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Symmetry breaking in clogging for oppositely driven particles
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The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions
through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a
spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time,
which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging
and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like
biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven
in opposite directions through constrictions.
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I. INTRODUCTION

Understanding the flow of particles through patterned
channels is of great relevance for fields ranging from nanoflu-
idics [1–4] to medicine [5–7] to crowd management [8] but is
also interesting from a fundamental physics point of view.
In this regard, the clogging and unclogging behavior near
constrictions is of prime importance as it stops and restarts
the global flow. This has been explored a lot for a single
species of particles driven through a narrow constriction. On
the nanoscale, the permeation of molecules through structured
pores has been found to be controlled by constrictions [9]. Col-
loidal particles [10–12], dusty plasmas [13], and micron-sized
bacteria [14,15] passing through micropatterned channels
constitute microscopic situations where clogging is essential.
On the mesoscale, vascular clogging by parasitized red blood
cells [16] has been studied, and in the macroscopic world,
clogging has been observed in gravity-driven granulates in
silos [17,18] and when pedestrians or animals like sheep escape
through a narrow door [19–22].

Here we address the clogging behavior of mixtures of
two particle species that are driven in opposite directions
through channels with constrictions. In the absence of any
constrictions, rich pattern formation like laning and banding
has been found in many such systems [23–31], but studies
on corresponding systems with constrictions are rare [32,33].
This is surprising since there are many real systems where
the flow of oppositely driven particles through constrictions
is of great importance. An example from the microworld
involves oppositely charged ions in an electric field that
drives the particles in opposite directions through the pores
of a membrane. Such ionic counterflows occur especially
in ion channels that are present in the membranes of all
cells and that are key components in various biological
processes [34]. The proper transport of ions through ion
channels is crucial for muscle contraction, T-cell activation,
regulation of the cell volume, and many other biochemical
processes, and an impairment of ion channel transport (e.g.,
due to channelopathies) has disastrous consequences for the
organism [35]. Ionic counterflows through a porous medium
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also occur in gel electrophoresis. An example from the
macroworld involves pedestrians who intend to exit and enter
a building at the same time through a narrow door [32,33].

In this article we explore the rich flow and clogging behavior
of a symmetric binary mixture of oppositely driven particles in
a channel with constrictions within a simple two-dimensional
model designed for colloidal suspensions. For a completely
symmetric situation of an initially homogeneous mixture in a
periodic channel with spatial inversion symmetry, we observe
states of simultaneous flow and of simultaneous clogging of
the two particle species, but interestingly we also find a spon-
taneous symmetry breaking of clogging. This phenomenon
implies that although both flow directions are equivalent in the
model, one species is flowing and the other species is clogging.
The partial clogging can be inverted after a characteristic flip-
ping time τ1, but the flipping time becomes very long if the con-
strictions are narrow. This means that in the symmetry-broken
state the flow of one species dominates on reasonable time
scales. Moreover, for narrow constrictions we observe a state
of self-organized oscillations in clogging and unclogging of
the two species. These effects occur especially in systems with
large average particle densities and can be exploited to trigger
the partial flow of binary mixtures through patterned channels.

This article is organized as follows: After describing our
model in Sec. II, we study it on the basis of computer
simulations in Sec. III. This numerical investigation is comple-
mented by theoretical considerations in Sec. IV. In Sec. V we
address the relevance of our results by suggesting possible
experimental realizations of our model and by discussing
the applicability of the model to other systems. Finally, we
conclude in Sec. VI.

II. MODEL

In our model, we consider a channel with sinusoidal walls
described by the functions w(z) = b/2 + a[1 − cos(2πz/λ)]
and −w(z), where z is the coordinate along the channel axis,
b is the minimal wall distance, a is the amplitude of the
spatial wall modulation, and λ is its period length [see inset in
Fig. 1(a)].

