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Dipole correlation effects on the local field and
the effective dielectric constant in composite
dielectrics containing high-k inclusions

Elshad Allahyarov,*abc Hartmut Löwena and Lei Zhuc

Mixing dielectric polymers with high permittivity (high-k) inclusions can affect their electrical properties.

In actuation applications of dielectric elastomers, the polarized inclusions generate additional volume

polarization-related electrostriction. In energy storage applications, it is possible to store more energy in

dielectric composites because of additional polarization of the inclusions and interfaces. However,

mixing an electroactive polymer with high-k inclusions also brings several disadvantages. The expulsion

of the field from the interior of high-k fillers and the presence of two poles on the filler surface along

the applied field direction result in higher local fields EL near the inclusion poles. The resulting field

enhancement lowers the breakdown field (Eb) threshold for the material and therefore compromises

the actuation and energy storage capabilities of dielectric composites. To mitigate this issue, the

dependence of EL on the morphology of inclusion distribution, the field localization effect in chained

configurations, and the role of the dipole–dipole correlation effects in the enhancement of the dipolar

field of inclusions are analyzed. We show that the dipolar correlation effects are strong in large inclusion

composites and their contribution to the inclusion dipole moment m and to the local fields EL can reach

30–50%. A new method for deriving the composite permittivity from the field EL distribution, based on a

caged probe technique, is also presented.

1 Introduction

Electroactive polymers and composites belong to the fast growing
field of smart materials with promising applications in many
directions.1–15 Initially being developed for sensors and soft
actuators,16–18 vibration absorbers,19 and damping devices,20

these materials are now viewed as perfect building blocks for
artificial muscles,9,12,21 drug delivery systems,22,23 nano cancer-treat-
ment applications,24 and other multifunctional applications.14,25

The actuation of electroactive polymers is based on polarization
processes in dielectric elastomers (DE)1,9,21,26–30 and porous
polypropylene film electrets.10,31 Recent advances in composite
DE research show that a blend of a dielectric elastomer with
high-k inclusions is beneficial for the actuator properties.26,32–47

The inclusions deliver additional volume polarization related
electrostriction effects, which can either enhance the default
Maxwell-stress contraction, or override the latter and turn the

composite strain into an elongation.48–54 As shown in our recent
report,54 the electrostriction effect of the dipole–dipole inter-
actions between polarized inclusions strongly depends on the
distribution morphology of inclusions.

Besides regulating the composite actuation, the mixing
of electroactive polymers with high-k inclusions seems to be
beneficial for electric energy storage.55–58 Fig. 1 schematically
illustrates the advantages of filling a capacitor with a dielectric
film (DF) or with a DF which is additionally impregnated with
high-k inclusions. Such capacitors are the most conventional
devices used in electrostatic energy storage applications. Compared
to the unfilled capacitor in Fig. 1a, which can be charged up to the
charge q under the applied voltage V, the DF capacitor in Fig. 1b
can be charged up to the charge q + qm under the same applied
voltage. Here the excess charge qm stems from the necessity to
polarize the DF layer. If the DF additionally hosts high-k inclusions
as shown in Fig. 1c, one more charging term qp, which describes
the polarization effects associated with the doping particles, will
contribute to the total charge on the capacitor plates. In this case,
an additional demand to polarize the inclusions and the
interfaces59,60 between the inclusions and the host polymer,
and to transfer a part of the external field energy to the dipole–
dipole interaction energy among the inclusions makes it possible
to store more energy in the composite DF.
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The mixing of an electroactive polymer with high-k inclusions,
however, brings several disadvantages to the functionality of
composite dielectrics. For example, the expulsion of the electric
field from the interior of high-k fillers and the presence of two
poles on the filler surface along the applied field direction result
in the formation of high local fields EL near the inclusion surface
and around its poles. These fields, especially when they overlap
between neighboring inclusions, lower the breakdown field Eb

threshold in the material. As a consequence, much smaller
voltages can be applied to the DE composite to actuate it,60

or store electrostatic energy in the composite DF. If the DE
composite is prone to contraction under the applied field, then
the overlapping of the dipolar fields of inclusions along the
field direction will increase during the composite deformation.
This will additionally decrease the breakdown field Eb threshold.

In order to mitigate this issue, all contributions to the spatial
fluctuations of EL from the inclusions should be carefully
analyzed. First, the role of the inclusion distribution in the
composite should be addressed with a focus on the field localiza-
tion in chained inclusions. Second, sources of the dipole–dipole
correlation effects and their role in enhancing the dipolar moment
of inclusions should be elaborated. These correlation effects can
become strong in large inclusion composites and consequently
modify the composite electrostriction effects. In many model
systems the importance of such dipole–dipole correlations is
disregarded assuming that all inclusions develop the same
induced dipole moment defined by their polarizability factor
and the amplitude of the applied field E0. In dilute composites
with low packing fraction Z for fillers the dipolar correlations
are always ignored. Practically in all theoretical studies the
change in the dipolar correlations and thus the revision of the
dipole moments of inclusions during the composite actuation
has never been addressed. Our present study shows that the
contribution from the dipolar correlations to the inclusion dipole
moment m and to the local fields EL can become significant and
thus revision of the dipole moments due to dipolar correlations
among inclusions should be addressed.

The purpose of the current paper is to analyze how the dipole–
dipole correlation effects and the local field EL(r) distribution
in dielectric composites depend on the inclusion parameters:

its packing fraction Z and diameter sp. The issue of self-consistent
stabilization of the dipoles through iteration procedures for
a proper consideration of the dipole–dipole correlations is
thoroughly analyzed.

The remaining part of the paper is organized as follows.
In Section 2 we discuss how the mixing of dielectric polymers
with polarizable fillers enhances their functional properties.
In Section 3 the dielectric behavior of the composite, the
dimensionality and the percolation issues are analyzed. The
role of dipolar correlations in the DE composite actuation is
elaborated in Section 4. Our simulation model is outlined in
Section 5, where we explain the importance of the loop correction
term in the calculation of the inclusion dipole moment. Simulation
results are gathered and discussed in Section 6. Finally, we conclude
in Section 7.

