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In the perspective of developing smart hybrid materials with customized features, ferrogels and
magnetorheological elastomers allow a synergy of elasticity and magnetism. The interplay between
elastic and magnetic properties gives rise to a unique reversible control of the material behavior by
applying an external magnetic field. Albeit few works have been performed on the time-dependent
properties so far, understanding the dynamic behavior is the key to model many practical situations,
e.g., applications as vibration absorbers. Here we present a way to calculate the frequency-dependent
elastic moduli based on the decomposition of the linear response to an external stress in normal
modes. We use a minimal three-dimensional dipole-spring model to theoretically describe the
magnetic and elastic interactions on the mesoscopic level. Specifically, the magnetic particles carry
permanent magnetic dipole moments and are spatially arranged in a prescribed way, before they
are linked by elastic springs. An external magnetic field aligns the magnetic moments. On the one
hand, we study regular lattice-like particle arrangements to compare with previous results in the
literature. On the other hand, we calculate the dynamic elastic moduli for irregular, more realistic
particle distributions. Our approach measures the tunability of the linear dynamic response as a
function of the particle arrangement, the system orientation with respect to the external magnetic
field, as well as the magnitude of the magnetic interaction between the particles. The strength of
the present approach is that it explicitly connects the relaxational modes of the system with the
rheological properties as well as with the internal rearrangement of the particles in the sample,
providing new insight into the dynamics of these remarkable materials. Published by AIP Publish-
ing. [http://dx.doi.org/10.1063/1.4962365]

I. INTRODUCTION

The class of smart hybrid materials encompassing
ferrogels and magnetorheological elastomers stands out for
its unique capability of combining magnetic properties
with huge elastic deformability.1–4 They typically consist
of a permanently crosslinked polymer matrix in which
magnetic colloidal particles are embedded. The matrix is
responsible for the elastic behavior typical of rubbers, while
the particles magnetically interact with each other and
with external magnetic fields. These materials distinguish
themselves by the fascinating ability of reversible on-demand
tunability of shape and stiffness under the influence of
external magnetic fields,1,2,4–12 similarly to the tunability
of viscosity in ferrofluids.13–23 This makes them ideal
candidates for applications such as soft actuators,24 vibration
absorbers,25,26 magnetic field detectors,27,28 and even as
model systems to study aspects of hyperthermal cancer
treatment.29,30

The core feature of these materials is their magneto-
mechanical coupling,31–33 i.e., the way magnetic effects
such as the response to an external magnetic field couple
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c)Electronic address: menzel@thphy.uni-duesseldorf.de

to the overall mechanical properties (e.g., strain or elastic
moduli) and vice versa. As was recently shown, such
coupling is responsible for surprising properties such as
superelasticity,34 a characteristic buckling of chains of
particles under a perpendicular external magnetic field,35

qualitative reversal of the strain response,32 volume changes
due to mesoscopic wrapping effects,36 or tunability of the
electrical resistance.37 There are several key factors that can
influence the magneto-mechanical coupling: the magnetic
particle concentration,1,38,39 the stiffness of the gel,40 or
whether the magnetic moments of the particles can freely
reorient or must instead rotate synchronously with the whole
particle.2,41 The particles can be chemically bound to the
polymer network31,42,43 or be confined inside pockets of the
matrix.44,45 Moreover, the magnetic material itself can either
be ferro-43 or (super)paramagnetic.46

Because of the variety of factors and parameters that
can characterize ferrogels and magnetic elastomers, it is no
surprise that they are receiving increasing attention from the
modeling side. In fact, gaining insight into the mechanisms
underlying the magneto-mechanical coupling can be the key
to devise smarter and more efficient materials. Macroscopic
theories rely on a continuum-mechanical description of both
the polymeric matrix and the magnetic component,5,27,32,47–50

whereas mesoscopic approaches can take into account the
granularity and discreteness of the magnetic particles.34,51–53

0021-9606/2016/145(10)/104904/21/$30.00 145, 104904-1 Published by AIP Publishing.
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On this mesoscopic level, simplified dipole-spring models
represent a convenient approach to address effects originating
on the magnetic particle level. More precisely, in such models
the particles carry a dipole magnetic moment and are linked
with each other by a network of elastic springs. Additionally,
steric repulsion and other effects like orientational memory
terms can be included.54–59 Finite-element descriptions are
likewise employed to address mesoscopic particle-based
effects,10,33,60–63 and some works even resolve the individual
polymers on the microscopic scale.41,64 Moreover, in a coarse-
graining perspective, some routes have been outlined to
connect the different length scales listed above.65,66

Often in material science, one aims at determining the
material parameters that characterize the system. Fundamental
quantities to describe the time-dependent mechanical behavior
are the dynamic elastic moduli. They, for instance, contain
the information on the frequency-dependent stress response to
imposed time-periodic deformations. In the case of ferrogels
and magnetic elastomers only few theoretical studies have so
far addressed the dynamic properties in special cases.56,59,67

In the present work we aim at calculating the dynamic
(i.e., frequency-dependent) elastic moduli of ferrogels. We
use a minimal three-dimensional (3D) dipole-spring model
with short-ranged steric repulsion between the magnetic
particles. Moreover, we consider the system around its
equilibrium state of minimum total energy. Overdamped
motion of the particles is assumed, which is in general a
reasonable assumption for colloidal polymeric systems. We
focus on regular and more disordered particle arrangements
of finite size with open boundary conditions (obc). In our
particle-based approach this simply refers to a detached
finite assembly of particles. This system is bounded in all
three directions of space, in contrast to periodic boundary
conditions (pbc). We describe a semi-analytical approach
using a simple, direct connection between the normal modes
of the system and the linear response to an oscillating external
stress.