This channel confines a colloidal suspension of two species
(i.e., a binary mixture) of driven, interacting, spherical Brow-
nian particles with the same particle number and the same
effective particle diameter σ (see below). The external driving
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FIG. 1. Dependence of the (a) time-averaged absolute value
|〈v〉(b)| of the mean particle velocity 〈v〉(b) and (b) characteristic
flipping time τ1(b) on the minimum wall distance b for φ = 0.8. The
points with error bars correspond to 20 simulations each and the black
curves are fit curves. Insets: (a) sketch of the channel walls and (b)
illustration of the driving directions of the two particle species as well
as particle distributions in the asymmetric (b = 2.5σ ) and symmetric
(b = 24σ ) flow states.

force has the same absolute value Fext for all particles. It drives
the particles of one species in the z direction and the particles
of the other species in the opposite direction.

The dynamics of the particles in our model is overdamped.
If a particle is not interacting with other particles or with the
wall, the external driving force leads to the maximum particle
speed v0. Such a system is described by the Langevin equations

ṙi = v
(i)
0 êz + βDT

[
F(i)

int({rj }) + Fwall(ri)
] +

√
2DTξ i , (1)

where ri(t) is the position of the ith particle at time t . v
(i)
0 is

equal to v0 = βDTFext if i is odd and equal to −v0 otherwise,
êz is the unit vector in z direction, β = 1/(kBT ) is the inverse
thermal energy with Boltzmann constant kB and absolute
temperature T , DT is the translational diffusion coefficient
of a free particle, and the total initial number of particles
Nλ = 4φλ(b + 2a)/(πσ 2) in a channel segment of length λ

is prescribed by a particle packing fraction φ [36]. The force
F(i)

int({rj }) = −∑
j �=i ∇ri

U (‖ri − rj‖) acting on particle i with
the pair-interaction potential U (r) takes into account interac-
tions with other particles, Fwall(r) = −∇rU (w(z) − |x|) is the
force that the wall exerts on a particle at position r = (x,z), and
the components of ξ i(t) are uncorrelated standard Gaussian
white noise terms. To describe the interactions, we used the soft
Yukawa potential of point particles U (r) = U0 exp(−κr)/(κr)

FIG. 2. Time-dependent mean particle velocity 〈v〉(t) and corre-
sponding particle distributions from a simulation with b = 2σ and
φ = 0.8. (a) Homogeneous random initial distribution, long-lasting
(b) forward and (c) backward mean flow, oscillatory state with
alternating short-living (d) forward and (e) backward mean flows,
and (f) completely jammed state.

modeling charge-stabilized colloids at low volume fractions
with κ = 6/σ . The parameter U0 controls the interaction
strength and is chosen so that −U ′(σ ) = Fext. This equates the
repulsive force −U ′(σ ) on two particles with center-to-center
distance σ with the driving force Fext, thereby ensuring that
the center-to-center distance of two colliding particles cannot
deceed the effective particle diameter σ .

III. COMPUTER SIMULATIONS

To simulate such a system, we solved Eq. (1) numerically
employing the Ermak-McCammon scheme [37]. For these
Brownian dynamics simulations, we used the effective particle
diameter σ , Brownian time τB = σ 2/DT, and thermal energy
kBT as units for length, time, and energy, respectively. We
considered a channel of length 2λ with periodic boundary
conditions and used homogeneous random initial particle
distributions [see Fig. 2(a)]. Furthermore, we have chosen
a = 10σ , λ = 40σ , the Péclet number Pe = v0σ/DT = 10,
as well as the time step size 	t = 10−4τB and studied
systems with 0 � b � 30σ , 0 � φ � 1, and 0 � t � 104τB =
105σ/v0. This means that our simulations involved up to
5092 particles (i.e., 1792 particles for b = 2σ and φ = 0.8;
cf. Fig. 2) and that an individual particle with speed v0

could traverse the channel more than 1000 times within the
simulation period.