2 Enhancing the electrical properties
of DE and DF composites

In practical applications, the effectiveness of the DE actuation
can be measured as how much load M could be lifted by the DE
actuation29

M ¼ A

g
YSM ¼

A

g
e0em

V

d

� �2

: (1)

Here SM is the Maxwell-stress strain under an open circuit
condition with a constant field E = V/d

SM ¼ �
e0E2

Y
1� 1

em

� �
(2)

and A is the DE area across the applied field E, d is the
thickness of the DE, g is the gravity acceleration constant,
e0 is the permittivity of the vacuum, and em and Y are the
permittivity and the Young’s modulus of the DE, respectively.

The electrostatic energy density in the elastomer under an
applied field

-

E is defined as

uDE ¼
1

2O

ð
O
Eð~r ÞDð~r Þd3~r ¼ 1

2
e0emE2 (3)

Fig. 1 Schematic illustration of the electrostatic energy storage in capacitors connected to a battery with a voltage V. Case (a) a capacitor without a
dielectric film will be charged up to a charge q. Case (b) a capacitor with a dielectric film will be charged up to a charge q + qm. Case (c) a capacitor with a
dielectric film impregnated with high-k inclusions will be charged up to a charge q + qm + qp. For more details, see text.
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where D = e0emE is the electric displacement, and the integration in
eqn (3) is taken over the composite volume O. Combining eqn (1)
and (3) we arrive at the following expression for the effectiveness of
the DE actuation,

M ¼ 2A

g
uDE: (4)

In a similar manner, the effectiveness of energy storage in
dielectric films can be evaluated as how much surface charge
density

q = Q/A = e0emV/d (5)

can be accumulated on the capacitor plates under the applied
voltage V. The energy density in the dielectric film is written as

uDE ¼
CV2

2Ad
¼ 1

2
e0em

V

d

� �2

(6)

where C denotes the film capacitance C = e0emA/d. Thus the
capacitor surface charge density q from eqn (5) can be
written as

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0emuDE

p
: (7)

From eqn (4) and (7) it is obvious that the effectiveness of the
dielectric film functionality, either in actuation or in energy
storage applications, explicitly depends on the energy density
uDE of the material. The full polarization energy of the DF or the
non-actuating DE material is Um = uDEO under the assumption
that the host polymer is nonpolar and has a homogeneous
structure. For energy storage applications, the ferroelectric
poly(vinylidene fluoride) (PVDF) polymer and its copolymers
are potentially useful.61–66 In this case, the energy density is
modified to uDEO = Um + UF, where UF accounts for the
additional energy required for phase transitions, the coupling
interactions among ferroelectric domains, and the domain
reorientation/switching behavior. In the present study, we
assume that UF = 0.

When the host polymer is blended with high-k inclusions,
the energy density uc in the composite will be larger than uDE

in eqn (3) because of the presence of additional polarization
processes. The additional polarization energy includes the
polarization energy of inclusions Up, the polarization energy
of the interface area between the inclusions and the host matrix
Upm, and the interaction energy between the induced dipoles
Umm. Therefore, the total energy density will become

ucO = Um + Up + Upm + Umm (8)

By replacing uDE in eqn (4) and (7) by uc, we see that blending
the host polymer with high-k inclusions enhances its functional
properties such as lifting heavier loads in actuation or storing
more charges on the capacitor plates.

During the actuation process of the DE composites, the
shape dependent polarization terms Um and Umm change to

Um* = Um � DUm

Umm* = Umm � DUmm (9)

where the decrease of Um is associated with the Maxwell-stress
contraction of the composite, and the decrease of Umm is
associated with the electrostriction effect of induced dipoles.
The role of the latter is elaborated in Section 6.1. In total, the
released energies DUm and DUmm in eqn (9) contribute to the
elastic energy of the actuation54

FN ¼ DUm þ DUmm ¼
YO
2
ðSÞ2: (10)

Therefore, eqn (8) for the total energy of the actuated DE
composite, which consists of electrostatic and elastic deforma-
tion energies, can be written as

ucO = Um* + Up + Upm + Umm* + FN. (11)

Note that this expression assumes that the volume O and
the energy density uc do not change during the composite
actuation.

3 Dielectric behavior of composites

The increase of the energy density uc 4 uDE in dielectric
composites, and thus the increase of their actuation power M
in eqn (3), or their charging power q in eqn (6) implies that the
host polymer permittivity em in eqn (3) and (6) should be
replaced by an effective permittivity eeff which is greater than
em. For the eeff, which is a function of two permittivities ep and
em, and the packing fraction Z of inclusions, we will use the
Maxwell–Garnett (MG) mixing rule67–70

eeffðMGÞ ¼ em
2em þ ep þ 2ZDe
2em þ ep � ZDe

(12)

and the Bruggeman (BR) mixing rule71,72

eeffðBRÞ ¼
1

4
Deð3Z� 2Þ þ ep þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De 2� 3Zð Þ � ep
� �2 þ 8emep

q� �
(13)

where De = ep� em. Both the MG and BR theories are mean-field
theories and do not take into account correlation and exchange
effects between dipoles.73–76 The physics underlying these
mixing rules is given in Appendix A.

In general, the original BR equation can be written for any
inclusion geometry in the following form73,74

Z
ep � eeff

ap ep � eeff
� �

þ eeff
þ ð1� ZÞ em � eeff

ap em � eeffð Þ þ eeff
¼ 0 (14)

where the response parameter ap corresponds to the depolari-
zation factor for the inclusions (ap = 1/3 is taken for spherical
inclusions in eqn (13)) and depends on the geometry of the
composite. As shown in ref. 73, eqn (14) can be used to predict
the percolation threshold value for the inclusions. Assuming
that the inclusions are conductive particles with ep = N, and
then taking the limit eeff - N, which corresponds to the
percolation of the inclusions across the sample, the percolation
limit is found to be Zc = ap. In other words, the depolarization
factor of inclusions defines their percolation threshold using
the Bruggeman approach. Usually, in experimental realizations
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of DE composites with spherical inclusions, for which Zc = 0.33,
the actual packing fraction of the fillers is kept below the
percolation threshold, Z o 0.3 for avoiding the electrical break-
down of the material.