The paper is structured as follows. First, in Section II we
present our minimal dipole-spring model including steric
repulsion. To find the equilibrium configurations under
magnetic interactions, we use the methods as described in
Section III. Then, in Section IV, we determine the normal
modes and in Section V we connect them to the static linear
elastic response of the system. After that, in Section VI, we
address the dynamic behavior of our system and show how
to decompose it into the normal modes. In Section VII, we
extend the elastic moduli expressions obtained in Section V
to the dynamical case and show the corresponding numerical
results in Sections VIII, IX, and X before drawing our final
conclusions in Section XI. Appendix A lists the specific
expressions used in modeling the steric repulsion, whereas
Appendices B and C list in detail the employed expressions
for gradients and Hessian matrices. Appendix D describes in
detail our procedure of obtaining a torque-free force field.
In Appendix E we analytically estimate the Young moduli
of regular lattices for comparison with our numerical results.
Last, in Appendix F we present further data on the loss
components of the dynamic moduli, supporting our results in
the main text.

II. DIPOLE-SPRING MODEL

For simplicity we here work with a minimal 3D dipole-
spring model. On the one hand, as a first approximation, we
represent the magnetic moments by permanent point dipoles
of constant magnitude. Possible magnetic contributions due
to the finite extension of the magnetic particles are not
considered. This is a valid approach for interparticle distances
larger than the particle size (i.e., at low densities).68 In a
simplified manner, spatial variations in dipole orientations and
magnitudes due to their mutual feedback could be included
in a subsequent step, see Ref. 69. On the other hand, the
interaction between the mesoscopic particles mediated by
the polymeric matrix is, in general, non-linear.66 However,
since we are mainly interested in the linear elastic moduli for
small displacements around the equilibrium positions of the
particles, we confine ourselves to harmonic interactions in the
present study.

Our system is made of N identical spherical magnetic
particles with positions Ri = (Rx

i ,R
y
i ,R

z
i ), i = 1 . . . N . To

model the overdamped dynamics of the system, we consider
viscous drag forces −cṘi during particle displacements, where
the dot indicates the time derivative. Each particle carries an
identical magnetic dipole moment m of magnitude m = |m|.
This situation reflects, for instance, the case of ferromagnetic
or superparamagnetic particles under strong external magnetic
fields. Neighboring particles i and j are coupled by harmonic
springs attached to the particle centers for simplicity. The
unstrained spring length ℓ0

i j is set in the initial ground state par-
ticle configuration in the absence of any magnetic interactions,
while the spring constants are given by k/ℓ0

i j. Thus, k is related
to the overall elastic modulus of the system and long springs
are weakened when compared to short ones. We assume
the polymeric matrix—here represented by the network of
springs—to have vanishing magnetic susceptibility and there-
fore not to directly interact with magnetic fields. If magnetic
particles come too close to each other, they interact sterically.

The total energy U of the system is the sum of elastic
Uel, steric U s, and magnetic Um energies.54,55,57,58 Elastic
interactions are given by

Uel =
1
2


i, j

ki j
2

(
ri j − ℓ0

i j

)2
, (1)

where the sum runs over all particles i and j , i. Moreover,
ki j = k/ℓ0

i j if particles i and j are connected by a spring and
vanishes otherwise. Furthermore, ri j = R j − Ri and ri j = |ri j |.

We model the steric interactions using a repulsive
potential inspired by the Weeks-Chandler-Andersen form70

but with different exponents. For instance, possibly absorbed
polymer chains on the surfaces of the particles35 could result
in a softer repulsion. Our steric potential reads

U s =
1
2


i, j

v s(ri j), (2)

where

v s(r) = εs
( r
σs

)−4
−

( r
σs

)−2
−

( rc
σs

)−4
+

( rc
σs

)−2

+ cs
(r − rc)2

2


(3)
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for r ≤ rc and zero otherwise. Here, εs sets the strength of the
steric repulsion, σs characterizes the range of steric repulsion,
and rc = σs21/2 is a cutoff distance. The parameter cs is
chosen such that altogether we have v s(rc) = 0, v s′(rc) = 0,
and v s′′(rc) = 0 (see Appendix A).

Finally, the magnetic energy is given by the dipole–dipole
interaction

Um =
µ0m2

4π
1
2


i, j

r2
i j − 3(m · ri j)2

r5
i j

, (4)

where m = m/m and µ0 is the magnetic permeability of
vacuum. In the present work, we use reduced units as follows:
lengths are given in multiples of l0, energies in multiples of
kl0. The length l0 is defined as l0 =

3


1/ρ where ρ is the
number density of the particles. Furthermore, we measure
magnetic moments, velocities, and frequencies in multiples of

m0 =


4πkl0

4/µ0, k/c, and k/cl0, respectively, with c setting
the viscous friction coefficient of each particle. (There is
a typo in the definition of m0 in Ref. 55: it should read

m0 =


4πkl0

5/µ0 instead of m0 =


4πk2l0

5/µ0.) For our
purposes, we assume σs = 0.2l0 and εs = kl0.

For reasons that will become clear in Section V, it is
useful to explicitly define and indicate the boundaries of our
system. We here consider samples of cubelike shape with
faces perpendicular to x, y, and z, the unit vectors defining
our Cartesian coordinate system. We can define “left” and
“right,” “front” and “rear,” as well as “bottom” and “top”
boundaries, namely the faces oriented by ∓x, ∓y, and ∓z,
respectively. The criteria to identify which particles belong to
the boundaries will be detailed later according to the specific
particle distribution. Subsequently, we indicate by Lx, Ly, and
Lz the extension of the sample in the x-, y-, and z-direction,
respectively. In the case of cubelike shape and uniform density,
Lα (α = x, y, x) will be proportional to N1/3l0. Otherwise, an
additional geometry-dependent prefactor can be included.
Then the scaling of cross-sectional areas (i.e., Sx = LyLz) and
the volume V = LxLyLz follow straightforwardly as N2/3l0

2

and Nl0
3, respectively.

III. EQUILIBRIUM STATE

First, we need to find the equilibrium state of our sys-
tem, i.e., the one that minimizes the total energy U = Uel

+U s +Um with respect to all degrees of freedom. In our case
the degrees of freedom are given by the positions Ri, which
requires

∂Ri
U = 0, ∀ i = 1 . . . N (5)

in equilibrium. From Eqs. (1)–(4) it is straightforward to
calculate the resulting gradients (see Appendix B). The
second derivatives of the energy U form the corresponding
Hessian matrix, see below. Analytical expressions are listed
in Appendices B and C.

