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A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is
proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density
functional is derived from fundamental mixed measure theory and freely minimized numerically
for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and
crystalline phases, is obtained and shows good agreement with the simulation data. Our functional
is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a
reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and
their Brownian dynamics. Published by AIP Publishing. https://doi.org/10.1063/1.4996131

I. INTRODUCTION

Classical density functional theory (DFT) of inhomoge-
neous fluids1 provides a microscopic theory for freezing, for
reviews see Refs. 2–7. This has been exploited for spherical
particles with radially symmetric pairwise potentials (such as
hard or soft spheres) both in three8–10 and two11 spatial dimen-
sions where the freezing line of liquids has been predicted with
good accuracy. Density functional theory of freezing can also
be formulated for orientational degrees of freedom as docu-
mented in Onsager’s seminal work for the isotropic–nematic
transition.12 This has been applied to investigate the stabil-
ity of liquid-crystalline phases (such as isotropic, nematic,
and smectic) in three13–22 and in two22–30 dimensions. For
both translational and orientational degrees of freedom, many
different “meso-phases” with partial translational or orienta-
tional order are conceivable and therefore the resulting phase
diagram is typically much more complex.31

The most elaborate DFTs were derived for hard particles
which possess only steric or excluded-volume interactions. In
these systems, temperature scales out such that the density
(or packing fraction) is the only remaining parameter apart
from the particle shape. In particular, the Fundamental Mea-
sure Theory (FMT) originally invented by Rosenfeld32 has
proven to be very successful for hard-body fluids in three
dimensions, including the isotropic phase of particles with
non-spherical shape.33,34 The basic input into FMT is differ-
ent weighted densities, which depend only on the geometry
of a single body. This simple structure allows for an efficient
numerical implementation. The versatile framework of Rosen-
feld’s FMT allows one to use the same building blocks to
construct a new version yielding a more accurate equation of
state35 and, upon introducing additional weighted densities,

a)R. Wittmann and C. E. Sitta contributed equally to this work.

to obtain generalized functionals for freezing11,36 and liquid
crystal phases.18–20

The usual first step to derive FMT is to take the low-
density limit and decompose the Mayer function of the hard-
core interaction. However, there is no exact representation
based on a finite number of weighted densities in two (and
other even) dimensions37 or in any dimension if the shape of
the freely rotating bodies is anisotropic.33 Instead, for two-
dimensional hard disks (HDs)11 and arbitrary convex bodies
in three dimensions,18 an infinite series of tensorial weighted
densities is necessary, which, for practical reasons, is usu-
ally truncated after the term including rank-two tensors. A
more sophisticated expansion can be defined in terms of
orthonormal functions, such as spherical harmonics in three
dimensions.38

Regarding the ongoing progress in numerical techniques
and computer speed, versions of FMT based on two-body
weighted densities,21,36,39,40 which are exact in the low-density
limit, become a valid alternative to an approximate treatment,
particularly in two dimensions. Another tractable functional
involving many-body measures has been derived for infinitely
thin disks in three dimensions.41 The most general formulation
of FMT for mixtures of arbitrary convex bodies in any dimen-
sion is the so-called Fundamental Mixed Measure Theory
(FMMT).21,40

In this paper, we consider an explicit DFT based on
FMMT for a simple model system of orientable hard rods in
two spatial dimensions. We study particles with a “discorectan-
gular” shape (the two-dimensional analog of spherocylinders)
whose phase diagram is spanned by their packing fraction and
aspect ratio only, while also considering the HD limit. Monte
Carlo (MC) computer simulation42 data are available for the
bulk phase diagram of these discorectangles43 and involve an
isotropic, nematic, and crystalline phase. Here we evaluate our
FMMT functional analytically and numerically and obtain a
bulk phase diagram. In doing so, we also extend the previous
MC data43 and resolve between a two-dimensional smectic
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and a full crystalline phase. Our DFT reproduces the topol-
ogy of this enhanced phase diagram. It is therefore the first
functional which gets the stability of four liquid-crystalline
phases simultaneously in two dimensions. The FMMT func-
tional is given in a general form for multicomponent mixtures
of arbitrary convex hard particles. It can serve as an input
for future DFT studies of two-dimensional liquid crystals at
interfaces44 and for Brownian dynamics of rods45 similar in
spirit as the FMT functional for HD proposed by Roth and
co-workers.11

This paper is organized as follows: in Sec. II we derive an
analytical expression for the DFT functional. Our MC sim-
ulations and our numeric DFT minimization are described
in Sec. III and results of our calculations are presented and
discussed in Sec. IV. We conclude in Sec.V.

