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Dislocation-free growth of quasicrystals from two seeds due to additional
phasonic degrees of freedom
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We explore the growth of two-dimensional quasicrystals, i.e., aperiodic structures that possess long-range
order, from two seeds at various distances and with different orientations by using dynamical phase-field crystal
calculations. We compare the results to the growth of periodic crystals from two seeds. There, a domain border
consisting of dislocations is observed in case of large distances between the seed and large angles between their
orientation. Furthermore, a domain border is found if the seeds are placed at a distance that does not fit to the
periodic lattice. In the case of the growth of quasicrystals, we only observe domain borders for large distances and
different orientations. Note that all distances do inherently not match to a perfect domain wall-free quasicrystalline
structure. Nevertheless, we find dislocation-free growth for all seeds at a small enough distance and for all seeds
that approximately have the same orientation. In periodic structures, the stress that occurs due to incommensurate
distances between the seeds results in phononic strain fields or, in the case of too large stresses, in dislocations.
In contrast, in quasicrystals an additional phasonic strain field can occur and suppress dislocations. Phasons are
additional degrees of freedom that are unique to quasicrystals. As a consequence, the additional phasonic strain
field helps to distribute the stress and facilitates the growth of dislocation-free quasicrystals from multiple seeds.
In contrast, in the periodic case the growth from multiple seeds most likely leads to a structure with multiple
domains. Our work lays the theoretical foundations for growing perfect quasicrystals from different seeds and is
therefore relevant for many applications.
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I. INTRODUCTION

Structures with long-range order but no translational
symmetry, also known as quasicrystals, have been observed
in various metallic alloys (see, e.g., Refs. [1–3]) as well
as in soft matter systems [4–8]. Quasicrystals can possess
rotational symmetries that are usually not allowed to occur for
periodic structures, though 5-, 8-, 10-, or 12-fold rotational
symmetries seem to occur more often than other symmetries
[9,10]. Furthermore, additional hydrodynamic modes, termed
phasons, can occur in quasicrystals [11]. They correspond to
complex correlated rearrangements of the particles [12–14].
Similar to phonons, exciting phasons do not cost any energy
in the limit of long wavelengths. Furthermore, local phasonic
excitations, also known as phasonic flips, lead to new growth
modes where phasonic flips are built into the grown quasicrys-
talline structure, which nevertheless does still not possess any
dislocation [15]. Note that in periodic crystals there is no
corresponding counterpart for such a dislocation-free growth
with built-in local phasonic flips. In experiments, the growth
of a Al-Ni-Co decagonal quasicrystal was studied in Ref. [16],
where frequent phasonic excitations are found at the growth
front that usually relax later on. This is in qualitative agreement
to what we observe for decagonal quasicrystals in Ref. [15].
Note that in soft matter systems, which we want to consider
here, dodecagonal quasicrystals seem to occur more often than
decagonal quasicrystals [17]. Experimentally, the growth of
a dodecagonal quasicrystals has recently been studied in an

*Corresponding author: michael.schmiedeberg@fau.de

oxide quasicrystal, which occurs as a wetting layer of BaTiO3

on a Pt(111)-surface [18,19].
To explore the growth process of soft matter quasicrystals,

we employ a so-called dynamical phase field crystal (PFC)
model [20,21], which is based on an expansion of the free
energy like a Swift-Hohenberg theory [22,23]. Furthermore,
the PFC free energy can be derived from microscopic theories
[24,25]. To describe periodic crystals, one characteristic
length scale is employed in the free energy leading to a theory
that can describe triangular, stripe, and fluid phases in two
dimensions [20,21]. Quasicrystals are expected to occur in
one-component soft-matter systems if the pair interaction
contains at least two incommensurate characteristic length
scales [15,26–34], which can be achieved in experiments
[4]. In the framework of PFC or similar approaches, if a
second length scale is added to the free-energy expansion,
one finds quasicrystalline structures in two [15,26,27] or three
dimensions [34]. Furthermore, dynamical PFC can be used to
study the growth dynamics [15]. The dynamical PFC model
that we employ here describes the overdamped dynamics as
it usually occurs in soft matter systems.