It should be also noted that the dimensionality of the
composite is included into the BR approach through the single
shape parameter ap. Hence, only the shape of inclusions is
taken into account in the BR approach, whereas the shape of
the host matrix is not considered at all. On the other hand,
as we have shown in our recent work,54 the polarization of
inclusions depends both on the shape of inclusions and the
host matrix,

~Pp ¼
ep � em

em þ ep � em
� �

ap
e0em

1

1þ em � 1ð Þam
~E þ

X
j

~Ej

 !
: (15)

Here am is the depolarization factor of the host matrix along the
applied field E, and Ej is the electric field of other dipoles which
contribute to the polarization of inclusions. In other words, the
dimensionality of the composite is adequately accounted for in
the framework of our simulation model.

The morphological structure of a composite material, in
addition to being described by the geometry factors ap and am,
is often characterized by means of the a–b connectivity factor of
its phases.29 For the two-phase composites considered in this
work, the term a describes the connectivity of the primary active
phase, and the term b corresponds to the connectivity of
the secondary passive phase. Layered composites, which are
regarded as best candidates for artificial muscle applications,
correspond to a 2–2 connectivity. For the DF matrix impregnated
with spherical inclusions, we employ a 3–0 connectivity for the
composite morphology, similar to the case considered in ref. 54.

4 The role of the Ull polarization term
in the DE actuation

The polarization term Umm in eqn (8) is responsible for the
electrostriction effect of dipolar interactions. The released energy
DUmm in eqn (10) generates a strain Sz that strongly depends on
the spatial distribution {

-

Ri} of inclusions.54 In random composites
{
-

Ri} = rand (O), where the inclusions are randomly distributed in
the composite volume O, the electrostrictive strain is negative, Sz

o 0. Therefore, random DE composites contract stronger than the
pure DE under the Maxwell-stress strain SM o 0,

|S| = |Sz| + |SM| 4 |SM| (16)

This behavior constitutes the main mechanism used in experi-
mental studies to achieve higher actuation responses in high-k
composites. However, for a few regular lattice composites, such
as for the BCC and FCC composites, the electrostriction related
effects lead to the elongation of the composite along the applied
field, Sz 4 0. Thus, the resulting strain S of the DE composite
depends on the competition between the negative Maxwell-stress
strain SM and the positive electrostriction strain Sz,

S = SM + Sz. (17)

As it will be shown in Section 6.2, the strength of Sz depends on
the inclusion size sp. Therefore, regardless of how strong SM is,
it is always possible to detect the right size for the dispersed
inclusions in order to make S 4 0 and elongate the composite
along the applied field.

In addition to boosting the functional properties of actuators
and energy storage films, the inclusions are also the source of
several degrading factors to the composite operation. First,
blending hard inclusions into the DE decreases its elasticity
and thus compromises the composite strain S. Second, the
expulsion of the local field EL from the interior of inclusions,
the increase of EL near the inclusion poles, and the trapping of
space charges at the inclusion–polymer interface decrease
the dielectric breakdown field Eb threshold. We will use a
spring-bead simulation model for the composite54 to investigate
how the local field EL distribution and dipole–dipole correlations
depend on the inclusion parameters.

5 Description of the simulation model

We consider N spherical inclusions of volume Vp = psp
3/6 and

dielectric permittivity ep distributed in a cubic box of size L.
The packing fraction Z = NVp/O of inclusions is regulated by
changing the volume O of the cubic box. A homogeneous
distribution of inclusions is implemented in order to avoid
their compact clustering and the lowering of the breakdown
field Eb threshold in the material. Under the applied field

-

E0

along the z-axis, each inclusion gains an induced dipole
moment ~mi

p,54

~mi
p = ~m0

p(E0) + ~mp(Ej) (18)

where the first part ~m0
p is the pure dipole moment of a spherical

inclusion i,

~m0p ¼ 4pe0
sp
2

	 
3 ep � em
ep þ 2em

~E0 (19)

and the second part ~mp(Ej) is the excess dipole moment of the
inclusion i from the fields of other inclusions j (1 r j r N,
j a i) and their periodic images in neighboring cells,

~mp ~Ej

	 

¼ 4pe0

sp
2

	 
3 ep � em
ep þ 2em

XN
j

em~Ej ~m j
p

	 

(20)

The field
-

Ej in eqn (20) depends on the dipole moment ~m j
p of

inclusion j, thus the dipole moment of each inclusion depends
on the dipole moment of all other inclusions. In other words,
eqn (18)–(20) should be solved through consecutive iterations
for stabilizing the dipole moments ~mi

p of inclusions. The
importance of such dipolar correlation effects has been over-
looked in most theoretical studies assuming that they are
negligible in dilute (i.e. small Z) composites.

For the direct evaluation of the dipolar correlation effects in
eqn (18)–(20) we introduce a loop correction term hmiL to the
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pristine dipole moment m0
p of inclusions, which we define as

hmiL ¼
1

N

PN
i

mip

m0p
� 1: (21)

Here all inclusion dipoles mi
p are stabilized by solving eqn (18)–(20)

by iterative loops, and the loop correction is averaged over them.
Without the dipole stabilization procedure, the loop correction
term is hmiL = 0. The hmiL explicitly contains the contribution from
the fields of all other inclusions, and implicitly includes the
dipole–dipole correlation effects between the inclusions. As it will
be shown below, these loop corrections can cause twice stronger
local fields in the composite compared to the case when no loop
corrections are included.