We seek the minimum total energy U of a sample
composed of N particles arranged according to a prescribed
distribution, each carrying a prescribed magnetic dipole
moment m. Consequently, the equilibrium state is obtained as
a function of m. To ease the convergence of the minimization

techniques, we gradually increase the magnitude of the
magnetic moments from m = 0 (ground state) to the required
maximum value of m while minimizing the total energy for
each intermediate value of m. Because of the large number
of degrees of freedom, the only practical way to find the
equilibrium state is to perform a numerical minimization of
the energy. In the present work we implemented a conjugated
gradient algorithm with guaranteed descent.71

We wish to study the dynamic response of our systems for
different orientations while holding m fixed in space. However,
once the orientation of the magnetic moments is fixed from
outside, the system as a whole may start to rigidly rotate to
minimize its overall energy. In real samples, such rotations
are for instance suppressed by macroscopic frictional and
gravitational forces. Moreover, in our previous investigation,
this macroscopic rotation was hindered by a “clamping”
protocol of the boundaries.55 Here instead, we develop a new
protocol to keep the system in the desired orientation. This
is achieved by subtracting from the force field acting on
the boundaries those parts corresponding to rigid rotations
(see below and Appendix D). This way, three constraints are
applied in the form of the suppressed rigid rotations and we
otherwise allow a complete internal relaxation of the sample.

IV. NORMAL MODES

Next, we describe a generic normal mode formalism and
explain how it can be employed to characterize the linear
response of our systems to a small external perturbation. We
do not assume regular, periodic particle distributions. Instead,
our formalism can likewise be applied to irregular particle
arrangements, see, e.g., Refs. 72–74.

In the following, we indicate with a bra-ket notation
|X⟩, the D-component vector containing all the D degrees
of freedom of the system. In our case, D = 3N as we only
consider translational degrees of freedom, but in principle |X⟩
could also include, for instance, particle rotations.

Once we write down the total energy U(|X⟩), the
equilibrium state |X⟩eq is given by the condition

∂XU (|X⟩eq) = 0. (6)

It is more convenient to discuss the problem in terms of
displacement from equilibrium, |u⟩ = |X⟩ − |X⟩eq. Further-
more, it is always possible to shift the energy by a constant
so that U(|X⟩eq) = 0. Around its minimum, we can expand
U(|X⟩) to lowest order in the displacement |u⟩,

U (|u⟩) ≃ 1
2
⟨u|H |u⟩ , withHi j = ∂ui∂u j

U. (7)

Here, H is the Hessian matrix composed of the second
derivatives of U with respect to |u⟩ (see Appendices B and
C). If U(|X⟩) has continuous second partial derivatives, then
H is symmetric. Moreover, being in a minimum of U(|X⟩)
implies thatH is positive-semidefinite. All its eigenvalues are
positive, except for the modes representing rigid translations
and rotations, which cost no energy and have vanishing
eigenvalues.

We obtain the linearized gradient around the minimum
from Eq. (7) as
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∂uU (|u⟩) ≃ H |u⟩ . (8)

When a small external force |f ⟩ is applied, the system reacts
to neutralize it and re-equilibrates

−∂uU(|u⟩) + |f ⟩ = 0 ⇒ H |u⟩ ≃ |f ⟩ . (9)

In Eq. (9) we have used Eq. (8), which is justified for small
|f ⟩. We diagonalize H and introduce its eigenvalues λn and
eigenvectors, i.e., the normal modes |vn⟩ with n = 1 . . . D and
D the number of degrees of freedom, such that

H |vn⟩ = λn |vn⟩ , and ⟨vm|vn⟩ = δmn, (10)

where δmn is the Kronecker delta. Since the |vn⟩ form a
complete basis, we can expand displacements and forces as

|u⟩ =
D
n=1

un |vn⟩ and |f ⟩ =
D
n=1

fn |vn⟩ . (11)

Here, un = ⟨u|vn⟩ and fn = ⟨f |vn⟩. Then, using these
expansions and the orthonormality of the eigenvectors, Eq. (9)
simply reduces to

λnun = fn. (12)

This relation clearly shows that, under the influence of an
external force |f ⟩ exciting the nth normal mode, the amplitude
un of the response is linearly related to the intensity fn of the
force. In this perspective, the Hessian eigenvalue λn quantifies
the magnitude of the static linear response of the system
within the nth mode to the external force. λn is therefore
a sort of elastic constant. Thus, the energy of the system
around its minimum can be written, using Eqs. (7) and (11),
and (12), as

U =
1
2

D
n=1

λnun
2 =

1
2

D
n=1

fn2

λn
. (13)

V. STATIC ELASTIC MODULI FROM NORMAL MODES

In numerical calculations there are two main ways to
obtain elastic moduli in the zero-frequency limit, i.e., in the
static case. On the one hand, one can perform a finite but small
(linear-regime) strain of the whole system, both for pbc36,75,76

and obc.55 The system is equilibrated under the prescribed
amount of strain. In this way, the moduli are measured from
the slope of the resulting stress-strain curve or, equivalently,
from the second derivatives of the free energy. On the other
hand, when employing pbc and working in thermodynamic
equilibrium, one can differentiate the free energy with respect
to a macroscopic strain.75,77,78 As a special case, and in the
low-temperature limit, the elastic moduli of a pbc glassy
system have recently been examined,79 whereas the case of
regular lattices was discussed under the assumption of affinity
in the deformation.51 However, it is important to remark that
affinely mapping the macroscopic strain down to all scales in
the system does not allow for internal relaxation80 and can
even lead to qualitatively incorrect results55 in presence of
non-affinity sources.