Growth of crystals out of a melt normally occurs via
nucleation [35,36]. Typically, there is not only a single nucleus
initiating crystal growth but an ensemble of neighboring
nuclei that all generate growing crystallites around them.
These crystallites then meet. For the resulting final structure
it is therefore essential to know how the growing crystallites
merge. Here different scenarios are conceivable: either a large
crystallite “eats up” a neighboring smaller one or incorporates
it into its own structure, leaving behind a distortion, or the two
neighboring crystallites both keep their structure and form a
long-lasting grain boundary. In the latter case, the resulting
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crystalline texture is not monocrystalline. For quasicrystals,
the same basic question is relevant, e.g., if these are grown
from liquid metallic alloys [37,38]: Is it possible to grow
perfect quasicrystals, i.e., structures without domain borders
once several nucleation centers are present? For the case of a
periodic crystal grown from two seeds, we observed [39] that
if the orientation of the two seeds is similar, or they are close
together, then the growth might result in a monocrystal, while
if the seeds are far away from each other and rotated with
respect to each other, then they grow into two stable crystals
that form a domain boundary in between. Here we explore the
growth of a quasicrystal from two seeds and explain that there
is the possibility to excite phasonic strain, which suppresses the
dislocations if the seeds are not too far apart from each other. As
a consequence, there is no domain border in a quasicrystal for
many cases where a domain border would form in the periodic
case. This is important both from a fundamental point of view
and for practical applications.

The article is organized as follows: We introduce the setup
and explain the employed model system in Sec. II. In Sec. III,
we first present results for the growth of a periodic crystal from
two seeds before we explore the growth of a quasicrystal and
analyze the phononic and phasonic strain fields. Finally, we
conclude in Sec. IV.

II. MODEL AND SETUP

A. Dynamical phase-field crystal model

We employ a dynamical phase-field crystal (PFC) model,
where a scalar density field ψ(�r,t) evolves following con-
served dynamics [20], i.e., in reduced units,

∂ψ(�r,t)
∂t

= ∇2

[
δF [ψ(�r,t)]

δψ(�r,t)
]
. (1)

As pointed out in the Introduction, Eq. (1) describes over-
damped dynamics. Note that it has been shown in Ref. [40]
that ballistic phonons cannot be correctly described by this
approach. Therefore, in systems that are not overdamped,
additional relaxation mechanisms might exist that are not
considered in our present work. The free-energy functional
F [ψ(�r)] is given by the following expansion that contains one
or two incommensurate lengths scales [15,27]:

F [ψ(�r)] =
∫

d�r
⎡
⎣1

2
ψ(�r)

⎧⎨
⎩−ε +

m∏
j=1

(
k2
j + ∇2

)2

⎫⎬
⎭ψ(�r)

+ 1

4
ψ(�r)4

⎤
⎦, (2)

where ε can be interpreted as the mean-field temperature
[20,21]. For a simple quasicrystal model, two length scales
of the phase-field crystal model are chosen (i.e., m = 2)
in terms of a unit length a such that k1 = 2π/a and
k2 = 4π cos(π/12)/a. This leads to a stable quasicrystal
with 12-fold symmetry [27,29]. In the periodic case, which
we consider for comparison, m = 1 and k1 = 2π/a. The
remaining parameter of this model is the mean density ψ̄

that is conserved under the dynamics of Eq. (1). The mean
density is measured in reduced units relative to the reference

density, which is typically taken to be that of a unique reference
point in the bulk phase diagram, here a triple point of three
coexisting phases with the same triple density. Therefore, ψ̄

can be negative, which means that the actual mean density is
smaller than the triple density.