We found that for large b the particles of the two species
can easily move simultaneously in opposite directions through
the constrictions and create a persistent symmetric flow with a
vanishing mean particle velocity 〈v〉 (see inset in Fig. 1(b) and
supplemental movies [38]), where 〈 · 〉 denotes an average over
all particles at a certain time. In contrast, if b is sufficiently
small, the particles can hardly pass the constrictions and many
particles accumulate near them. Interestingly, in such a system,
which is initially invariant under parity inversion and time
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reversal, a spontaneous symmetry breaking can be observed:
The particles of one species are passing the constrictions,
whereas the motion of the other particles is blocked [39]
(see inset in Fig. 1(b) and supplemental movies [38]). In this
persistent asymmetric flow, 〈v〉 is nonzero [see Fig. 2(b)].
When b becomes smaller, the time-averaged absolute value
|〈v〉(b)| of 〈v〉(b) with · denoting an average over time
increases; its maximum value can be observed at b ≈ 2.5σ

[see Fig. 1(a)]. For even smaller b, |〈v〉(b)| decreases again,
since fewer particles can pass the constrictions in a given
time period, until it becomes impossible for particles to pass
the constrictions so that 〈v〉 is zero. The latter happens for
0 � b � σ .

In the asymmetric flow state, the sign of the mean particle
velocity 〈v〉 is random. After a characteristic flipping time
τ1 [40], the direction of the asymmetric flow and thus the
sign of 〈v〉 change [see Fig. 2(c); this can happen several
times in succession] or the system proceeds with a different
flow state [see Figs. 2(d)–2(f)]. As revealed by Fig. 1(b), τ1

is nonmonotonic in b and can become extremely large near
the maximum of |〈v〉(b)|, but decreases for larger and—due to
frequent jamming—smaller b.

After such an asymmetric flow, two other flow states are
possible: an oscillatory state [see Figs. 2(d) and 2(e)] and a
completely jammed state [see Fig. 2(f)]. Both states have in
common that the flow is nearly or completely blocked at one
constriction so that the particles accumulate only there. In
contrast to the asymmetric flow state, where the continuous
particle flow avoids a positional ordering of the particles in the
dense regions, in the oscillatory and completely jammed states
a large amount of the particles is densely packed with a locally
near-hexagonal pattern (see supplemental movies [38]). This
strongly hampers or even completely suppresses the flow of
particles through the constriction.

In the oscillatory state, only sometimes particles of one
species manage to pass the constriction. Since the flow of one
particle species destroys the force equilibrium at the interface
between the particles of both species, the flow is blocked again
after a time τ2 and it is now easier for particles of the other
species to pass the constriction. This leads to a small oscillatory
flow through the constriction, where short flows in the positive
or negative z direction and short periods without any flow fol-
low each other so that the sign of 〈v〉 changes again and again
(see supplemental movies [38]). A related behavior is known
from pedestrian streams through a narrow door [32,33,41–43].
The duration τ2 of the small unidirectional flows is random
with a probability density function p(τ2/τB) that increases
for small τ2 and decays exponentially for large τ2 (see Fig. 3).
According to our simulation results, p(τ2/τB) can be described
by a function p(τ2/τB) = c0(τ2/τB)c1 exp(−c2τ2/τB) with fit
parameters c0, c1, and c2. A maximum at intermediate τ2 [e.g.,
τ2/τB ≈ 75 for b = 2σ and φ = 0.8; see Fig. 3(a)] designates
the characteristic unidirectional-flow duration. For increasing
values of b, the characteristic unidirectional-flow duration and
the variance of the probability distribution of τ2 decrease [see
Fig. 3(b)]. In the completely jammed state, in contrast, there is
no flow at all and 〈v〉 is zero (see supplemental movies [38]).

Both states can follow directly after an asymmetric
flow state, alternate repeatedly, and persist for long times.
However, we never observed an asymmetric flow state

FIG. 3. Histograms and corresponding fit curves for the probabil-
ity distribution of the unidirectional-flow duration τ2 in the oscillatory
state.

following an oscillatory or completely jammed state. The
reason is the accumulation of all particles at one con-
striction in the oscillatory and completely jammed states,
whereas there are accumulations of similar size at all con-
strictions in the asymmetric flow state: When all particles
are accumulated at one constriction, the particle flow is so
small that the particles can no longer accumulate at other
constrictions.

Hence, starting from a homogeneous initial particle distri-
bution, for large b a persistent symmetric flow state occurs,
for sufficiently small b an asymmetric flow state that can
change into an oscillatory or completely jammed state forms,
and for 0 � b � σ the constrictions are so small that particle
flow through them is impossible. The critical value of b that
separates states with clearly nonzero |〈v〉(b)| from those with
symmetric flows depends on the particle packing fraction
φ. It is close to σ for small φ and increases with φ

[see Fig. 4(a)].