Once all the dipoles ~mi
p in the composite are stabilized, the

system is then ready for running MD simulations to calculate
the composite strain Sz and the local field distribution EL.
We use NOT ensemble molecular dynamics simulations using
a Verlet algorithm and a Nose thermostat for the inclusions in the
host polymer. Elastic properties of the host matrix are modeled
through springs with spring constants w which connect each
inclusion to its nb nearest neighbors. We identify the correct w
for which the simulation predicted the Young’s modulus

YMD ¼
3w
O

Px;y;z
i

Drij2

Px;y;z
i

Si
2 þ 2Si

(22)

to be equal to the composite modulus Y. In eqn (22) Drij = |-rij�
-
r0

ij|
is the bond length deformation between the inclusions i and j,
and Si is the strain along the i = x, y, z axis. For the random
composite we chose nb = 14 from the list of the first nearest
neighbors for each inclusion. The nearest-neighbor separation
distance in the random inclusion distribution is defined as
rp = 0.554(Vp/Z)1/3.77 In the BCC composite, where the inclusions
occupy the nodes of the BCC lattice, each inclusion is connected
to its 8 neighbors from the first coordination shell of radius

rp
ffiffiffi
3
p �

2, and 6 neighbors from the second coordination shell of
radius rp, thus making the total nb = 14 again. The lattice constant
of the BCC structure is defined as rp = (2Vp/Z)1/3.

In simulation runs the evolution of the stress-free initial system
with E = 0 to a new state with balanced electrostatic and elastic forces
is controlled by the equivalence of the pressure components in all
three directions. The pressure is calculated using the force virials

P ¼ 1

3O

XN
j4 i

~rji �~Xji (23)

where the forces ~Xij between the inclusions i and j include both

the electrostatic forces
-

Fji between the dipoles i and j, and the
elastic forces

~F elastic
ji ¼ w rp � rij

� �~rji
rji
: (24)

Here -
rji = -

ri �
-
rj, and for the elastic forces the summation

in eqn (23) goes over the nb neighbors of the inclusion i.

The long-range nature of dipole–dipole interactions in
-

Fji is
handled using the Ewald’s summation technique.78–80 For the
full description of the simulation model the reader is referred
to ref. 54.

For the calculation of the local field EL(-r) distribution we

create a temporary mesh network f~‘ig ¼ xi; yi; zif g in the compo-

site with 400 points in each direction. The components of EL
~‘i

	 

are calculated as a sum of the dipolar fields

-

Ej of all inclusions and
their periodic images in neighboring cells,

EL xið Þ ¼
XN
j

Ej xið Þ; EL yið Þ ¼
XN
j

Ej yið Þ;

EL zið Þ ¼
XN
j

Ej zið Þ þ E0

(25)

where xi, yi, and zi are the coordinates of mesh points ~‘i. The

amplitude of the total field at the mesh points ~‘i is defined as

EL ‘ið Þ ¼ ~EL ‘ið Þ
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EL
2 xið Þ þ EL

2 yið Þ þ EL
2 zið Þ

q
(26)

6 Results
6.1 Dipole–dipole correlation effects in composites

The loop correction hmiL is plotted in Fig. 2 as a function of Z in
the polarized composite prior to its actuation. For the BCC
composite hmiL = 0 because of the mutual cancellation of the
field contributions from the neighboring dipoles. In random
composites hmiL has quadratic Z dependence. At Z = 0.3 the
contribution from hmiL reaches about 40% of the value of m0. As
a result, the actuation of the DE will be much stronger
compared to its actuation with dipoles m0

p. It is also obvious
that during the DE actuation the loop corrections should always

Fig. 2 Loop correction term hmiL from eqn (21) for the dipole moment of
inclusions as a function of inclusion packing fraction Z before the composite
actuation. Line with circles – random composite and line with squares –
regular BCC composite. The other system parameters are: applied field
E0 = 50 MV m�1, em = 2, ep = 100, sp = 2 mm, and Y = 0.1 MPa.
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be maintained in order to guarantee that the change in the
inclusion distribution morphology following the shape change
of the composite happens under the condition of fully stabilized
dipoles. While in experimental studies the adjustment of dipoles to
the shape change of the sample is instant and self-consisting, in
numerical approaches this adjustment is usually implemented
through the iterative loops. Our simulations show that the number
of loop correction steps for stabilizing the dipoles mi

p in eqn (18)–(20)
depends on Z, and for high Z 4 0.2, it reaches several hundred
iteration steps. In computer simulations the dipole moment stabili-
zation process can be tracked and the dipolar correlation effects can
be separately examined. Note that in experimental studies, such
stabilization process happens instantly and the loop correction term
cannot be estimated separately.

6.2 Evolution of the dipole–dipole correlations during the
composite deformation

Simulation results of the composite strain are plotted in Fig. 3
for the random and BCC composites as a function of the
inclusion diameter sp. The field E0 = 50 MV m�1 was applied
along the z axis, and the host matrix and inclusion permittivities
were em = 2 and ep = 100, respectively, and the packing fraction was
fixed to Z = 0.0083. For the elasticity modulus of the host matrix
we choose Y = 0.1 MPa which is a typical value for dielectric
elastomers. The inclusion diameter is varied between 200 nm and
4 mm. A similar composite with sp = 200 nm and Z = 0.0083 was
considered in our previous paper54 where the following strain
values were reported: Sz = �5% for the random composite,
Sz = +2% for the BCC composite, and SM = �11% for the
Maxwell-stress strain. Our simulation results in Fig. 3 clearly
indicate that as sp increases, or equivalently, as the induced dipole
moment m0 increases, the strength of the electrostriction driven
strain Sz also increases. For the random composite the electro-
striction driven negative strain Sz becomes twice stronger than SM

for sp 4 2 mm. Thus, making the inclusions bigger at a fixed Z is
beneficial for obtaining stronger composite actuation. For sp 4
2.3 mm the positive electrostriction strain in the BCC composite
overrides the Maxwell-stress strain SM. As a result of this, the total
strain S of the composite becomes a net elongation deformation
along the field direction.