In the present work we consider the case of a finite
system in the ground state neglecting thermal fluctuations

of the mesoscopic particles. The semi-analytical approach
that we use to calculate elastic moduli in the linear regime
does not require finite macroscopic displacements nor does it
assume affinity of the deformation. This method relies on the
decomposition of the linear response over the eigenvectors of
the Hessian matrixH . It reduces the calculation to a problem
of linear algebra and gives access to dynamic properties as
well, see Sections VI and VII. Physically, our procedure
involves using stress instead of strain as an independent
variable.

A. Macroscopic stresses and strains

Below we will focus on Young’s modulus E and the
shear modulus G. They can be defined via the stress-strain
relationships

σαα = Eαα εαα, σαβ = Gαβ εαβ, (14)

whereσαβ (α, β = x, y, z) denotes the force per area applied in
the β-direction acting on the boundary with the surface normal
oriented in the α-direction. εαβ indicates the corresponding
strain deformation, i.e., the total displacement of the boundary
in the β direction divided by the distance between the
boundaries in the α-direction. Here, there is no summation
over α and β. In the first formula, α defines the direction of
imposed stretching or compression, along which we evaluate
Eαα. In the second formula, the αβ plane sets the shear plane
within which we evaluate G, with the shear displacement on
the boundaries introduced along the β-direction. Thus, only
the faces of the system perpendicular to the α-direction
need to be explicitly addressed to impose our boundary
stresses, while the rest of the system is free to relax.
This configuration conceptually reproduces an experimental
situation in which the sample would be enclosed between
the plates of a rheometer with the plates perpendicular to the
α-direction.81

Applying during shear only forces oriented tangential to
the surface planes typically induces rotations. In experiments,
these are hindered by the confining plates. Accordingly, we
here suppress such global rotations by subtracting them
from the overall response of the system (see below and
Appendix D). In this way, we maintain the definition of
σαβ as above close to the experimental situation and avoid
symmetrization typically performed in the context of classical
elasticity theory82 (for a related discussion on anisotropic
systems see also Ref. 65).

In the following derivation, we focus on the Young
modulus Eαα and drop the αα subscripts. The calculation
for the shear modulus Gαβ is analogous. Here, stresses
and strains in Eq. (14) are interpreted as macroscopic
quantities characterizing the overall deformation of the
system. We measure them and accordingly define the
elastic moduli of the system solely by the stresses on
and the displacements of the boundaries perpendicular to
α̂, respectively. The stress is calculated from the ratio
between the external force and the surface over which it
is applied. Similarly, the strain is obtained by measuring the
displacement of the boundaries and dividing by their initial
distance.
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The energy of a strain deformation is given by the work
performed by the stress in the whole volume, i.e., using
Eq. (14),

U = V


σ dε = V
Eε2

2
= V

σ2

2E
. (15)

Therefore, the elastic modulus can be derived by differentiat-
ing the previous equation,

E =
1
V

d2U

dε2 = V


d2U

dσ2

−1

. (16)

B. Mesoscopic stress

Our goal is to connect these macroscopic relations to
the mesoscopic level. On the mesoscopic scale, within our
linear response framework, it is impractical to use the strain
as a variable to impose an external perturbation of the system.
Imposing a certain amount of strain by displacing the boundary
particles in a prescribed way does not provide any information
on the displacement of the bulk particles because the internal
relaxation of the system is not known a priori. Actually, the
rearrangement of the bulk particles mainly determines the
reaction of the system and contributes the most to the elastic
response. In contrast to that, it is more convenient to use the
stress as a variable to impose the external perturbation when
we connect the macroscopic to the mesoscopic level. As a
matter of fact, we know that an externally imposed mechanical
stress leads to nonvanishing external forces on the boundary
particles only.

We here describe the macroscopic mechanical stress σ
in terms of sets of discretized forces acting directly on the
mesoscopic particles. We denote the number of particles on
the “left” and “right” boundaries (see Section II) as Nl and
Nr , respectively. If we indicate by S the cross-section over
which a total external force F is applied, then we have
F = σS. The corresponding externally imposed discretized
mesoscopic force field |f ⟩ acting directly on the particles can
then be constructed using the following protocol:

(a) |f ⟩ is non-vanishing only on the boundaries and has
components oriented in the stress-direction, see Fig. 1(a).

(b) The total force F acting on one boundary must be equal in
magnitude to the total force acting on the other boundary.
First, we assume all individual forces acting on individual
particles on the same boundary to be equal in magnitude.
We indicate by f l and fr those forces acting on a
single individual particle on the left or right boundary,
respectively. Then the condition reads F = Nl f l = Nr fr ,
see Fig. 1(b).

(c) The torque exerted by |f ⟩ on the boundaries must vanish
[see Fig. 1(c)]. This can be achieved using the method
described in Appendix D. The condition is applied
separately to each boundary.

(d) Finally, we must rescale all forces acting onto one
boundary by a common factor so that the forces acting in
the stress direction sum up to F = σS [see Fig. 1(d)].
Again, this condition is applied separately to each
boundary.

FIG. 1. Protocol to connect a macroscopic stress (σxx) acting on the system
boundaries to a discretized mesoscopic force field acting on the boundary
particles. For simplicity, the case of an irregular two-dimensional (2D) system
is shown here. Particles on the boundaries are colored in black and springs
are represented by dotted lines. This figure is for illustrative purposes only,
therefore lengths and vectors are scaled in a qualitative way. Our procedure is
as follows: (a) First, individual discrete forces of equal magnitude are intro-
duced on each individual boundary particle, pointing into the stress-direction
(here the x-direction). (b) The forces are rescaled to balance total forces
on the left- and right-hand sides. (c) An appropriate rotatory component is
introduced to make the torques vanish on each boundary (separately). (d) All
forces on each boundary are rescaled by a common factor so that their sum in
the stress-direction is normalized correctly.

These steps serve as a protocol when generating the
discretized boundary force field |f ⟩ in numerical calculations.
In the following, we factor out F and write |f ⟩ = σS |fu⟩,
where |fu⟩ is a force field satisfying our requirements
and representing a macroscopic force of unitary magnitude
(F = 1).