The static and dynamical properties of the 12-fold case
were studied in Ref. [15]. At ψ̄ = 0 and ε = 0, there is a
triple point where the stable quasicrystalline phase with 12-
fold rotational symmetry, triangular ordering, and the fluid
phase meet. The properties of the static quasicrystalline phase
as well as of the quasicrystal grown from a seed depend on
the distance ε from the triple point. In the following, we will
call the structures close to local symmetry centers flowers in
accordance with Ref. [41]. For small ε, we observe that such
flowers are surrounded by 12 density peaks of approximately
similar height. Furthermore, the growth from a seed leads to
perfect quasicrystals. However, for large ε, the density peaks in
a flower usually have very different heights. In addition, when
growing quasicrystals for large ε, many local phasonic flips
are built into the structure, though there are no dislocations.

In the periodic case, we use ε = 0.018 and the average
density ψ̄ = −0.0775. The lowest free energy for these
parameters is given by a triangular phase.

Concerning the numerical calculations, Eq. (1) with
F [ψ(�r)] from Eq. (2) is solved using a semi-implicit spectral
method [42–44], in which the linear term is treated implicitly
and the nonlinear term explicitly. At each time t , we obtain the
field at the next time t + �t using the following update rule:

ψ(�k,t + �t) = ψ(�k,t) − �tk2F[ψ3(�r,t)]
1 + �tk2

[−ε + ∏m
j=1

(
k2
j − k2

)2] , (3)

where F denotes the Fourier transform. For the periodic
case, we use square grids of sizes Nx = Ny = 1920 and
discretization �x = �y = 194a/Nx . For the quasicrystals
we use Nx = Ny = 4096 and �x = �y = 252a/Nx . The
time step is �t = 0.05 for all calculations. The starting
configurations for both periodic systems and quasicrystals
are circular cuts from the unrotated or rotated bulk structures
(see next subsection for more details). All calculations were
performed on NVIDIA graphics cards using CUDA [45] and
cuFFT high perfomance library for the Fourier transforms [46].

B. Setup

For both the periodic and quasiperiodic case the initial
setups contain two seeds of prescribed initial sizes at a distance
d in x direction. The orientation between the two seed differs
by an angle θ . We consider one large and one small seed. The
smaller seed usually is only slightly larger than the critical
seed size that is necessary to grow an ordered solid. Note
that this critical seed size differs between the periodic and the
aperiodic case and also depends on the parameter ε. Therefore,
it does not make sense to quantitatively compare periodic and
aperiodic systems with exactly the same parameters because
their growth behavior as well as their free energy would be
inherently different. Instead, we consider two different setups
for the growth of a quasicrystal and compare it qualitatively to
a similar system that leads to a periodic crystal.
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FIG. 1. Examples of initial configurations for (a) the periodic
case, ε = 0.018, ψ̄ = −0.0775 and (b) the quasiperiodic case ε =
0.25, ψ̄ = −0.315. The periodic crystalline seeds are chosen such
that they are symmetric around the center of the seed which contains
a density maximum, while the quasicrystalline seeds contain the
main symmetry center. The seeds are cut out from equilibrated solid
configurations.

In the periodic case, the starting configuration is depicted in
Fig. 1(a). The larger initial seed has radius r1 = 3.18a with 37
maxima and one of the main lattice directions is parallel to the
y direction, while the small seed was fixed to r2 = 2.25a with
19 maxima and was rotated with the angle θ . For each angle
the distance d between seeds is varied. A similar setup for
the growth of periodic structures was studied by using density
functional theory [39,47].

For the growth of a quasicrystal, the calculations were done
for two sets of parameters that both lead to the formation of
a stable quasicrystal. To be specific, we employ ε = 0.22 or
ε = 0.25 and in both cases the average density ψ̄ = −0.315.
Note that for ε = 0.22 the system is closer to the triple point
such that for ε = 0.25 phasonic flips occur more often [15].
For ε = 0.22 the large seed has the radius r1 = 12.30a and the
small one r2 = 8.7a. For ε = 0.25, r1 = 5.09a and r2 = 3.6a.
As in the periodic case the large seed has one of the main
lattice vectors parallel to the y axis, while the small seed is
rotated by an angle θ [cf. Fig. 1(b)].