According to eqn (11), the composite actuation Sz can be
viewed as an attempt of the composite to minimize its electro-
static energy through a shape change. Such minimization is
followed by the strengthening of dipole–dipole correlation
effects, which obviously affects the loop correction hmiL term
in eqn (21). This correction term is plotted in Fig. 4 as a
function of sp for the strain data Sz shown in Fig. 3. It is seen
that in an actuated composite with non-zero Sz the loop
correction hmiL becomes stronger. For example, as seen from
Fig. 2, in a non-actuated composite the loop correction is nearly
negligible for the random composite with sp = 2 mm and
Z = 0.0083. Now, when the composite is actuated, the loop
correction reaches almost 15% at the same sp and Z. Qualita-
tively a similar increase of hmiL is visible for the BCC composite
in Fig. 3. It is worth noting that the loop correction is always
positive regardless of the sign of the strain Sz. In other words,

Fig. 3 Dependence of the DE composite strain Sz on the inclusion size.
(a) Random composite and (b) regular BCC composite. The Maxwell-stress
strain SM is shown as a horizontal blue line in (a), and its modulus is shown
as a dashed blue line in (b). The other system parameters are: Z = 0.0083,
E0 = 50 MV m�1, em = 2, ep = 100, and Y = 0.1 MPa.

Fig. 4 Loop correction term hmiL from eqn (21) for the dipole moment of
inclusions as a function of the inclusion size sp for the actuated DE
composite. Line with circles – random composite and line with squares –
regular BCC composite. The other system parameters are: applied field
E0 = 50 MV m�1, em = 2, ep = 100, and Y = 0.1 MPa.

Paper PCCP

Pu
bl

is
he

d 
on

 1
5 

Ju
ne

 2
01

6.
 D

ow
nl

oa
de

d 
by

 H
ei

nr
ic

h 
H

ei
ne

 U
ni

ve
rs

ity
 o

f 
D

ue
ss

el
do

rf
 o

n 
05

/1
2/

20
16

 1
1:

24
:0

0.
 

View Article Online

http://dx.doi.org/10.1039/C6CP03149H


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 19103--19117 | 19109

during the composite actuation the dipoles displace in a such
way that their dipole moments get an additional enhancement.
This is possible only when the parallel oriented dipoles tend
to form nose-to-tail conformations. Or, the actuation of the
composite lowers its electrostatic energy by increasing the
dipole–dipole attraction between the induced dipoles.

The interesting question is why larger inclusions at a fixed Z
stimulate stronger strains and loop corrections. If sp increases
a times, s(2)

p = as(1)
p , then the nearest-neighbor distance r(2)

p =
0.5 Z�1/3s(2)

p = ar(2)
1 between the inclusions will increase a times,

and the dipole moment of the inclusion m(2)
0 = a3m(1)

0 will
increase a3 times. Therefore, for a pair of inclusions with
dipoles m(2)

0 separated by a distance r(2)
p , the field E2 created by

one of the inclusions at the center of the other inclusion is

E2 ¼
1

4pe0em

mð2Þ0

r
ð2Þ
p

	 
3 ¼ 1

4pe0em

a3mð1Þ0

a3 r
ð1Þ
p

	 
3 ¼ E1 (27)

In other words, the field distribution in the composite should
not change when sp is increased at a fixed Z. However, this
conclusion contradicts the results shown in Fig. 2. A possible
reason for the increase of hmiL in larger inclusion composites
might be the increase of the coupling constant G = V(mi,mj)/kBT,
which determines the strength of the interaction energy V(mi,mj)
between the dipoles mi and mj with respect to their thermal
energy kBT. By testing the strength of the interaction potential
Vk = m(k)

0 Ek between the dipoles (k = 1 for composites with
smaller inclusions of size s1, and k = 2 for composites with
larger inclusions of size s2 = as1),

V2 ¼ mð2Þ0 E2 ¼
1

4pe0em

mð2Þ0

	 
2
r
ð2Þ
p

	 
3 ¼ 1

4pe0em

a6 mð1Þ0

	 
2
a3 r

ð1Þ
p

	 
3 ¼ a3V1 (28)

we see that indeed the dipole–dipole interaction potential in a
larger inclusion composite increases a3 times. Therefore, the
reason for stronger loop corrections in larger inclusion compo-
sites is the increased coupling constant G between neighboring
inclusions.

6.3 Local field EL distribution in the composite

The enhancement of the loop corrections in Fig. 2 and 4
directly indicates that the volume averaged local field

EL ¼
1

O

ð
O
ELð~rÞd3r (29)

is also enhanced across the composite. However, it should be
noted that this enhancement is a volume averaged effect, and
in some areas of the composite an opposite effect, i.e., the field
depletion effect, might occur. First, the local field EL(-r) is
strongly inhomogeneous in the composite.5,44,55,81–83 The field
is high at two poles of the inclusion and between two inclusions
oriented along the applied field (vertical direction), whereas it
is weak between horizontally placed inclusions. When the
packing fraction Z increases, according to our recent results
in ref. 55, the inhomogeneity of EL(-r) distribution becomes
more sharper. Second, for some particular inclusion configurations

the field enhancement concept can completely fail. For example,
we consider a pair of inclusions placed along the z-axis with a fixed
separation distance Dz = 1.5sp. We gradually increase the packing
fraction Z by decreasing the system volume O while keeping the
pair fixed. Simulation results for EL(-r) at the inclusion poles show
that the field at the inner pole area of the pair decreases as
Z increases, see the blue line in Fig. 5. In contrast, the field
enhancement effect at the poles of isolated and individual
inclusions is positive, see the red line in Fig. 5. This specific
example clearly illustrates that while the volume averaged EL

always shows an enhancement as Z increases, the local field
distribution EL(-r) might get a depletion effect within some
specific inclusion distribution in the composite (e.g., a cluster
of particles).

For the random and BCC composites we plot a 3D EL(li)
distribution in Fig. 6. In Fig. 6A and C the total field EL(li) from
eqn (26) with and without loop corrections hmiL for the random
composite are shown. A detailed analysis of these figures
reveals that the loop corrections are mostly localized in areas
of chained clusters in Fig. 6C. In these areas the loop correc-
tions make EL(-r) twice stronger compared to the case of no loop
correction in Fig. 6A. In some areas of the chained configu-
ration in Fig. 6C the field EL reaches 18 E0 (about 1 GV m�1),
which is twice larger than the typical breakdown field for
dielectric elastomers Eb E 500 MV m�1. Therefore, in the
experimental realization of such random composites, specific
care should be taken to avoid any accidental chain-like clustering
of inclusions along the applied field. Otherwise, the composite is
prone to electrical breakdown.