II. DENSITY FUNCTIONAL THEORY

To tackle the general case first, we consider a two-
dimensional system of κ components of anisotropic particles.
The equilibrium configuration of the particles of each species
i is described by a density profile ρi (R) ≡ ρi (r, ϕ) which
depends on position r and orientation ϕ. For any external
potential V ext

i (R) acting on the particles, the fundamental vari-
ational principle δΩ/δρi(R) = 0 of DFT1 states that the
unique equilibrium densities minimize the functional

Ω[{ρi}] = F[{ρi}] +
κ∑

i=1

∫
dRρi(R)(V ext

i (R) − µi), (1)

which then equals the grand potential Ω of the system. The
short notation ∫ dR denotes the integral ∫R2 dr over all posi-

tions and the orientational average ∫
2π

0
dϕ
2π and µi denote the

chemical potentials of each species.
The intrinsic free energy

βF[{ρi}] = βFid + βFexc =

∫
dr(Φid(r) + Φexc(r)) (2)

or its density Φ(r) is usually separated into excess (Fexc)
and ideal-gas (Fid) contributions. The density of the latter
reads as Φid(r) =

∑κ
i=1 ∫

2π
0

dϕ
2π ρi(r, ϕ)

(
ln(ρi(r, ϕ)Λ2) − 1

)
,

with the thermal wavelength Λ and the inverse temperature
β−1 = kBT .

In order to derive the excess free energy density Φexc for
a system with hard interactions along the lines of FMT,32 we
consider the exact functional

βFexc → −
1
2

κ∑
i,j=1

∫∫
dR1 dR2 ρi(R1) ρj(R2) fij(R1,R2)

(3)

in the dilute limit ρi → 0, where only the interactions between
two particles are relevant. These are represented by the Mayer
function

fij(R1,R2) = e−βUij − 1 =



0 if Bi ∩ Bj = ∅

−1 if Bi ∩ Bj , ∅
(4)

of two hard bodies Bi and Bj with the pair interaction potential
Uij(R1,R2). Since this interaction only depends on whether
the intersection

Iij(R1,R2) B Bi(R1) ∩ Bj(R2) (5)

is the empty set ∅ or not, Eq. (3) can be simplified using
purely geometrical arguments to rewrite fij(R1,R2) in terms
of quantities that are functions of R1 or R2 only.

A. Mayer function of two-dimensional hard bodies

For two-dimensional HD mixtures, an exact decompo-
sition of the Mayer function from Eq. (4) can be found by
means of (i) simple geometrical considerations,39 (ii) the
Gauss-Bonnet theorem from differential geometry,11 or (iii)
the translative integral formula21,40 from integral geometry.46

Considering now mixtures of arbitrary convex bodies in two
dimensions, we will show that both strategies (ii) and (iii)
lead to the same decomposition as for HDs, in the sense that
all terms are still present in the HD limit. Quite in contrast,
the hard-sphere limit in three dimensions can be simplified
to a deconvolution in terms of one-body weighted densi-
ties.18,19,21,40 The origin of FMMT lies in strategy (iii) since
it provides the proper mathematical foundation of employ-
ing two-body weighted densities. There are some alternative
ways to derive such a functional from (iv) zero-dimensional
cavities47 or (v) an approximate virial series,48 which imply
the same decomposition of the Mayer function for anisotropic
bodies.

Following Rosenfeld,37 we define the three scalar weight
functions

ω(2)
i (R) = Θ

(��Ri(R̂)�� − |r|
)

,

ω(1)
i (R) =

δ(��Ri(R̂)�� − |r |)
ni(R̂) · r̂

,

ω(0)
i (R) =

Ki(R̂)
2π

ω(1)
i (R)

(6)

in the general form required for an anisotropic shape.18 A point
on the boundary ∂Bi of bodyBi with orientation ϕ in the direc-
tion of the unit vector r̂ = r/|r| is denoted by Ri(R̂), with
R̂ short for (r̂, ϕ). At this point, Ki(R̂) is the curvature and
ni(R̂) is the vector normal to the boundary. The orientation-
dependence of the weight functions ω(ν)

i (R) can be treated
as described for three dimensions49,50 or by considering each
discrete orientation as an individual species.

Here we briefly outline the idea behind FMMT.21,40

For a more detailed description of the mathematical back-
ground, see Refs. 46 and 50. First we identify in any spa-
tial dimension the Mayer function −fij = χ(Iij) with the
Euler characteristic χ(Iij) = ∫ Φ0(Iij, dr) of the intersec-
tion. The latter can be further written as the spatial integral
of the local curvature measure Φ0, which is closely related
to the weight function ω(0)

i when evaluated for a body Bi.40

Applying in two dimensions the translative integral formula
(iii) to Eq. (3) results for any orientations ϕ1 and ϕ2 in the
decomposition

−

∫∫
fij(R1,R2) dr1 dr2

=

∫∫∫
dr

2∑
k=0

Φ(0)
k,2−k(B̄i(r, ϕ1), B̄j(r, ϕ2); d(r1, r2)),

(7)
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defining an inverted body as B̄i(r, ϕ1) B 2r − Bi(r, ϕ1) and
introducing the mixed measures Φ(0)

k,2−k .21,40 For the precise

definitions ofΦ0 andΦ(0)
k,2−k , see Ref. 46.