III. RESULTS

A. Growth of periodic crystals from two seeds

First, we present results for the periodic case. For large
distances d between the seeds and sufficiently large θ , first two

crystals grow independently. When the crystallization fronts
meet, both of these crystals usually keep their orientation such
that a metastable grain boundary consisting of dislocations
occurs [shown in blue and with squares in Fig. 2(a), cf.
snapshot in Fig. 2(e)]. For smaller distances d between the
seeds and still sufficiently large θ , a defect-free crystal is
formed [Fig. 2(d)]. Either, the larger seed takes over the smaller
seed resulting in a strained crystal or the crystal grown from
the smaller seed is rotated such that it fits the orientation of the
large seed [marked red and with circles in Fig. 2(a)].

In case of small angles θ , it is easier to rotate the small
crystal to fit the orientation of the large one. However, a domain
border can still occur if the distance between the two seeds does
not support the formation of one defect-free crystal, i.e., if d

is an even multiple of the lattice constant a as in Fig. 2(b), a
defect-free crystal is observed, but if d is an odd multiple of a

as in Fig. 2(c), dislocations are formed. As a consequence, the
regions of defect-free growth and the regions of growth with
a domain border alternate in the diagram shown in Fig. 2(a)
for small θ . Note that we never observe that dislocations in the
domain border act as nucleation sites. In principle, this might
occur in three dimensions.

In summary, in the periodic case the small crystal might
adjust to the large crystal either by rotation or by absorbing
the nonfitting ordering into a (phononic) strain field. However,
such an adjustment, i.e., the formation of defect-free crystal, is
only successful in the case of large angles and small distances,
where the small seed still can be transformed quite easily or
for small angles, if and only if the distance between the seeds
is commensurate to a defect-free crystal. Note that we never
observe the displacement of a whole crystal when two crystals
meet at an incommensurate distance. In ballistic systems with
only small or no viscous damping, such a displacement might
be possible.

B. Growth of quasicrystals from two seeds

For the growth of a quasicrystal from two seeds, we con-
sider two parameter sets to demonstrate that the quantitative
behavior might depend on these parameters, while the general
qualitative results do not. In Fig. 3(a), we show where the two
systems that we study are located in the phase diagram. The
type of long-distance behavior that we observe is indicated in
Figs. 3(b) and 3(c). For both parameter sets, we find domain
borders consisting of dislocations in case of large distances
and large angles [indicated by squares and the blue color in
Figs. 3(b) and 3(c)]. For small distances or small angles we
discover the growth of a dislocation-free quasicrystal (marked
by circles and red). Examples for the final density fields are
shown in Figs. 3(d)–3(g).

Note that dislocations are not easily visible in quasicrys-
talline patterns. To analyze the density fields we have first
determined the structure factor, filtered out two opposite
first-order Bragg-peaks, and then applied an inverse Fourier
transformation. In the resulting stripe pattern, dislocations can
be identified [cf. Figs. 3(h)–3(k)]. More details on this method
and its application are given in Refs. [48,49].

A difference between the systems with periodic and
quasiperiodic structures can be found for small angles θ . In
the periodic case the occurrence of domain borders depends
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FIG. 2. Long-time situation of the growth started from two seeds
at a distance d and orientations that differ by an angle θ for the
periodic case. (a) Depending on d and θ , circles mark the points in the
diagram where we observe defect-free crystals at late times. Squares
denote cases where a domain border consisting of dislocations occurs.
The red (light gray region with circles) and blue color (dark gray with
squares) are used to highlight the parameter regions where defect-free
final configurations or domain borders are found, respectively. (b–e)
Density fields of the the grown structure at late times long after the
two crystalites have been united. In (b, c) for a small angle, θ = 2◦,
either the large seed incorporates the small seed if the seeds are at
a commensurate distance, e.g., for d = 16a as shown in (b) or both
seeds are stable and an interface is formed in case of incommensurate
distances, e.g., for d = 17a shown in (c). For a large angle θ = 25◦,
the large seed incorporates the small seed at small distances up to
about d = 13a shown in (d). For larger distances, e.g., d = 14a (e),
an interface occurs.