In Fig. 6B and D the z-components of the field distribution
Ez = EL(zi) are shown with the purpose of highlighting the
occurrence of negative field patches around the inclusions.
These patches with Ez E �E0 are oriented perpendicular to the
applied field direction. The formation of negative field patches
is a consequence of huge field localization between chained

Fig. 5 The dependence of the local field Ez at the poles of inclusions on
the packing fraction Z. A pair of inclusions are fixed at a separation distance
Dz = 1.5sp along the z-axis, as shown in the inset picture. Blue line – the
value of Ez at the inner pole of the pair. Red line – the value of Ez at the
north pole of bulk inclusions. The other system parameters are: applied
field E0 = 50 MV m�1, sp = 70 nm, ep = 120, em = 2.25.
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inclusions. In other words, if the patches occupy more area in
the composite, then the higher field will localize in chained

clusters, and the composite will contract. The high field domains
5 o Ez/E0 o 13 are separately shown in Fig. 7. The composite will

Fig. 6 3D distribution of the local fields EL(r~)/E0 and Ez(r~)/E0 in the DF composites with Z = 0.2. (A–D) Are for the random composite, (E and F) are for the BCC
composite. (A) The initial field distribution EL(r~)/E0 without loop corrections, (B) the initial field distribution Ez(r~)/E0 without loop corrections, (C) the final field
distribution EL(r~)/E0 with loop corrections, (D) the final field distribution Ez(r~)/E0 with loop corrections, (E) the final field distribution EL(r~)/E0 with loop corrections,
and (F) the final field distribution Ez(r~)/E0 with loop corrections. The other system parameters are: E0 = 50 MV m�1, em = 3, sp = 100 nm, ep = 1000.
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primarily shrink along the string-like field domains. At the same
time, these string-like areas of the composite will be more
vulnerable to the dielectric breakdown.

In Fig. 6E and F, as a comparison to the random composite
case, we plot the EL(li) and Ez distributions in the regular BCC
composite. Here the field fluctuations along and perpendicular
to the applied field are moderate, EL(-r) reached 4E0 at the
inclusion poles, and �E0 at the inclusion equator. Neither field
localization nor negative field patches are detected. The regular
BCC composite elongates only within some window of the
initial distortion ratio parameter y = c/a,54 where c is the lattice
constant of the regular lattice in the z axis direction, and a is
the lattice constant in the x and y directions. Therefore, it will
be interesting to compare the field distributions in contracting
and elongating BCC composites in order to understand the link
between the morphology of EL(li) or Ez and the strain Sz. This
task is beyond the scope of the present research.

6.4 Calculation of the composite permittivity from the
distribution of EL(-r)

In experimental studies and engineering applications, the
effective permittivity eeff of the composite is usually determined
using broadband dielectric spectroscopy,55 finite element
method (FEM) based approaches,44,81,82 the finite-difference
time-domain (FDTD) method,84 and an equivalent capacitance
model.85 In the simulations the effective permittivity eeff can be
determined from

he(r)E2(r)iO = eeffhE(r)i2O (30)

in which E(r) is the local electric field at position r in the
composite, e(r) is the local dielectric constant, and angular

brackets denote the volume average.86 For our two-phase compo-
site model, e(r) = ep inside the particles, and e(r) = em in the host
matrix. A direct implementation of eqn (30) is only possible when
the local field E(r) is roughly homogeneous across the dielectric
elastomer, which is the case of low dielectric contrast composites
with ep/em o 10.87 Otherwise, for high-k inclusion composites with
high dielectric contrast, huge field gradients near the poles and
between the inclusions limit the proper averaging of E(r) and E2(r)
in eqn (30).88 In this case specific care should be taken for
accurately solving Maxwell equations near the singular points of
polarized inclusions. Nevertheless, and rigorously speaking, while
it is possible to determine the local field at any given point in the
composite, it is not possible to determine it at all composite points
for the proper volume averaging in eqn (30).

The field averaging procedure can be sufficiently simplified for a
high dielectric contrast, ep/em 4 30, composites with no clustering
condition for inclusions. The left part of eqn (30) can be rewritten as

he(r)E2(r)iO = hepEp
2iO + hemEL

2iO (31)

where Ep is the local field inside the inclusion,

Ep ¼
3em

ep þ 2em
E0 þ ZE0ð Þ: (32)

Here we include the additional field term ZE0, which corresponds
to the total local field created by other inclusions j at the center of
the inclusion i. For the EL in the host matrix we assume EL = gE0,
with the enhancement factor g 4 2. In composites with homo-
geneous distribution of inclusions, each inclusion can be assumed
as an individual particle sitting in a spherical shell of the host
matrix of volume V1. Then, by partitioning the whole system into
N spherical volumes Vp and N shell volumes Vsh, O = NVp + NVsh,
or NVsh/O = 1 � Z, for eqn (31), we get

eðrÞE2ðrÞ
 �

O ¼
9epem2

ep þ 2em
� �2Zð1þ ZÞ2E0

2 þ g2emE0
2ð1� ZÞ:

(33)

The ratio of the second term to the first term on the left side of
this equation

Y1 ¼ g2
ep
9em

1þ 4
em
ep
� em

ep

� �2
 !