IV. THEORETICAL CONSIDERATIONS

An approximate expression for the corresponding critical
relation of b and φ can be determined by studying the

FIG. 4. State diagrams showing the possible occurrence of
different flow states obtained by (a) computer simulations and (b)
theoretical considerations. Note that an asymmetric flow state can
change into an oscillatory or completely jammed state and that these
three states therefore occur in the same region of the state diagram.
The dashed line separates a region where long-lasting asymmetric
flows can be observed, which persist typically for a period of more
than 24τB, from a region of only short-living asymmetric flows.
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FIG. 5. Schematic illustrating a general asymmetric or symmetric
flow state.

stability of asymmetric and symmetric flows. A general
flow state, which includes all these spatially periodic flows,
is illustrated in Fig. 5. The particles of species A and B
accumulate on different sides of the constrictions and are
separated by interfaces, but can cross the interfaces with
particle current densities JA � 0 and JB � 0, respectively.
Since the system is spatially periodic, it is sufficient to focus
on a channel segment of length λ. If z0 is the interface
position in this segment and lA and lB are the lengths of
the channel segments that are occupied mainly by particles
of species A and B, respectively, the general flow state can
be described by balance equations for the conserved mean
numbers NA

λ = Nλ/2 = 2φλ(b + 2a)/(πσ 2) and NB
λ = NA

λ

of the particles of species A and B in the channel segment of
length λ, respectively. We denote the numbers of particles of
species A and B in the accumulation areas before and after a
constriction by NA

1 and NB
1 and the corresponding numbers

of nonaccumulated particles that crossed the interface and are
on the way to the next accumulation area of the same species
by NA

2 = NA
λ − NA

1 and NB
2 = NB

λ − NB
1 , respectively. Fur-

thermore, we assume that the particle packing fraction in
the accumulation areas is constant and given by φmax ≈ 1,
that the particles are rigid and have the constant diameter
σ , and that the nonaccumulated particles move with the
speed v0.

Then, NA
1 =2

∫ z0

z0−lA
w(z) dz φmax/(πσ 2/4)−NB

2 lA/(λ − lB)
and NA

2 =b(λ−lA)(JA/Jmax)φmax/(πσ 2/4) with the maximum
particle current density Jmax = 4v0φmax/(πσ 2). Analogous
expressions apply to the particles of species B. Together with
the continuity conditions NA

1 + NA
2 = NB

1 + NB
2 = Nλ/2 and

the notation W (z) = ∫
w(z)dz this leads to the balance

equations

2W (z0) − 2W (z0 − lA) − blAJB/Jmax

+ b(λ − lA)JA/Jmax = λ(b + 2a)φ/(2φmax), (2)
2W (z0 + lB) − 2W (z0) − blBJA/Jmax

+ b(λ − lB)JB/Jmax = λ(b + 2a)φ/(2φmax) (3)

for the particles of species A and B, respectively.

The interface position z0 and the relative particle flow 	J =
JA − JB can be time dependent. Their time derivatives are
approximately proportional to the force density f , which the
particles of both species exert on the interface. According to
the hydrostatic paradox [44], f is proportional to the segment-
length difference 	l = lA − lB. This leads to ż0 ∝ 	l and
	̇J ∝ 	l, where the proportionality constants are positive. A
stable flow state therefore requires 	l = 0.

We now use Eqs. (2) and (3) to study the existence of
flow states with 	l = 0. For z0 = 0, such a solution always
exists and Eqs. (2) and (3) yield 	J = 0; i.e., the flow state
is symmetric. A stable asymmetric flow state is therefore only
possible for z0 �= 0. If we increase z0 (we focus on z0 � 0 for
symmetry reasons) and keep 	J = 0, 	l and thus ż0 become
positive (see Fig. 5) and the state with z0 = 0 is unstable. In
reality, however, also 	J becomes positive for z0 > 0 and
reduces NA

1 and thus 	l and ż0. The sign of ż0 for z0 ≈ 0 and
thus the stability of the symmetric flow state therefore depend
on the parameters of the system. If 	̇J is sufficiently small
for z0 ≈ 0, there exists another solution of Eqs. (2) and (3) for
	l = 0, where z0 > 0 and 	J > 0. This solution is stable and
corresponds to an asymmetric flow state.