on whether the distance between the seeds is commensurate
to a perfect triangular lattice or not. Note that in the case
of quasicrystals the two seeds are always incommensurate,
because the seeds have been constructed such that they

correspond to the local ordering around the unique perfect
symmetry center, which in a perfect quasicrystal must occur
only once. Despite this inherent misadjustment, we observe
that a defect-free quasicrystal is always formed if the distance
d between the seeds is sufficiently small or if the orientation
of the seed is almost the same. Obviously there has to be a way
how two quasicrystals can be strained such that they fit together
without dislocations even though the two seeds are inherently
nonfitting. As we will show in the next subsection, the
dislocation-free connection of two quasicrystalline structures
is facilitated by the possibility to use the additional phasonic
degrees of freedom for an extra strain relaxation on top of the
phononic strain.

For the growth from two seeds with a large difference in
orientation on a first glance the results seem to be similar for
the periodic and the quasiperiodic case. For large distances
where both seeds could grow into stable structures before the
ordered regions meet, we find the formation of a domain border
while for small distances the small seed is taken over by the
large one either by rotating the small seed or by straining
both seed structures. In case strain structures are involved, the
type and extent of strain might differ between the periodic
and the aperiodic case as we will discuss in more detail in
the next subsection. Since a quasicrystal has more degrees
of freedom that help to distribute strain, we expect that a
defect-free structure occurs more likely for quasicrystals than
for periodic crystals. However, quantitative comparisons are
not possible, because there is no natural choice of parameters
for such a comparison. Already for the quasicrystalline case,
the set of parameters influences the maximal angle or maximal
distance that leads to defect-free growth as can be seen by
comparing Figs. 3(b) and 3(c). The closer we are to the triple
point, the larger the distance between quasicrystalline seeds
can be without leading to a domain border [note the different
scales for d in Figs. 3(b) and 3(c)].

An interesting detail for the growth of a quasicrystal can
be seen in Fig. 3(b). For a constant distance around 35a, we
find a dislocation-free growth at small angles, while there is
a domain border at intermediate angles. However, for large
angles the growth again leads to a defect-free quasicrystal, i.e.,
we observe a reentrant behavior. The formation of a dislocation
due to orientation mismatches occurs more likely for smaller
than for larger angles θ .

C. Phononic and phasonic strain during the growth
of a quasicrystal from two seeds

The formation of strain fields and as a consequence the
mechanisms how two seeds can adjust to each other in the
aperiodic case differ significantly from the periodic case.
While in a periodic structure only phononic displacement
fields are possible, additional degrees of freedom exist in
quasicrystals [11–14], and in the following we show how they
enable the growth of dislocation-free quasicrystals, even in the
case the two original seeds are incommensurate.

In Fig. 4, we take a closer look into such a dislocation-
free growth started from two quasicrystalline seeds. In
Figs. 4(a)–4(c), we show the areas whose structures are
dominated by one of the seeds. To be specific, the blue area
(dark gray area on the left-hand side) indicates the region
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FIG. 3. (a) The phase diagram for the quasicrystal in the region of interest (for the complete diagram, see Ref. [15]). The fluid,
quasicrystalline, and triangular phase are marked with the letters F, Q, and T, respectively. Coexistence regions are observed that occur
between the two lines drawn at phase boundaries in the phase diagram. (b, c) Long-time situation of the structures grown from two seeds as a
function of distance d and angle θ for ε = 0.22 (b) or ε = 0.25 (c). The circles and red (light gray) regions mark the cases with a dislocation-free
quasicrystal at late times. The squares and blue (dark gray) regions denote where a metastable grain boundary is observed. (d–g) Density fields
for ε = 0.22 and (h–k) the corresponding filtered fields where dislocations become visible using the method explained in [48,49] for a very
small angle θ = 0.093◦ (d, e, h, i) and a large angle θ = 13.625◦ (f, g, j, k). For small distances d = 43a (d, h) or d = 35a (f, j) no dislocations
occur while for a larger distance d = 47a (e, i) or d = 39a (g, k) domain borders are observed.

where the density field corresponds to a quasicrystal that could
be grown from the large, left seed alone. Correspondingly, in
the regions colored in orange (light gray on the right-hand
side) the structure fits to a quasicrystal grown from only the
right seed. The coloring reveals that the quasicrystal grown
from the left seed (blue, dark gray) stops the growth of the
quasicrystal of the right seed (orange, light gray). The blue
(dark gray) quasicrystal embraces the orange (light gray) one
and will finally incorporate it.