C. Calculation of static elastic moduli

We now have all the ingredients available to formulate
the connection between the macroscopic elastic modulus
and our discretized mesoscopic normal modes. Following
the definition of particle-resolved stress σS |fu⟩ that we
introduced above, we write the energy in Eq. (13) as an
explicit function of σ,

U =
σ2S2

2

D
n=1

f un
2

λn
, with f un = ⟨fu |vn⟩ . (17)

Combining it with Eq. (16), we obtain

E =
L
S



D
n=1

f un
2

λn



−1

. (18)

Here, again, S is the surface area of the boundary on
which the stress acts, while L is the distance between the
two boundaries so that LS = V . λn is the nth eigenvalue
of the Hessian matrix, and f un is given by Eq. (17). In
general, S and L will be proportional to N (d−1)/dl0

d−1
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and N1/dl0, respectively, with d the spatial dimensionality
of the system. Therefore, for 3D particle arrangements of
cubelike shape we obtain L/S ∼ 1/ 3√Nl0. In other cases a
prefactor must be added, taking into account the shape of
the sample or the unit cell structure in the case of regular
lattices.

In the following numerical calculations we used the
 diagonalization routines83 to find eigenvalues and
eigenvectors of H . Special care must be taken to avoid the
zero-energy modes when computing Eq. (18). We here simply
ignore contributions from the lowest 3 and 6 eigenvalues
when dealing with 2D and 3D systems, respectively.
They correspond to rigid translations and rotations of the
system.

Overall, we have described a self-standing procedure to
calculate elastic moduli in obc systems. The system is required
to be in a stable equilibrium state, where the Hessian matrix
of the total energy is positive semi-definite. Since the elastic
moduli are properties of the ground state, they can be directly
obtained via the eigenvalues and eigenvectors calculated in
this configuration, see Eq. (18), for a specified force field,
see Section V B. Therefore, it is not necessary to actually
perform a finite deformation and drive the sample out of
equilibrium as, e.g., in Refs. 36, 55, and 76. In Sec. V D
we compare the results of our described method with those
obtained by explicitly taking a system out of equilibrium via
actual boundary displacement.

D. Comparison with 2D calculations

The calculation we outlined in Section V C has the
advantage of requiring knowledge of only the ground state
to obtain all (linear) elastic moduli. Conversely, as we just
mentioned, the previously taken path to determine the elastic
moduli is to drive the system out of the ground state
by prescribing a small amount of strain, determining its
deformation, and thereby tracking the total energy variations,
see, e.g., Refs. 34, 36, and 55. To test the validity of the
present approach, we compare the method described above
with the numerical results obtained previously for the 2D case
via explicit boundary displacements.55

We briefly sum up the technique applied in our former
work, see Ref. 55. In that case, a 2D dipole-spring model,
similar to the present one but without steric repulsion, is
considered. The left and right boundaries of the system are
set perpendicular to the x-direction and undergo a “clamping”
protocol, i.e., all the particles in the boundary are constrained
to move along x or y in a prescribed way and therefore the
whole system undergoes a determined amount of strain εxx or
εxy. For every prescribed position of the boundaries, the bulk
of the system is free to relax [see Figs. 2(b), 2(d), and 2(f)].
Then, the static Young’s modulus is obtained from the second
derivative of the total energy with respect to a small strain in
the linear elasticity regime.

Contrarily to the present case, in Ref. 55 we considered
springs of identical elastic constant, regardless of the spring
length. To allow a better comparison with our former results
we will—solely in this subsection—assign an equal elastic
constant to all springs, i.e., ki j = k ∀i, j. Moreover, for the

FIG. 2. Non-affine displacement field |u⟩ of exemplary square and triangular
lattices composed of 100 particles (springs indicated by dashed lines) for
m = 0 obtained with LR and BD methods [panels (a), (c), (e) and (b), (d),
(f), respectively] for stretching/compression εxx and simple shear εx y de-
formations [panels (a), (b) and (c), (d), (e), (f), respectively]. This simple,
exemplary case shows how the responses obtained from the two methods are
both non-affine and similar, but can yet present small differences (compare
e.g., particles highlighted by red squares), explaining small deviations in
the elastic moduli resulting from the two methods, see Fig. 3. Panels (b),
(d), (f) were obtained by imposing small (linear-elasticity regime) strains of
εxx = 0.03 and εx y = 0.001, respectively.

present 2D setup, the elastic moduli will be measured in
multiples of k. In the following, we will address the previous
calculations of Ref. 55 as “Boundary Displacement” (BD) and
those in the framework of linear response theory of the present
work as “Linear Response” (LR).

We first consider the case of a 2D square spring lattice
with nonmagnetized (m = 0) particles on the vertices. On the
one hand, and in the BD case, we can apply a prescribed, small
amount of strain εxx or εxy and, after full internal energetic
relaxation, observe the resulting displacement field BD |u⟩, see
Figs. 2(b), 2(d), and 2(f). On the other hand, and in the present
LR scheme, we start from the small mesoscopic force field
|f ⟩ as constructed via the protocol described in Section V B.
The corresponding coefficients fn are obtained from Eq. (11).
Then, using the eigenvalues of the Hessian matrix λn as well
as Eq. (12), we obtain the response of the modes, i.e., the
coefficients un. Finally, using the coefficients un, we obtain
via Eq. (11) the particle-resolved displacement LR |u⟩, which
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FIG. 3. Young’s modulus E as a function of m calculated for comparison
with BD and LR techniques. Three cases are presented (top to bottom): rect-
angular lattice of base-height ratio b/h = 2.5, square lattice (b/h = 1), and
triangular lattice [see panels (e) and (f) of Fig. 2] with m oriented in the x-,
z-, and y-direction, respectively. The number of particles in all of the three
examples is N = 400. The triangular lattice case shows a comparatively larger
difference, which, however, does not depend on m. We mostly attribute such
deviations to the structure of the boundary, as detailed in Figs. 2(e) and 2(f).

is the linear response of the system to the small applied force
|f ⟩, see Figs. 2(a), 2(c), and 2(e).