By considering different values of b and φ and numerically
searching for corresponding solutions of Eqs. (2) and (3) with
	l = 0 and z0 > 0, one obtains the critical relation of b and
φ. If we focus on flow states where only the particles of
one species are flowing and approximate their current density
by Jmax, the critical relation can be approximated by the fit
function φ = 2.23b/(b + 2a) + 0.02(b/a)7 [see Fig. 4(b)].
This result is in good agreement with our simulations (see
Fig. 4).

V. RELEVANCE OF THE RESULTS

Our results are applicable not only to the model given by
the Langevin equations (1), but also to real systems. In this
section we address possible experimental realizations of the
model and show that our results are relevant also for other
systems.

A. Experimental realization of our model

Our model can be realized in experiments with a binary
suspension of colloidal particles in a microfluidic channel.
There are different possible ways to drive two species of such
particles in opposite directions through the channel (see Fig. 6).
These methods include the application of time-dependent light
fields to drive the particles, which is already a well-established
technique, and self-propelled particles (see below).

A possible way is to use optically nonabsorbing particles
with different frequency-dependent refractive indices n1(ν)
and n2(ν) and to choose the surrounding liquid in such a way
that its refractive index matches n1(ν) and n2(ν) at different
frequencies ν1 and ν2, respectively. Then, inhomogeneous
light fields with frequencies ν1 and ν2 have an effect only
on particles of one species each. If the intensity profiles of the
two light fields have a saw-tooth shape and travel in opposite
directions along the channel, the particles are oppositely driven
through the channel by gradient forces [see Fig. 6(a)].
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(a)

(b)

(c)

FIG. 6. Different possible ways to drive two species of colloidal
particles in opposite directions through a surrounding liquid. (a)
Optically nonabsorbing particles with different frequency-dependent
refractive indices n1(ν) and n2(ν) in light fields with different
frequencies ν1 and ν2 and oppositely traveling saw-tooth-shaped
intensity profiles I1(z) and I2(z). (b) Cross section of a quasi-two-
dimensional channel with particles that reflect light of frequencies
ν1 and ν2 but transmit light of frequencies ν2 and ν1, respectively,
under illumination with frequencies ν1 and ν2 from opposite direc-
tions. (c) Self-propelled particles with small magnetic cores whose
magnetizations are parallel and antiparallel to the self-propulsion
direction, respectively, are oppositely oriented by a homogeneous
external magnetic field with flux density B.

Another possibility to drive colloidal particles in opposite
directions through an effectively two-dimensional channel is
to use particles of different materials that reflect light of
frequencies ν1 and ν2 but transmit light of frequencies ν2 and
ν1, respectively. If a suspension of such particles is illuminated
in the direction of the channel axis by light with the frequency
ν1 and in the opposite direction by light with the frequency
ν2, the particles of different species are light-pressure driven
in opposite directions through the channel [see Fig. 6(b)].

A further alternative is to use self-propelled particles
[45–47] with small magnetic cores. If the particles are much

FIG. 7. Sketch of an experimental realization of our model with
two species of self-propelled colloidal particles with small magnetic
cores that are aligned in opposite directions by an external magnetic
field with flux density B generated by an axial electric current Iel.
The average mass densities of the particles equal the mass density of
the surrounding liquid in order to avoid an influence of gravity on the
particle motion.

larger than their cores, they can be oriented by an external mag-
netic field while magnetic interactions of different particles can
be neglected. Using two species of such particles, where the
magnetizations of the cores are parallel and antiparallel to the
self-propulsion direction of the particles, respectively, and a
homogeneous external magnetic field parallel to the channel
axis leads to a system where the particles of both species propel
themselves forward in opposite directions through the channel
[see Figs. 6(c) and 7].

B. Applicability of our model to other systems

The basic behavior of our colloidal model is not sensitive
to the details of the model. This makes our qualitative results
relevant for a large number of different real systems including
even macroscopic ones. In the following, we demonstrate for
three different examples that the main results of our model do
not change if the model is modified.