To understand how the structure grown from the small seed
is taken over by the structure grown from the large seed, we
analyze the structure at time t = 500 in more detail, i.e., just

before the quasicrystal that originated from the small seed
disappears. In Fig. 4(d), we show a zoom to Fig. 4(c) around
the location of the small seed. Blue spots (dark gray on the
left-hand side) denote points where the density field does not
fit to the small seed while orange spots (light gray on the right-
hand side) indicate that the density does not fit to the struc-
ture that one would expect from the large seed alone. Note
that in the fluid on the right-hand side of Fig. 4(d), there
are blue and orange (dark and light gray) spots, indicating
that the fluid differs both from a quasicrystal grown from
the large seed as well as from a quasicrystal grown from the
small seed. Furthermore, while in the part that is dominated by
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FIG. 4. Growth of a dislocation-free quasicrystal with ε = 0.25 from two seeds that are rotated with respect to each other by θ = 13.625◦

and are placed at an incommensurate distance d = 16a. (a–c) Growth process that demonstrates how the quasicrystal that is grown from the
small (right) seed is taken over by the structure that originated from the large (left) seed. The white solid circles denote the initial positions of the
seeds. The orange (light gray) or blue (dark gray) areas on the right- or left-hand side of the figure indicate the region where the influence from
the small or large seed dominates, respectively. The colors are determined by calculating the differences between the density field obtained from
the growth from two seeds and the density field obtained by growing a quasicrystal from only the large (orange, light gray) or only the small
seed (blue, dark gray). The resulting differences have been squared and smoothened by a Gaussian blur of width σ = 4.1a. Therefore, orange
(light gray) or blue (dark gray) denotes the area where one mainly finds the structure that does not fit to the large or small seed, respectively.
White, gray, and black areas outside of the grown structures originate from additive mixing of blue and orange, i.e., white denotes areas that do
not fit to either seed while black areas fit to both. (d) Zoom view into the area marked by a white box in (c) (i.e., at time t = 500) in the same
representation, except without blurring. Therefore, blue (dark gray) spots denote points that do not fit to the small seed and orange (light gray)
spots indicate differences from a quasicrystal grown from only the large seed. (e) Histograms of density values that appear in the density fields
in the regions that are dominated by the small seed [orange, light gray areas in (a–c)] for different times t . The black solid line indicates the
distribution in a perfect quasicrystal (arbitrary scale). Note that for times t � 750, an orange (light gray) domain maintaining the orientation of
the right seed is no longer detectable.

the large seed there are hardly any orange (light gray) spots,
in the area that is mainly dominated by the small seed one
can also find blue (dark gray) spots. Interestingly, blue (dark
gray) spots appear at the centers of flowers while orange (light
gray) spots close to these centers are already weak. Therefore,
the most pronounced minima or maxima of the density field
that are located in the centers of these flowers are taken over
first. In the next step, the surroundings of the flowers have
to be adjusted to the new structure. The flower marked with
a green broken circle in Fig. 4(d) possesses blue as well as
orange spots (dark and light gray spots) in its surrounding. The
center of the flower already fits to the new (blue, dark gray)
structure up to a small displacement, i.e., a small phononic
strain. The surrounding of the flower corresponds to the new
structure up to a phasonic flip as the ones that we have also
observed in Ref. [15]. Therefore, the structure of the small seed
is taken over by the structure of the large seed by transforming
it into a structure with both phononic and phasonic strain
that later is relaxed. Note that a strong phasonic strain causes
orange and white spots but in case of the shown example, the
phasonic strain that remains in the end is too small to be visible

[cf. left-hand side of Fig. 4(d)]. Especially, it is much smaller
than the phasonic strain that can be excited thermally [50].