It can be shown40 that for k = 0 and k = 2, the expression
on the right-hand side of Eq. (7) factorizes into a convolution
product

ω(ν)
i ⊗ ω

(µ)
j =

∫
dr′ω(ν)

i (r′ −R1) ω(µ)
j (r′ −R2) (8)

(integrated over dr1 and dr2) of the scalar weight functions
with labels 0 and 2, where (r − R1) is short for (r − r1, ϕ1).
In a similar way, we can define from Φ(0)

1,1 the mixed weight

function40

Ω(11)
ij (R1,R2) =

arccos(ni · nj)

2π
|ni × nj |

×ω(1)
i (R1)ω(1)

j (R2), (9)

where the vector product of the normals ni = ni(R̂1) and
nj = nj(R̂2) can be calculated by adding a z component equal
to zero or according to |ni × nj | = sin(arccos(ni · nj)). Thus
we find the decomposition21,40

− fij = ω
(0)
i ⊗ ω

(2)
j + ω(2)

i ⊗ ω
(0)
j + Ω(1⊗1)

ij (10)

of the Mayer function, where we define

Ω(1⊗1)
ij =

∫
dr′ Ω(11)

ij (r′ −R1, r′ −R2) (11)

according to Eq. (8) for two one-body weights.
To show that the same decomposition can be obtained

from the Gauss-Bonnet theorem (ii), we recall the
result

− 2πfij =
∫

∂Bi∩Bj

dli Ki +
∫

Bi∩∂Bj

dlj Kj +
∑

∂Bi∩∂Bj

φ (12)

of Ref. 11, where φ = arccos(ni · nj) is the angle between
the normal vectors at each intersection point and ni/j = ni/j(r′

−R1/2). The only difference is that we here consider an arbi-
trary convex body rather than a HD. This generalization does
not violate the underlying assumption −fij = χ(Iij).

The line integrals in Eq. (12) involving the curvature K i

at the boundary of the intersection can be deconvoluted in the
standard way of FMT.11 To see that the last term is equal to
Ω(1⊗1)

ij , we rewrite the sum as a pseudo three-dimensional line

integral19∫
φ sin φ ds
|ni × nj |

=

∫
dr′ φ sin φω(1)

i (r′ −R1)ω(1)
j (r′ −R2),

(13)

where sin φ = |ni×nj |. Thus we have shown that Eq. (12) also
results in the decomposition given by Eq. (10).

The manner in which the Mayer function is rewritten in
Eq. (12) depends on the dimensionality, as the Gauss-Bonnet
theorem only applies to two-dimensional manifolds. In three
dimensions, we set −fij = χ(∂Iij)/2 for the two-dimensional
boundary ∂Iij of the three-dimensional intersection.18 There
is no obvious analog of strategy (ii) in other dimensions. In
contrast, FMMT (iii) provides a formal decomposition of the
Mayer function in an arbitrary dimension.21,40 Finally, we

note that although the last term in Eq. (10) still depends on
two bodies simultaneously, the presented decomposition con-
siderably facilitates the numerical implementation compared
to the bare Mayer function. This is because the two-body
weight functions exclusively depend on geometrical quantities
of the single bodies, which, however, cannot be further simpli-
fied by factorization21,40 without considering an approximate
expansion.11,18,19

B. Excess free energy

Following the standard procedure in FMT, we define the
weighted densities18,32

nν(r) =
κ∑

i=1

∫
dR1 ρi(R1) ω(ν)

i (r −R1) (14)

for the scalar weight functions in Eq. (6) and the mixed
weighted density21,40

N(r) =
κ∑

i,j=1

∫∫
dR1 dR2 ρi(R1) ρj(R2)

× Ω(11)
ij (r −R1, r −R2) (15)

corresponding to Eq. (9). With the decomposition of the Mayer
function from Eq. (10), we obtain the excess free energy den-
sity Φexc = n0n3 + 1

2 N in the low-density limit, Eq. (3), i.e.,
the FMT version of the Onsager functional in two dimen-
sions. Following the procedure for the HD functional,11,37 the
extrapolation to higher densities results in

Φexc = −n0 ln(1 − n2) +
N

2(1 − n2)
. (16)

The uncommon choice of the prefactor in the second term
stems from the definition of the mixed weight function accord-
ing to the decomposition in Eq. (7) in terms of mixed
measures.

Although we have the means to perform a free minimiza-
tion of the functional in Eq. (16), an expansion in terms of
tensorial one-body weighted densities as in three dimensions18

might prove fruitful. Such an approximation can be obtained
in a completely analog way as for HDs,11 as the structure of
the decomposition in Eq. (12) is exactly the same. Thus we
Taylor expand the term arccos(ni ·nj) sin(arccos(ni ·nj))/(2π)
in Eq. (9) up to quadratic order in ninj and identify the
vectorial

−→ω (1)
i (r) = ni (r̂) ω(1)

i (r) (17)

and tensorial

←→ω
(1)
i (r) = ni (r̂) nT

i (r̂) ω(1)
i (r) (18)

weight functions to factorize each term of this expansion. The
corresponding one-body weighted densities −→n 1 and ←→n 1 are
then calculated according to Eq. (14). Note that it is important
to write here ni instead of r̂, which is only equivalent to ni(r̂)
for HD parametrized in polar coordinates.