The comparison between the resulting displacement fields
is helpful to understand where small deviations between the
elastic moduli obtained via the two different methods may
arise from, see Fig. 3. Overall, the differences remain small,
especially in the case of stretching and compression [see
Figs. 2(a) and 2(b)]. For shear deformations [see Figs. 2(c)
and 2(d)], such discrepancies are visible and reflect small
deviations in the resulting moduli. This effect seems to
be stressed when the positions of boundary particles are
not mirror symmetric with respect to the direction of the
calculated modulus, as in the case of the triangular lattice in
Figs. 2(e) and 2(f) for Young’s modulus in x-direction. In total,
however, we may conclude that our protocol to construct the
force field, see Section V B, works well and reproduces
the mesoscopic displacement fields previously obtained
via BD.

To further test the performance of the present method,
we now consider magnetic particles (m , 0). We compare
some of the elastic moduli obtained in Figs. 5–7 of Ref. 55
as functions of m for a few exemplary cases of regular lattice
structures. As shown in Fig. 3, we find the same behavior for
E(m) depending on lattice structure and neighbor orientation.
Depending on the particle arrangement, small discrepancies
can appear, as explained above. These deviations also seem
to depend on the specific shape of the boundaries and are
more evident for the case of the triangular lattice in Figs. 2(e)
and 2(f). From now on, we will turn back to the more general
3D case.

VI. DYNAMICS

Because of their often highly viscous character on the
mesoscale, soft matter systems in motion typically undergo
large dissipation and their dynamics is studied in the

overdamped regime.36,56,59,84 In the following we describe the
time-evolution of our systems, starting from the overdamped
equation of motion. Then, a way to decouple the full equation
of motion in the normal modes is presented and the general
solution for a single mode is shown.

To keep the derivation general, we here take up the
notation introduced in Section IV with the difference that now
|u⟩ (t) and |f ⟩ (t) depend on time. The full, coupled equation
of motion for the overdamped dynamics of the system can be
written as

C |u̇⟩ (t) +H |u⟩ (t) = |f ⟩ (t), (19)

where the dot represents time differentiation, the matrix C
contains the (viscous) friction coefficients, and we have used
the linearized version of the gradient H |u⟩ as in Eq. (8).
Here, for simplicity and as a first step, we consider the case
of mesoscopically isotropic building blocks under negligible
long-ranged dynamic coupling, i.e., C = cI, with I the D × D
identity matrix and c the viscous friction coefficient for one
isotropic particle.

As a consequence, the matrices C and H commute and
can be simultaneously diagonalized, i.e., they have a com-
mon base of eigenvectors, namely the |vn⟩ in Eq. (10).
Then, using the normal modes, Eq. (19) of D variables can
be decoupled into D independent single-variable equations

cu̇n(t) + λnun(t) = fn(t), (20)

with n = 1 . . . D. If the external force |f ⟩ (t) is periodic,
i.e., |f ⟩ (t) = �

f 0� exp (iωt), its projections onto the Hessian
eigenvectors |vn⟩ will be equally periodic,

fn(t) = f 0
n exp (iωt) , (21)

with f 0
n =



f 0|vn�. Thus, the solution un(t) of Eq. (20) after all

transients have decayed must be periodic as well, i.e.,

un(t) = u0
n exp (iωt) . (22)

Substituting the last equations into Eq. (20), we obtain

u0
n = f 0

n/κn(ω) (23)

with

κn(ω) = λn + icω

= eiδn(ω)λn


1 + τn2ω2, (24)

where δn(ω) = arctan (τnω) .
In these expressions we introduced by τn = c/λn the relaxation
time and by 1/κn(ω) the dynamic linear response function of
the nth mode.

As described above, we focus on the overdamped
dynamics and do not include inertial terms in Eq. (19). If
an inertial term had been considered, it would have resulted
in a (λn − mω2)2 term inside the square root of Eq. (24), with
m the mass of one particle. Such a contribution would have
showed up as a resonance frequency ω̃n =


λn/m for the n-th

mode. As a consequence, when the frequency of the driving
forceω coincides with ω̃n, large displacements can be induced
by small external perturbations. Such an effect would result
in a significant drop of the elastic moduli at frequencies close
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to the resonances of those modes that contribute most to the
linear response. This behavior, however, is not obvious from
experimental reports,85–88 thus supporting the overdamped
approach. Eq. (24) implies that the displacement un(t), i.e.,
the response, chases the driving force fn(t) with identical
frequency. However, because of viscous friction, it follows
with a phase lag δn(ω), which vanishes in the case of
frictionless motion. Such a phase lag implies an imaginary
component of κn(ω) corresponding to a loss component of the
elastic moduli, see below.

VII. DYNAMIC ELASTIC MODULI

We aim at extending the normal modes treatment that we
carried out for Eq. (9) and transfer it to the dynamic situation
described by Eq. (19). The final goal will be to generalize
Eq. (18) for the macroscopic overall elastic moduli to the case
of periodically oscillating external stresses and thus obtain
the dynamic elastic macroscopic moduli. We here consider
the case of a Young modulus E(ω) = Eαα(ω) for direction
α ∈ {x, y, z}. The discussion of a shear modulus Gαβ(ω) is
entirely analogous, provided that the protocol prescribed in
Section V B is followed.

We now start with a macroscopic, periodic, and single-
frequency stress

σ(t) = σ0eiωt (25)

applied to the sample, with σ0 a real amplitude. The resulting
macroscopic strain ε(t) varies with the same frequency. Thus
we write

ε(t) = ε0(ω)eiωt, (26)

where ε0(ω) is, in general, a complex amplitude. Using
these expressions in the single-frequency case, the frequency-
dependent dynamic modulus E(ω) follows via

σ(t) = E(ω)ε(t) ⇔ E(ω) = σ0

ε0(ω) . (27)

Thus, E(ω) = E ′(ω) + iE ′′(ω) has an imaginary part whenever
σ(t) and ε(t) are not completely in phase and can be divided
into storage (E ′) and loss (E ′′) components.