1. Space-dependent diffusion coefficient

We first consider a system with a space-dependent diffusion
coefficient D(x,z). For this purpose, we replace the constant
diffusion coefficient DT in the Langevin equations (1) by the
position-dependent diffusion coefficient

D(x,z) = DT

6
[4 − tanh (4 − w(z)/σ − x/σ )

− tanh(4 − w(z)/σ + x/σ )], (4)

which equals DT far away from the walls and decreases near
the walls. Using this space-dependent diffusion coefficient, we
repeated the Brownian dynamics simulations corresponding to
the parameter combinations marked by yellow circles in Fig. 8.

As expected, we observed the same flow states as in our
original simulations described in Sec. III. This confirms that
such a space-dependent diffusion coefficient can only slightly
change the state diagram of our model.
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FIG. 8. State diagram from Fig. 3(a), but now with the parameter
combinations where we carried out additional simulations marked by
yellow circles.

2. Different particle interactions

Next, we consider particle-particle interactions with an
attractive contribution given by the pair-interaction potential

Uatt(r) = U0σ

r
(5e−7r/σ − 2e−6r/σ ). (5)

This potential has a minimum value of about −2kBT and
satisfies the equation −U ′

att(r) = Fext for r ≈ σ , i.e., Uatt(r) is
consistent with the definition of σ . On this basis, we addressed
two situations. In the first one, we used the potential Uatt(r)
instead of U (r) for all particle-particle interactions; i.e., we
considered two species of oppositely driven repulsive particles
with an attractive contribution in the interactions. In the second
situation, in contrast, we used the purely repulsive potential
U (r) for the interactions of particles of the same species but
the potential Uatt(r) for the interactions of particles of different
species. This corresponds to soft charged particles, where the
particles of the two species have opposite charges. For both
situations, we carried out simulations corresponding to the
parameter combinations marked by yellow circles in Fig. 8. In
these simulations we observed that the attractive component
in the particle-particle interactions fosters the accumulation of

the particles at the constrictions of the channel. This reduces
the stability and duration of the asymmetric flow states and
shifts the curve that separates asymmetric from symmetric
flow states in Fig. 8 to the left for φ > 0.1. Nevertheless, the
qualitative structure of the state diagram is unchanged. This
suggests that our qualitative results are not sensitive to the
details of the particle-particle interactions in our model.

3. Different channel lengths

We also carried out additional simulations for systems with
different channel lengths L = λ, . . . ,8λ. Interestingly, the
four different flow states described in Sec. III can be observed
in all these cases. For L = λ, the asymmetric flow state and the
oscillatory flow state can be combined to a single flow state.
In contrast, for L > 2λ we also observed new flow states that
cannot occur in systems with L/λ � 2.

VI. CONCLUSIONS

In summary, we have studied the flow and clogging behavior
of oppositely driven colloidal particles in a periodic channel
with constrictions. We have shown that as a consequence
of spontaneous symmetry breaking, even in an initially
completely symmetric system partial clogging, where the
particles of one species are flowing and the other particles
are clogging, can occur. In addition, we have observed
self-organized oscillations in clogging and unclogging of the
two species. Our work demonstrates that and how the flow
state of a corresponding system can be steered by tuning the
constriction size and particle packing fraction appropriately.
These results are interesting from a statistical physics point
of view and relevant also for many real systems in various
fields ranging from nanofluidics to crowd management. In the
future, our system could be directly realized in experiments
with suspensions of two species of oppositely light-driven
colloidal particles or with self-propelled colloidal core-shell
particles with small magnetic cores that are oppositely aligned
by an external magnetic field.
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Wixforth, F. Varnik, S. W. Schneider, and M. F. Schneider,
Biomicrofluidics 4, 024106 (2010).

[6] H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T.
Franke, Europhys. Lett. 89, 28002 (2010).

[7] M. O. Bernabeu, R. W. Nash, D. Groen, H. B. Carver, J.
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021402 (2002).

[26] R. R. Netz, Europhys. Lett. 63, 616 (2003).
[27] K. R. Sütterlin, A. Wysocki, A. V. Ivlev, C. Räth, H. M. Thomas,
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