1� Z
Zð1þ ZÞ2 (34)

is a suitable measure of the relative contribution of the particle
interiors to the effective permittivity eeff. For typical high-k inclusion
composites with ep/em 4 30, g4 2, and Zo 0.3, for the lower bond
of Y1, we get Y1 4 20. This means that the contribution from the
energy density inside the inclusions to eeff is less than 5% from the
contribution of the field energy in the host matrix. Similar argu-
ments can be used to estimate the field average hE(r)i in right side
averaging in eqn (30). Here, for a similar parameter Y2

Y2 ¼ g
1� Z

Zð1þ ZÞ

ep
em
þ 2

3
(35)

which measures the relative contribution of the particle interiors
to eeff, and for the same composite parameters ep/em 4 30, g 4 2,

Fig. 7 Detailed local field distribution in the range 5 o Ez/E0 o 13 from
Fig. 6D.
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and Z o 0.3, we get Y2 4 40. Thus, the field averaging in high-k
composites has no more than 3% contribution from the particle
interiors. Therefore, based on the theoretical predictions for the
parameters Y1 and Y2, up to the packing fractions Z o 0.3 it is
completely safe to use only the host matrix averaging in eqn (30) for
high-k composites.

For the calculation of hELiO and hEL
2iO in the host matrix,

we create a field-testing probe of octahedral shape with six
inclusions occupying its nodes, and another probe particle is
placed at its center as shown in Fig. 8. The cage nodes have the
same properties as the inclusions: they develop induced dipole
mi

p under the applied field E0 and react to the polarization field
of other inclusions. The probing cage is then placed at the
positions -

rc in the composite, and the average of the local field
EL(rc) at its center is calculated as,

EL ~rcð Þh i ¼
XN�7
j¼1

~Ej mjp
	 
* +

O

: (36)

Here the averaging h� � �iO is done by random insertions of the
cage into the vacant positions in the composite. The role of
the octahedral cage is twofold. First, the cage nodes shield the
probe particle from the close proximity of other inclusions and
therefore minimizes the effect of huge field fluctuations at the
cage center -

rc. Second, for the chosen geometry of the cage, the
combined effect of the cage node dipoles at the probe center is
zero, i.e., the probe particle exclusively reacts only to the field of
other composite inclusions.

For high packing fractions Z 4 0.1 the volume averaging in
eqn (36) has bad statistics because of the decreasing number of
successful probe insertions into the composite. For these cases
it is more efficient to place the probing cage at the center of the
simulation box -

rc = 0, and then generate random inclusion

distributions around the cage. Repeating this procedure several
hundred times with different random particle generations
guarantees good statistical averaging in eqn (36).

Calculated eeff from eqn (30) is plotted in Fig. 9 as a function
of Z for E0 = 100 MV m�1, em = 4.3, ep = 150, and sp = 50 nm,
which correspond to the experimental parameters used in
ref. 89. These specific experimental data were chosen because
of the fact that, unlike other experimental studies, in ref. 89,
a high-dielectric contrast and a matrix-free composite was
directly grown from hairy nanoparticles. This procedure guarantees
a homogeneous distribution of inclusions, a necessary condition
for the direct comparison between experimental and simulation
results. Additionally, the surface-initiated polymerization from the
nanoparticles in ref. 89 also makes it possible to employ a bare-core
model for the inclusions (used in the current work) for the
experimental results. A similar composite growth procedure from
hairy nanoparticles was also implemented in a recent experimental
study.5 In this case, however, the nanoparticles had a low dielectric
permittivity ep = 4, which practically had little contribution to
the effective permittivity of the composite. On the other hand,
if experimental studies show cluster formation in the matrix,
computer simulations should be adequately modified to generate
similar clusters with the corresponding input parameters for their
size and the average distance between them.

For Z = 0.22 in Fig. 9, the highest packing fraction used in
ref. 89, Y1 = 38 and Y2 = 36. This means that the contribution
from the interior of inclusions to eeff is less than 3% compared
to the total contribution from the whole composite volume. As
it is expected, eeff shown in Fig. 9 increases with the packing
fraction of inclusions. The MG and BR mixing rules given by
eqn (12) and (13) respectively, are also shown for the comparison.
The MG result underestimates the calculated effective permittivity,
whereas the BR result is in good agreement with simulated eeff.

Fig. 8 Schematic illustration of the octahedral cage devised to probe the
local field in the composite. The central particle shown in green is the
probe particle at the center of which the field EL(r~) is measured. Only
the dipoles of the cage-forming inclusions are shown.

Fig. 9 Dependence of eeff = he(r)E2(r)iO/hE(r)iO2 on the inclusion packing
fraction Z in the random composite. A direct calculation of eeff using the full
E(r) in the simulation box and the calculation based on a probe cage placed
in the host matrix produce similar results. Squares – our simulation result,
dashed line – the MG fitting, full line – the BR fitting, and circles –
the experimental results of ref. 89. The other system parameters are:
E0 = 100 MV m�1, em = 4.3, sp = 50 nm, ep = 150.
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A small deviation between the BR mixing rule and our simulation
results at higher Z 4 0.22 might be a consequence of the loop
correction term given by eqn (21), which is not accounted for in the
mixing rule approaches. There is also a small discrepancy between
our findings and the experimental results of ref. 89. We did
additional simulations with an increased particle size sp = 70 nm,
and got the same data for eeff. In other words, a moderate change in
the particle size, while keeping the packing fraction the same, has
very small impact on eeff. Obviously, at high Z the dipolar approach
should be replaced with more realistic representations of the
particle polarization. The implementation of two opposite charges
on the particle poles might be a good starting approximation for
taking into account higher order multipole contributions to the
inclusion–inclusion interactions.

As shown in ref. 73 and 74 the polymer–particle bounding
layer starts to play an essential role in nanometer particle sizes.
Consequently, the Bruggeman approach should be modified by
assuming a core–shell particle in a host matrix and by adding
an additional term to eqn (14). In this case eeff also becomes a
function of the particle size sp because the shell fraction
depends on sp. Assuming a typical shell thickness of a few
(2–5) nanometers, it is believed that for the particles bigger
than 100 nm the bare-core model should be a reliable approxi-
mation. As has been mentioned above, for the surface-initiated
polymerization from the nanoparticles, the bare-core approach
is always an applicable model regardless of the size of the
inclusions.