Now we take up again the formalism of Sections IV
and V. On the mesoscopic level—see Section VI—the time-
dependent response

�
u0� exp (iωt) of the system, after all

transients have decayed, is related to a small driving force�
f 0� exp (iωt) by

�
u0� eiωt =

D
n=1

u0
n |vn⟩ eiωt =

D
n=1

f 0
n

κn(ω) |vn⟩ eiωt, (28)

where, again, D is the number of degrees of freedom,
f 0
n =



f 0|vn�, u0

n =


u0|vn�, and we used Eq. (11).

The macroscopic dynamic stress is given by σ(t)
= F exp(iωt)/S, with S the boundary surface area and F the
macroscopic force acting on it. Moreover, the macroscopic
strain is ∆/L with ∆ the change in separation of the
macroscopic sample boundaries and L the absolute distance
between them. The displacement∆ is measured in the direction
of the applied force inducing it. Therefore, and since |fu⟩

represents the mesoscopic direction of a force of magnitude
unity (F = 1, see Section V B), we define ∆ = ⟨fu |u⟩ as a
measure of the resulting displacement. We recall here that

�
f 0�

was constructed to apply only on the boundary, so ⟨fu |u⟩ really
extracts the displacement of the boundaries. Consequently, we
write Eq. (27) on the mesoscopic level as

Feiωt

S
= E(ω)



fu |u0� eiωt

L
. (29)

Using Eq. (28), as well as f 0
n = F f un and f un = ⟨fu |vn⟩ (see

Section V B), the dynamic modulus follows as

E(ω) = L
S



D
n=1

f un
2

κn(ω)


−1

(30)

which does not depend on the macroscopic force intensity
F and in the case ω = 0 recovers Eq. (18). Since κn(ω) is a
complex number, E(ω) is complex as well and we can separate
it into storage and loss components E(ω) = E ′(ω) + iE ′′(ω).
We remark that in the static case we always find E ′′(ω = 0) = 0
by definition [see Eq. (24)].

On the macroscopic level, Eq. (30) is connected to the
Kelvin-Voigt model, which correctly describes the properties
of permanently crosslinked polymers on long times scales,
i.e., small ω. This is clear in a limit case when a single
mode, e.g., n = 1, has a relaxation time, e.g., τ1 = c/λ1,
much longer than the other modes. Then, the long-frequency
dynamics is dominated by this mode which gives, in fact,
the largest contribution to the sum in Eq. (30). Eventually, in
this case one would find E(ω) ∝ κ1(ω) = λ1 + iωc, which is
precisely the form of the dynamic modulus in the Kelvin-Voigt
model.89,90

In the following, we will apply the present approach to
different particle distributions, addressing the dynamic elastic
moduli for varying ω and m. Although we will display the
behavior of the dynamic moduli up to relatively large values of
ω, one should keep in mind our focus on overdamped motion.
At maximum our approach is meaningful up to a frequency
ωmax = λmax/c, where λmax is the largest eigenvalue
ofH .

The limit becomes visible from calculating the spectrum,
i.e., the density of states g(ω).91 It is defined by

g(ω) = 1
D

D
n=1

δ

(
ω − λn

c

)
, (31)

with δ the Dirac delta function. To determine it from our
numerical calculations, we replace the Dirac delta function
by a narrow normalized Gaussian. We chose the Gaussians as
narrow as possible to achieve a smooth representation of the
density of states.

We always find g(ω) to drop significantly beyond a
maximum value ωmax. The latter is of the order of a few
k/cl0, see Fig. 4. Consequently, and because of our focus on
the overdamped regime, it is not sensible to take into account
the behavior for ω & 10k/cl0.

First, the exemplary case of a simple cubic lattice will be
studied. After that, we consider an fcc particle arrangement,
before we finally move on to the case of disordered and more
realistic particle arrangements. For simplicity, we will always
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FIG. 4. Density of states g(ω) at vanishing m of a cubic lattice with springs
up to second-nearest neighbors (see Section VIII), an fcc lattice with only
nearest-neighbor springs taken into account (see Section IX), and a disor-
dered distribution (see Section X) made of 4913, 6084, and 6084 particles,
respectively. The density of states is shown from ω = 0 to the highest ωmax

obtained from the Hamiltonian spectrum, which is usually .10 k/cl0. The
standard deviation of the narrow Gaussians used to approximate the Dirac
deltas appearing in Eq. (31) is chosen as 0.005ωmax.

keep the magnetic moment m oriented in the z-direction.
We measure the Young moduli in the perpendicular (Exx

and Ey y) and parallel (Ezz) directions. Likewise, the shear
moduli will be calculated in the three possible orientations
depicted in Fig. 5: (a) shear corresponding to Gxy does not
directly modify distances along the m-direction; (b) while
Gxz is measured the macroscopic shear displacements are
oriented along m; and (c) the shear plane contains m, but
the macroscopic shear displacements are perpendicular to m
when Gz y is determined. Moreover, we here have Gyx = Gxy,
Gxz = Gyz, and Gzx = Gz y.

FIG. 5. Illustration of the three principal shear geometries. m is rigidly
oriented in the z-direction. Shear forces can be applied to different boundaries
and in different directions, giving origin to three main geometries (top to
bottom): (a) for Gx y forces are perpendicular to m, but the driven boundary
planes contain m; (b) for Gxz both shear forces and driven boundary planes
are parallel to the m direction; (c) for Gz y the driven boundary planes and
shear forces are perpendicular to m. We here define stresses directly via the
forces acting on the indicated planes along the desired directions.

VIII. CUBIC LATTICE

As a first prototype, we consider the simple exemplary
case of a 3D cubic lattice with N = 3375 particles. Magnetic
particles on the lattice are linked by springs up to second-
nearest neighbors. Corresponding springs along the diagonals
of the faces of the unit cells are necessary to avoid unphysical
soft-shear modes. The boundaries of the system are simply
identified as the outermost layers of particles in the respective
directions. As explained in Section II, the lattice parameter
and the typical interparticle distance l0 follow from the number
density ρ. In the case of a simple cubic lattice structure, ρ is
given by one particle per unit cell.