In Fig. 4(e), we plot the distribution of values of the density
field at different times for the region that is dominated by
the structure of the small seed, i.e., the region shown in orange
(light gray) in Figs. 4(a)–4(c). For comparison, the distribution
for a perfect quasicrystal is shown by a black line with an
arbitrary overall normalization. The small seed at time t = 0
possesses the same distribution of density values as the perfect
quasicrystal up to a rescaling factor and some noise due to the
small size of the seed. At times t = 250 and t = 500 the largest
as well as the smallest minima already have disappeared.
Density values at intermediate values still occur and due to
the growth of the quasicrystal might even occur more often
than before. These findings confirm that the most pronounced
maxima or minima that usually occur in the centers of flowers
are lost first. The less pronounced minima and maxima can be
built into the new structure corresponding to a quasicrystal
with phasonic strain. Only later, the phasonic strain is
relaxed and the remains of the structure of the small seed
disappear.
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IV. CONCLUSIONS

By using dynamical phase-field crystal models, we explored
whether the growth of periodic or aperiodic structures from
two seeds leads to defect-free orderings or whether a domain
border is formed. For both a periodic crystal as well as
for a quasicrystal, we systematically analyzed the impact of
different distances between the seeds and different mismatches
of the orientations of the seeds on final structure. In the case
of significant differences in the orientations, we observe the
formation of a rotated or strained defect-free periodic crystal
or quasicrystal, if and only if the seeds are not too far apart
in the beginning. Seeds that are at a large distance lead to the
growth of two independent large structures that form a domain
border when they get into contact.

For small differences between the orientations of the seeds,
the behavior of periodic crystals significantly differs from the
behavior of quasicrystals. In the case of periodic crystals,
a defect-free structure only occurs if the two seeds are at
a distance that is commensurate to a periodic lattice, while
in the aperiodic case we always observe the formation of a
dislocation-free quasicrystal, though the two quasicrystalline
seeds are never perfectly commensurate at any distance.

A major difference in how two growing structures might
adjust to each other is given by how stress can be distributed.
While in periodic crystals the stress between two nonfitting
structures only leads to a phononic strain field or dislocations,
in the quasicrystalline case a phasonic strain field can be used to
distribute the stress in addition. The phasonic strain field leads
to dislocation-free quasicrystals, where local rearrangements
have occurred that we observe as phasonic flips. Furthermore,
the phasonic strain can be reduced or even resolved by local
rearrangements.

Our results indicate that if a structure is grown from multiple
random seeds, in the periodic case a lot of metastable domain
borders will occur even if the seeds are close together, because
many seeds that by chance have a similar orientation will not
be at a commensurate distance. However, in the aperiodic case
we expect that a dislocation-free quasicrystal can be grown

if the seeds are sufficiently close together. The quasicrystal
obtained from multiple seeds can differ from a quasicrystal
that is grown from only one seed by a phasonic and phononic
strain field that is associated with phasonic flips.

For applications, for which the growth of monocrystalline
quasicrystals is crucial, our work indicates that the conditions
to grow pure quasicrystals can be much milder than those
needed to grow pure periodic crystals.

Future work should focus on more detailed models of
quasicrystal growth. One option is to go for dynamical
density functional theory [39,51], which is a more microscopic
description for the particle interaction than the phase-field
crystal model considered here. To obtain stable quasicrystals,
one either needs a complex effective interaction in a one-
component system or binary systems. However, we expect
that the general idea that phasons provide additional efficient
channels to anneal dislocations will still be valid in general.
Finally, it would be interesting to study colloidal quasicrystals
(see, e.g., Ref. [4]) on the particle-resolved level to check for
the different growth scenarios predicted by our theory in an
experiment. As has been documented in the periodic case,
experiments on colloids can resolve the full dynamics of a
growing crystal around a prescribed seed [52–55], such that
the full evolving structure can be monitored. This should be
applicable also to quasicrystals.
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