Following Ref. 11, we will consider the expansion coeffi-
cients as free parameters, which we adapt for a one-component
system to ensure (I) the correct second virial coefficient of the
homogeneous and isotropic fluid, (II) the correct dimensional
crossover to one dimension, and (IIIa) the best fit to the Mayer
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function of HDs. Conditions (I) and (II) do not depend on the
specific shape, so we find

N ≈
2 + a
6π

n1n1 +
a − 4

6π
−→n 1 ·

−→n 1 +
2 − 2a

6π
Tr

[
←→n 1
←→n 1

]
, (19)

in agreement with the approximation for HDs,11 where (IIIa)
results in aHD = 11/4.

For general convex bodies, we should demand a weaker
criterion than (IIIa), as the excluded area of two bodies depend-
ing on their intermolecular angle is not exactly represented,
which corresponds to the Mayer function integrated over
the particle positions. Hence, we will determine the final,
shape-dependent parameter a, as in three dimensions,19 by
requiring (IIIb) a minimal quadratic deviation from the exact
excluded area. This criterion can be refined in various ways
following the examples19–21,51 in three dimensions. In order
to further improve the general functional according to criteria
(IIIa) and (IIIb), it becomes necessary to introduce additional
parameters by including higher-order terms of the expansion
of the mixed weight function, which we will not consider
here.

III. NUMERICAL METHODS

In the following, we study the phase behavior of (one com-
ponent, κ = 1) hard discorectangles of aspect ratio l = L/D in
two dimensions, i.e., capped rectangles of length L and width
D equal to the diameter of the capping disks. The goal of our
work is twofold. First, we demonstrate for the first time a free
numerical minimization of a FMMT functional, which is exact
in the low-density limit, including the transitions between
spatially inhomogeneous phases of anisotropic hard particles.
Second, we extend the available reference data43 for a system
of hard discorectangles by performing new detailed MC simu-
lations, which resolve between smectic and crystalline phases
at high density. The used numerical techniques are described
below.

A. Monte Carlo simulations

We perform MC simulations of perfectly hard rods in the
isobaric-isothermal ensemble, i.e., at constant pressure p, num-
ber of particles N, and temperature T. Each simulation contains
N = 5760 particles in a rectangular simulation box with vari-
able box lengths, and simulations were run for approximately
106 MC sweeps (consisting of a rotation and translation move
per particle, as well as several volume moves). All simulations
were started using a perfect crystalline lattice as the initial con-
figuration. Overlaps were detected using the two-dimensional
equivalent of the algorithm introduced by Vega and Lago for
spherocylinders.52

In the simulations, we measure the pair correlation func-
tion g‖(r) along a crystalline or smectic layer, averaged over
the width of a single layer. We then plot g‖(r)−1 as a function
of the distance r and investigate how the oscillations decay
towards zero at large distances. In particular, we associate
exponential decay (indicating short-ranged positional order)
with the smectic phase and algebraic decay (associated with
quasi-long-range order) with the crystalline phase. Figure 1
shows typical examples of correlation functions for aspect ratio

FIG. 1. Translational ordering in the high-density smectic and crystalline
phases for aspect ratio l = 4. At lower packing fractions η . 0.85, we observe
a fast (exponential) decay of the in-plane pair correlation function g‖ (r) − 1,
while for higher η we find an algebraic decay.

l = 4. For all aspect ratios l ≥ 2, we observe a crossover from
exponential to algebraic decay in the correlation functions as
the packing fraction increases. We estimate the transition line
between the smectic and crystalline phases by extracting for
each aspect ratio the packing fraction at which this crossover
occurs.

In our simulations, we observe noticeable diffusion of par-
ticles between layers in the smectic phase, but essentially no
diffusion in the crystal phase. This suggests that our observa-
tion of a transition to a crystalline phase might occur simply
when our simulations are too short to sample the transfer of
particles between layers. This would ensure that the number
of particles per layer in our simulation is artificially fixed,
favoring a crystalline state. To ensure that this effect does not
meaningfully affect our result, we repeated simulations for
several aspect ratios using shifted periodic boundary condi-
tions, which facilitate transfer of particles between layers. Our
results show no significant differences in the transition density
measured using the two different approaches.

