swimmers,
and also studied the effect of hydrodynamics by comparisonwith switched-off hydrodynamic interactions
between the swimmers.

Straight swimming objects tend to spread out towards the confinement until their active drive is balanced by
the confining potential [66, 100, 101, 122, 123]. This leads to high-density rings. Such ringsmay get unstable due
to hydrodynamic interactions, particularly for pusher swimmers, leading to the formation of off-center high-
density spots [66, 100, 101].We have further investigated and quantified this scenario.

Circle swimming can qualitatively affect the behavior. Increasing the degree of circular self-propulsion
supports a persistent circlingmotion of the high-density spots around the trap. At high degrees of circle
swimming, the swimmers become localized around the center of the trap, while hydrodynamic interactions
seem to slightly counteract this effective confinement. The transition from the off-center towards the centered
density distributions appears to be smooth, andwe quantified it by introducing several corresponding order
parameters.

A long-term goal to extend the present theory would be the characterization ofmotility-induced phase
separation into a dense clustered state and a surrounding low-density gas-like state [119, 120, 124–145]. This
phenomenonwas observed in particle-based simulations of active Brownian particles [120, 125, 127, 130,
133–136, 138, 142, 144, 145] and described by different statistical or continuum approaches [126, 128, 129, 131,
132, 136, 137, 141]. So far, the effect of hydrodynamic interactions on this scenario has only rarely been
addressed [134, 138]. OurDDFTby construction contains self-propulsion driving the phase separation, steric
interactions to avoid a collapse of the clustered state, and hydrodynamic interactions. In previous theoretical
approaches, input for the density dependence of the swimming speed [128] or for the front-back imbalance of
the pair-correlation function [126, 131, 141]was required to capture the phenomenon. An interesting question
for statistical theories andDDFT iswhether such an inputwill further be necessary in the future, or whether the
theories will provide it in a self-consistent way, as encouraged by a recent theoretical study [146].Moreover, one
could then analyze how the clustering behavior is influenced by the circular swimming paths.

We note that, in a different context, the consequences of reorienting the swimmingmotion, e.g., by external
fields, have been analyzed for the translational behavior as well as for the swim stress and pressure [147, 148].
Possibly, the latter quantities could also be extracted using our approach and explicit swimmermodel. Apart
from that, in the future also the dynamic behavior of pure active swimming rotors [149–151] could be
considered in an analogous statistical approach, including the induced hydrodynamic interactions between the
rotors. Another extension concerns the treatment of crystallization effects [78] for activemicroswimmers taking
into account hydrodynamic interactions.
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Appendix

In ourmodel, each swimmer consists of two force centers in the fluid in the vicinity of the swimmer body as
shown infigure 1. To constitute a realisticmicroswimmer, no net force and no net torquemay be exerted on
thefluid.

Since the two anti-parallel forces have the samemagnitude f, the net force vanishes by construction. The
individual torques = ´ 

 ( ˆ )T r f n caused by the two force centers of the swimmer can be calculated from the
distance vectors r defined in (11) and (12). Thus, they read

a g g= ´ + ´ = ´+ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )T f L L f Ln n u n u n, A.1

a g g= - - - ´ + ´ = - ´- ( ( ) ˆ ˆ ˆ ˆ ) ˆ ˆ ( )T f L L f Ln n u n u n1 , A.2

and cancel upon summation so that the net torque vanishes, as required.
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