7 Conclusions

The mixing of dielectric elastomers or films with high-k inclusions
enhances their functional properties such as the strength of their
actuation and their energy storage capabilities. Such enhancement
is linked to the additional volume polarization related electro-
striction effects enabled by the inclusions. The polarization of
inclusions and electrostriction effects can be described at three
different levels. Within the first and the lowest level, it is assumed
that the polarization of the inclusion only depends on the applied
field and there is no field exchange between the dipoles which can
alter the amplitude of dipoles. Such an approach is applicable to
dilute composites with low packing fraction for inclusions, and is
often used in the actuation of ferrogels. Within the second level,
the amplitude of the induced dipoles, in addition to the applied
field, also reacts to the field of other dipoles. However, this field
exchange contribution is assumed to not depend on the spatial
distribution of inclusions. Finally, in the third and the most
realistic level, the field exchange and correlation effects between
dipoles are fully taken into account. The current study is based on
this third level of approximation for the electroactive composites.
We have shown that the dipole moments of inclusions should be
carefully stabilized through iterative loops in order to properly
account for the dipole–dipole correlation and field exchange
effects. According to our simulation results, the loop correction
term strongly depends on the inclusion parameters, and might
substantially alter the local field distribution in the composite,

along with boosting the electrostriction effects in the composite.
Because of the positive feedback from the loop corrections to the
inclusion dipole moment, the coupling between dipoles increases
which leads to higher composite strains. At the same time positive
loop corrections point to the increasing of the dipole–dipole
attraction during the composite actuation. A detailed analysis of
the 3D local field distribution in the composite reveals that the
loop corrections are mostly localized into the areas of chained
clusters, where the field becomes twice stronger compared to the
field distribution with no loop corrections. However, these areas of
localized field in the composite are responsible for the lowering
of the breakdown field Eb threshold, which compromises the
actuation and energy storage capabilities of dielectric composites.

A new method for deriving effective permittivity of the
composite from the calculated local field distribution is presented.
It is shown that in high-k composites the contribution from the
particle interiors to the eeff is negligible. For the proper averaging of
the local field EL in the host matrix we devise a shielding cage with
a field-probing particle in its center. The calculated eeff as the ratio
of the averaged field energy to the energy of the averaged field
appears in good agreement with empirical mixing rules.

The implications of presented results are important for
devising new and reliable electroactive composites. First, for
keeping the breakdown field Eb high, according to our results, a
proper optimization of the size, permittivity, packing fraction,
and distribution of inclusions should be carried out. A detailed
knowledge on the field enhancement effect, which also implies
a proper accounting for the dipolar correlation effects, is the
necessary tool for preventing the breakdown of the DE and DF
composites in the fast growing field of artificial muscles,
robotic and mechatronic applications.3,9,90 Second, the positivity
of the loop correction hmiL, which increases the dipole moments
of inclusions, directly accounts for the additional energy input
into the polarization and the dipole–dipole interaction energies
in the composites. Or, in other words, the positivity of hmiL leads
to a much higher energy storage in the composite. Our simulations
show that the strength of hmiL depends on the local arrangement
of dipoles, such that the chained configurations host higher
local fields. Therefore, the morphology of particle distribution,
especially, an optimal assembly of chained configurations, is
an essential factor in devising new composites with effective
energy storage features.

It should be noted that our simulation model does not take
into account the impurity ions in the polymer matrix and the free
space charges in high-k fillers, which can greatly contribute to the
pole formation on the filler surface, and also, perhaps, to the pole
screening effects. The trapping of space charges at the inclusion
pole sites can also form a remanent inclusion dipole moment
when the external field is removed. We also ignore the existence of
an interface between the inclusion and the matrix with an
intermediate dielectric permittivity between em and ep,59,60 which,
however, can be easily incorporated into our simulation model.

A Dielectric permittivity mixing rules for composite materials

Let us assume that a sphere of radius R containing N polariz-
able spherical particles of radius r and permittivity ep is
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immersed in a medium with a permittivity em. When the sphere
is polarized under the applied field E, its dipole moment
becomes

~M ¼ 4pR3e0
eeff � em
eeff þ 2em

~E (A.1)

where eeff is the apparent permittivity of the sphere. It is
straightforward to accept that

-

M = N~mp (A.2)

where ~mp is the induced dipole moment of particles, for which
we have

~mp ¼ 4pr3e0
ep � em
ep þ 2em

~E: (A.3)

Then, from eqn (A.1)–(A.3) we get

eeff � em
eeff þ 2em

¼ Z
ep � em
ep þ 2em

(A.4)

which is the Maxwell–Garnett (MG) equation, and the packing
fraction of particles is defined as Z = Nr3/R3. Eqn (A.4) can be
solved to obtain eeff given by eqn (12) in the main text. The MG
mixing rule is applicable for low Z and does not take into
account the interaction between induced dipoles ~mp.

Another approach to the mixing rule is based on considering
both components, the inclusions and the host matrix, as
perturbations to the local field in the composite. Each compo-
nent is assumed to be formed from particles of spherical shape
and embedded in a uniform effective media with eeff, which will
be determined self-consistently. Considering that the average
field in the composite is E, each inclusion will have an
induced dipole

~mp ¼ 4pr3e0
ep � eeff
ep þ 2eeff

~E (A.5)

and, similarly, each matrix particle will develop a dipole
moment

~mm ¼ 4pr3e0
em � eeff
em þ 2eeff

~E: (A.6)

Both these dipoles will change the local field E, and it is
straightforward to assume that the contributions from these
dipoles compensate each other in order to keep E unchanged.
This condition can be written as

Np~mp + Nm~mm = 0 (A.7)

where Np and Nm are the number of inclusions and the matrix
particles respectively. Then eqn (A.7) can be rewritten as

Z
ep � eeff
ep þ 2eeff

þ ð1� ZÞ em � eeff
em þ 2eeff

¼ 0: (A.8)

This is a quadratic Bruggeman (BR) equation for eeff and has
two solutions. One of them is a physically sensible solution and
is given by eqn (13) in the main text. The other solution is
typically negative and has no physical meaning.
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