B. Density functional theory

Using the full expression (15) for N(r) in the excess
free energy density (16), we minimize the grand-canonical
free energy functional in real space with respect to ρ(R)
by analogy with Ref. 53 using the following Picard iteration
scheme:7

ρ(i+1)(R) = (1 − α̃)ρ(i)(R)

+ α̃
1

Λ2
exp

(
βµ(i) −

δ βFexc

δρ(R)

)
(20)

with the mixing parameter α̃ ≤ 0.01, Λ set to D, and the
functional derivative δβFexc

δρ(R) [see also Eq. (58) in Ref. 40]. The

chemical potential µ(i) is recalculated in every iteration step
to maintain the desired area fraction and converges to a finite
value in the iteration. As in previous studies,53–55 we combine
this iteration with a direct inversion in the iterative subspace
(DIIS)56–59 to improve the convergence. The resolution of the
spatial grid was chosen as ∆x = ∆y ≈ 0.03D and the discrete
orientations of the particles are chosen in equidistant steps of
∆φ = 2π/48.

IV. RESULTS FOR THE PHASE DIAGRAM
OF HARD DISCORECTANGLES

The functional, Eq. (16), based on the expansion in Eq.
(19) can be minimized analytically for hard discorectangles
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when we assume a homogeneous density. Demanding that
condition (IIIb) from Sec. II B holds, the remaining parameter
becomes a = 3 for any aspect ratio l of the discorectangles.
Note that in the HD limit, l → 0, where there is no distinction
between an isotropic and a nematic phase, condition (IIIb) is
equivalent to (I) so that the parameter a = aHD = 11/4 can
be used to fulfill (IIIa) instead.11 However, the present choice
a = 3 was found in Ref. 11 to be even more consistent with
the simulation data for the bulk pressure of the HD crystal.
Moreover, the excluded area of parallel discorectangles can be
exactly represented by choosing a = 4.

By analogy with the functional in three dimensions, we
expect that the choice a = 3 will provide reliable results for
the isotropic and moderately ordered nematic phases but will
not allow us to describe a stable smectic phase.20,51 The lat-
ter is only possible qualitatively for a = 4, ensuring that the
free energy per particle does not diverge in the limit l → ∞.
However, this parameter will result in a poor description
of the homogeneous phases,20,51 which is most apparent by
comparing to aHD in the HD limit.

To avoid the ambiguity of choosing a proper value of a,
our main objective is to perform a free numerical minimization
of the full functional from Eq. (16) with the mixed weighted
density from Eq. (15), which is feasible in two dimensions.
The employed algorithm is described in Sec. III. As a first
step, however, we will demonstrate the utility of expanding the
functional by calculating a closed expression for the isotropic–
nematic transition line.

To characterize the homogeneous phases, we repre-
sent the density ρ(ϕ) = ρ g(cos ϕ) in terms of a normal-
ized orientational distribution function g(cos ϕ). The two-
dimensional nematic order parameter is conveniently defined
as

S =
2
π

∫ π/2

0
dϕ

(
2 cos2 ϕ − 1

)
g(cos ϕ). (21)

For discorectangles, we obtain the weighted densities

n2 = ρ
(
LD +

π

4
D2

)
= η,

n1 = ρ (2L + πD), n0 = ρ,

(←→n 1)11 = ρ
(
L(1 + S) +

π

2
D
)

,

(←→n 1)22 = ρ
(
L(1 − S) +

π

2
D
)

,

(22)

where η denotes the packing fraction. For a given aspect ratio
l, the (nematic) free energy thus becomes a function of η and
S when we use the approximation in Eq. (19).

Minimization with respect to the orientational distribution
function18 results in

g(α, cos ϕ) =
exp

(
α2(2 cos2 ϕ − 1)

)
I0(α2)

, (23)

where In denotes the modified Bessel function of the
first kind, which follows from the normalization condition
∫
π/2

0 dϕ g(cos ϕ) = π/2. The parameter α(η, l) then follows
from the self-consistency equation

α2 B −
∂Φex(η, S, l)

ρ ∂S
. (24)

Inserting Eq. (23) into Eq. (21), we obtain the nematic order
parameter

S(α) =
I1(α2)

I0(α2)
=

1
2
α2 −

1
16
α6 + O(α10) (25)

as a function of α.

A. Isotropic–nematic transition

In order to study the isotropic–nematic transition, one has
to solve Eq. (24). For the functional from Eqs. (16) and (19),
there is at most one (stable) solution to Eq. (24) at a given
density, which is not the case in three dimensions. This can
be easily seen by rewriting the condition in the generic form
α2

� CS(α) = 0 with a positive parameter C ' C(η, l). The
position Cmin(α) at which the expression on the left-hand side
becomes minimal increases monotonously with increasing α.
Therefore, at α = 0 the isotropic and nematic solutions are
indistinguishable, denoting a second-order phase transition,
as it is expected from computer simulations,43,60 although also
first-order transitions between the isotropic and nematic phases
are discussed in the literature.25,61,62 Nevertheless, in three
dimensions, the corresponding result for S(α) admits a non-
monotonic behavior of Cmin(α), indicating that the nematic
phase is only metastable at small order parameters, i.e., the
isotropic–nematic transition is of first order.18

Solving Eq. (24) for η yields a closed expression for the
packing fraction

ηN(α) =

(
1 +

8l2(a − 1)I1(α2)

3π(4l + π)α2I0(α2)

)−1

(26)

at which the nematic phase is stable for a given α. Numerically
inverting ηN(α) and comparing to Eq. (25), we can calculate
the nematic order parameter S(η) as a function of the packing
fraction. In the limit of vanishing orientational order, we obtain
the packing fraction

ηIN B lim
α→0

ηN(α) =

(
1 +

4l2(a − 1)
3π(4l + π)

)−1

(27)

at the second-order isotropic–nematic transition of hard dis-
corectangles in two dimensions for an arbitrary aspect ratio l
and the parameter a. Obviously, with increasing the aspect
ratio, the transition density decreases down to the scaled
density

cN B lim
l→∞

ηINl =
3π

a − 1
(28)

obtained in the Onsager limit l → ∞.
As the isotropic–nematic transition in two dimensions is

of second order, the influence of higher-order terms in the
expansion of the mixed weighted density from Eq. (19) is
negligible, if the appropriate value a = 3 is chosen in a way
that it ensures that the leading term in the order-parameter
dependence is retained. Therefore, the result for ηIN given
by Eq. (27) with a = 3 is equivalent to that obtained with
the full functional from Eq. (19) based on the exact two-
body representation. This is well confirmed for infinitely long
rods where the Onsager result63 for the transition density is
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given by Eq. (28) with a = 3. A more detailed explanation
has been given for the analogous three-dimensional case,40,50

addressing the limit of metastability of the isotropic phase.
Up to the first non-vanishing term in the parameter α, we can
write

ηN(α) − ηIN =
6l2π(4l + π)(a − 1)

(4l2(a − 1) + 3π(4l + π))2
S2 + O(α8) (29)

with the help of Eq. (25). This result suggests that the nematic
order parameter S approaches the critical point with a critical
exponent of 1/2.

In Fig. 2 we show the density at the isotropic–nematic
transition of hard discorectangles given by Eq. (27) as a func-
tion of the (inverse) aspect ratio D/L for different values of
the parameter a. Our full minimization confirms the analyti-
cal finding that the transition is of second order. As discussed
above, the results agree perfectly with those for a = 3 within
the numeric error. For instance, at l = 9 we find ηIN = 0.363
and numerically ηIN = 0.365 ± 0.002. However, compared
to the simulation data,43,60 the DFT predicts much smaller
values. This discrepancy is comparable to the inaccuracy of
the Onsager functional63 due to disregarding the virial coef-
ficients higher than the second, which do not vanish in two
dimensions. From this perspective, Eq. (28) provides a sim-
ple method to fix the parameter a to recover the simulation
result cIN ≈ 7 for l → ∞,60 which appears more reasonable
than fitting to simulation data at finite aspect ratio, as proposed
in three dimensions,18 but is still empirical in nature. Indeed,
accordingly choosing a = 3π/7 + 1 results in better agreement
with the simulation data for rods of finite thickness but deviates
more and more with decreasing aspect ratio. Since this purely

FIG. 2. Packing fraction at the second-order isotropic–nematic transition of
two-dimensional hard discorectangles from the analytic prediction given by
Eq. (27) (lines) for the parameters a = 3π/7+1 ≈ 2.35 [obtained to fit Eq. (28)
to the simulation result60 in the Onsager limit, magenta], a = 3 (cyan), and a
= 4 (red) as a function of the inverse aspect ratio l�1 = D/L. The approximation
(19) with a = 3 matches the isotropic–nematic transition of the full functional
with Eq. (15) (points), which was numerically evaluated under the constraint
of a spatially homogeneous density. Data from MC simulations43 are shown
for comparison (black line).

empirical approach is also inconsistent with the proper imple-
mentation of FMMT, we will not further discuss it here. On
the other hand, choosing a = 4 results in the poorest functional
for the isotropic–nematic transition.

Now we study the nematic phase of discorectangles with
aspect ratio l = 9 in more detail. For various densities close
to the isotropic–nematic transition, we compare in Fig. 3
the nematic order parameter S obtained according to Eq.
(21) from a minimization of the full functional (red) and
the analytical approximation with a = 3 using Eqs. (25) and
(26) (black). We observe that beyond the common (up to
a horizontal shift due to the numeric error) transition point
with S(ηIN) = 0, the numerical result for the order param-
eter increases faster than that of the approximation in terms
of rank-two tensors. Fitting b

√
η − ηIN with fit parameter

b≈ 3.22 (gray) to the numeric data shows a very good agree-
ment close to ηIN and also points to a critical exponent of
1/2. From Eq. (29) we find b̃≈ 2.94< b for the analytical
approximation.

The reason for the stronger increase of the order parameter
in the numerical data is that the orientational distribution, Eq.
(23), and thus the expansion of the nematic order parameter S
in Eq. (25) are only exact at leading order in the orientational
anisotropy, i.e., up to the quadratic term in α. As demonstrated
in three dimensions,40,50 it is possible to include tensors of
higher rank to the expansion from Eq. (19) in a systematic
way (suitably chosen correction parameters). This results in
the presence of additional order parameters and a more accu-
rate analytic solution for the nematic orientational distribution.
For example, the nematic order parameter in Fig. 3 calculated
from such an approach would converge to the data from a free
minimization of the full functional.

FIG. 3. Nematic order parameter S(η) for discorectangles with aspect ratio
l = 9 close to the area fraction of the isotropic–nematic transition ηt as a
function of the area fraction η. Both numeric results for Eq. (15) (red) and
analytic results for the approximation (19) with a = 3 (black) show a second-
order transition between the isotropic and the nematic phases. Close to this
transition, the nematic order parameter can be fitted with a square root function
(gray), showing a critical exponent of 1/2, which agrees with that suggested
by Eq. (29). The inset compares the shape of S(η) for Eqs. (15) and (19) when
rescaled.
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FIG. 4. Density and orientation profiles for various
aspect ratios l and area fractions η. The orientation inte-
grated center-of-mass density is shown in the color plot,
while the local mean orientation is indicated with green
dashes for (a) the isotropic phase at l = 4, η = 0.4, (b) the
nematic phase at l = 9, η = 0.6, (c) the smectic phase
at l = 2, η = 0.8, (d) the crystalline phase at l = 2,
η = 0.9. For scale, a dash with length corresponding to
perfect nematic order (|S| = 1) is drawn in (a).

B. Inhomogeneous phases

Taking now also spatially inhomogeneous phases into
consideration, it is no longer possible to obtain an accurate
analytic solution of the functional. Instead, we perform a full
numerical minimization of the functional including the full
expression, Eq. (15), for the mixed weighted density. We
find in total four different phases for both DFT and MC:
(a) an isotropic phase with neither orientational nor spatial
order, (b) a nematic phase with orientational but no spa-
tial order, (c) a smectic phase with orientational order and
spatial order in one dimension, and (d) a crystalline phase
with both orientational order and spatial order in two dimen-
sions. Typical DFT profiles for these four phases are shown
in Fig. 4 and particle resolved sketches for these phases are
shown in the insets of Fig. 5. The phase diagram for vary-
ing aspect ratios (l = L/D) and area fractions (η) is shown in
Fig. 5.

The isotropic phase (I, green) is dominating at low area
fractions. For all aspect ratios at sufficiently high area frac-
tions, the discorectangles freeze into a crystal (Cry, purple),
with layers of discorectangles. Particles of adjacent layers are
shifted by half a particle width, allowing the rounded caps of
one particle to fill the voids between two rounded caps in each
adjacent layer [see the density profile in Fig. 4(d) or the inset
in Fig. 5]. Such a crystal allows for the closest packing (gray
dotted line in Fig. 5). The closest packing ηcp as a function of
the aspect ratio l is given by

ηcp =
l + π/4

l +
√

3/2
. (30)

For large aspect ratios, a nematic phase (N, blue) is found for
intermediate area fractions for both DFT and MC, although
the stability of the nematic phase is overestimated by DFT
when compared with MC data (black dashed line, Ref. 43), as
discussed in Sec. IV A.

For the first-order phase transition between a solid phase
(either smectic or crystal) and a fluid phase (either isotropic

or nematic), MC data are taken from the work of Bates
and Frenkel.43 These “melting/freezing lines” (black solid
lines in Fig. 5) are coexistence lines, which were calculated
via free energy calculations for l ≤ 7 and extrapolated to
larger aspect ratios.43 For this phase transition, the agreement
between the MC data and our DFT is very good. In particu-
lar, in the HD limit (l = 0), the transition density between the

FIG. 5. The phase diagram for discorectangles as a function of aspect ratio
and area fraction is shown for FMMT data (points) and compared with MC
data (lines). For the transition between a solid phase (S or Cry) and a fluid
phase (I or N), the corresponding melting and freezing lines for MC (black
solid lines, adopted from Ref. 43) are in very good agreement with DFT. At
sufficiently high aspect ratios, we find for the solid a transition from a smectic
(red) to a crystalline (purple) phase for both MC (red line) and DFT. Close
to this transition, the energy difference between the smectic and crystalline
phases was close to our numeric error bars. Those points are displayed with
open symbols for the slightly dominating phase. The stability of the nematic
phase (blue) is overestimated when compared with MC data (black dashed
line, adopted from Ref. 43). The topology is identical for both DFT and MC,
except that we find a columnar phase once in the DFT (gray). The closest
packing (gray dotted line) is shown for comparison. Sketches for the phases
are shown in the insets.
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isotropic and the crystalline phases matches the values found in
early computer simulations64 and DFT calculations based on
Eq. (19).11

For small aspect ratios (l ≤ 1), the discorectangles directly
freeze into a crystal when increasing the area fraction. At
higher aspect ratios (l ≥ 1.7), the discorectangles freeze first
into a smectic phase (S, red) with orientational and transla-
tional order in just one spatial dimension, before they cross
over to the crystal at even higher area fractions. We find this
behavior for both DFT and our refined MC. Close to this transi-
tion, the energy difference between the smectic and crystalline
phases is close to our numeric error bars. This uncertainty is
depicted in Fig. 5 with open symbols indicating the slightly
dominating phase. At l = 1.3 (close to the isotropic–smectic–
crystal triple point), we find in DFT a columnar phase, with
particle alignment parallel to the density layer, instead of a
smectic phase at a single state point between the isotropic and
the crystal. We do not observe this in MC.

Note that the MC data in Fig. 5 for the melting of the solid
does not take into account the possibility of melting via the
Kosterlitz-Thouless (KT) dislocation unbinding mechanism,
which would not be visible in DFT,11 but could influence sim-
ulations. However, such a melting scenario is only likely to
occur for very short rods, close to the HD limit where a KT
crystal–hexatic transition and a first-order hexatic–isotropic
transition are predicted.65,66 Reference 43 reported no evi-
dence of topological defects even for l = 1, and hence in
the regime explored with simulations here, we do not expect
this scenario. In contrast, the nematic–isotropic transition does
occur via a continuous KT transition.43

V. CONCLUSIONS

In conclusion, we have predicted the bulk phase diagram
of two-dimensional hard rods from fundamental mixed mea-
sure theory and found a stable isotropic, nematic, smectic, and
crystalline phase depending on the particle aspect ratio and
density. In general, it is mandatory to use a free minimization
technique to obtain the correct minimizing equilibrium state
in the density functional theory. At intermediate area frac-
tions, the second-order isotropic–nematic transition is equally
described by an analytical curve found from a simple expan-
sion of the functional. The density functional results for the
phase diagram agree well with our MC calculations, which
also show a stable smectic phase.

For the first time, we have implemented a free minimiza-
tion of the two-dimensional version of FMMT, which is not
feasible in higher dimensions. In further contrast to the three-
dimensional case, the mixed weighted density does not vanish
in the HD limit,36 and thus our approach also provides the
most accurate way to study the crystallization of the HD fluid
within the framework of FMT. Moreover, the value of the
free parameter in the computationally more efficient expanded
functional from Ref. 11 derived here appears to give bet-
ter results for the HD crystal11 and the liquid crystal surface
tension.67

For the inhomogeneous phases of very long rods at
high densities, a free minimization of FMMT becomes more
demanding. Following the examples in three dimensions,

this region of the phase diagram can be explored more effi-
ciently by systematically expanding the mixed weighted den-
sity for intermediate aspect ratios38 or by a linearization in
the orientation-dependence for highly aligned systems of very
long rods.21,50 Another possible simplification would be to
perform an (approximate) parametrized minimization, in com-
bination with the decoupling approximation.20 The latter is
well justified for the smectic phase since Fig. 4(c) indicates
that the orientational order is independent of the spatial coor-
dinate. This procedure could allow for an analytic calculation
in the limit of strong alignment.21,50

We have seen that the onset of crystallization is pre-
dicted very accurately for the aspect ratios considered here,
which should also be the case for longer rods since FMMT
recovers the cell theory limit.51 Note that, for some ver-
sions of the cubic term in the density, the three-dimensional
FMMT can diverge in an unphysical way when applied to
highly aligned long rods.20,51 There is no such pitfall for
FMMT (and the expanded form with a = 4) in two dimen-
sions. By construction, FMMT also reduces to scaled particle
theory for a homogeneous fluid, which is known to overes-
timate the pressure at finite density, and to Onsager theory
for infinitely long rods, which omits all relevant virial coeffi-
cients higher than the second. As a result, the nematic phase
is severely overstabilized compared to the isotropic fluid,
and we expect that the nematic–smectic transition of long
rods predicted by FMMT will occur at smaller densities than
found in computer simulations, which is also the case in three
dimensions.21

In the future, the theory should be applied and generalized
towards different situations: first of all, other particle shapes
such as two-dimensional ellipses68,69 or rectangles with sharp
edges53,70 can be considered, as well as mixtures between
particles of different sizes37,71 or shapes.72 Second, our bulk
phase diagram provides the starting point for a microscopic
theory of interfaces49,55 between two coexisting phases that
show interesting translational and orientational structures.73

Third, our density functional theory can be generalized towards
dynamical density functional theory74–80 describing transla-
tional and orientational Brownian dynamics of rods.45 Finally
our results for the phase diagram can in principle be veri-
fied by experiments using layers of monodisperse sterically
stabilized colloidal rod-like particles.29,81–86 Another macro-
scopic option is shaken granular rods87,88 on a substrate which
resemble equilibrium phase behavior.
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