Upon introducing a dipole magnetic moment in the
particles, the direct attraction between nearest neighbors
causes the system to shrink in the m-direction and expand
in the perpendicular directions (see Fig. 6). Technically, in our
numerical calculations, we gradually increased the magnetic
moment to the value under consideration, up to a maximum
magnitude of m = 0.1m0. In this regime, and despite the
overall deformation, the lattice maintains a cuboidlike shape.
The magnetic interactions are not as strong as to overcome
the elastic springs and the particles do not come into steric
contact.

A. Static moduli

We start by studying the static moduli E and G (i.e.,
the storage components E ′ and G′ of the dynamic moduli
calculated forω = 0) for increasing magnitude of the magnetic
moment m, see also Ref. 51. Magnetic interactions between
nearest neighbors are attractive in the z-direction and repulsive
in the x- and y-direction. These attractive and repulsive

FIG. 6. Deformation of an initially cubic lattice with springs between up
to second-nearest neighbors and N = 3375 when a magnetic moment of
m= 0.1m0z is gradually switched on. For illustrative purposes, only particles
on the front, top, and right faces are depicted. Shrinking is observed along
m, i.e., the z-direction, and dilation in the perpendicular directions. The inset
zooms in onto the deformation of the unit cell at the bottom left corner of the
sample.
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FIG. 7. Static moduli (a) Eαα(m)= E′αα(ω = 0,m) and (b) Gαβ(m)
=G′αβ(ω = 0,m) (α, β = x, y, z) of a cubic lattice with N = 3375 for increas-
ing magnetic moment intensity m (m oriented along the z-direction). (a) The
Young moduli in the directions perpendicular to m are increased by increasing
magnetic moments, whereas in the m-direction the modulus is decreased.
Black dashed lines in panels (a) and (c) represent the trends in Eq. (32)
shifted vertically to compensate for finite-size and boundary effects and to
allow for a better comparison of the m-dependence. (b) The shear modulus
Gxz obtained by shear displacements along the m-direction decreases for
increasing m, whereas Gx y and Gz y reveal an increasing behavior. (c, d) All
elastic moduli as functions of m show quadratic behavior to lowest order, as
required by the necessary m→ −m symmetry.

magnetic interactions with correspondingly positive and
negative second derivatives with respect to nearest-neighbor
distances induce decrease and increase, respectively, of the
Young moduli.55 This trend is observed in Fig. 7(a). At
vanishing magnetic moment all Young moduli measured along
the different directions have the same value, as expected by the
cubic lattice symmetry. Then, as m is slowly increased, this
symmetry is broken and Ezz(m) decreases, whereas Exx(m)
and Ey y(m) increase identically, as expected by the unbroken
x ↔ y symmetry. Moreover, all moduli show to lowest order
in m a quadratic behavior, as demanded by the necessary
m → −m symmetry,59 see Fig. 7(c).

More explicitly, the trends of the static Young moduli
in the simple cubic case can be explained by considering
interactions between neighbors on a regular lattice, see
Appendix E. When we focus on small magnetic interactions,
i.e., m ≪ m0, the dipole–dipole forces are much weaker than

the restoring elastic ones and we can assume they leave the
particle positions unaltered.

Considering contributions up to neighbors as distant as
10l0, we obtain, see Appendix E, the following trends for the
Young moduli:

Exx(m)
k

l0

2
=

Ey y(m)
k

l0

2
≈ 9 + 4

√
2

7
+ 15.61(m/m0)2,

Ezz(m)
k

l0

2
≈ 9 + 4

√
2

7
− 31.21(m/m0)2.

(32)

The trends provided by these expressions are in good
agreement with our numerical results, see Fig. 7(a). They
describe, respectively, increasing or decreasing moduli in the
directions perpendicular or parallel to m. Moreover, Eq. (32)
suggests a stronger dependence of Ezz on m compared to Exx

and Ey y. This agrees with our numerical results, see Figs. 7(a)
and 7(c). Furthermore, it confirms the major role played by
the second derivatives of neighbor interactions in determining
the trends for Eαα(m) of regular distributions, as pointed out
in Ref. 55.

In our numerical calculations we obtain different
behaviors for the different shear moduli as functions of m.
However, at vanishing magnetic moment they all assume the
same value, as expected by lattice symmetry, see Fig. 7(b).
Furthermore, as Young’s moduli, they are all, to lowest order,
quadratic functions of m, as required by symmetry when
m is flipped into −m, see Fig. 7(d). The shear modulus
Gz y(m) shows an increasing behavior for increasing m. It is,
in fact, the only depicted shear deformation that breaks the
spatial mutual alignment of the moments in the z-direction.
This is hindered by increasing m, in agreement with an
increasing modulus Gz y(m). The shear deformation related
to Gxz(m), instead, induces the dipoles to move in parallel
to their alignment direction. Nearest neighbors connected by
l0x lie on a maximum of the dipole–dipole interaction, see
Eq. (4). Therefore, increasing m facilitates the displacement
induced by σxz, in agreement with a decreasing shear modulus
Gxz(m), as found in Fig. 7(b). Last, we find an increasing trend
for the Gxy(m) shear modulus, slightly weaker compared to
the other two examined moduli, as depicted in Figs. 7(b)
and 7(d).

B. Dynamic moduli

We now focus on the dynamic properties, which are
the central aim of the present work. As a general trend, we
always find the storage moduli to tend to a finite value
for large ω, see Fig. 8. Yet, as noted before, it is not
reasonable to consider the behavior for frequencies larger
than 10k/cl0. Conversely, the loss moduli as functions of ω
show a linear increase (see Appendix F). This behavior we
attribute to our model focusing on overdamped motion. In
fact, under oscillatory motion, the damping term in Eq. (19),
which is the origin of the loss modulus, increases with
frequency ω. This conforms with a macroscopic Kelvin-
Voigt model89,90 which predicts an imaginary component
of the dynamic moduli linearly increasing with frequency.
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FIG. 8. Dynamic elastic moduli (a) Eαα(ω) and (b) Gαβ(ω) (α, β = x, y, z)
of a cubic lattice with N = 3375 for vanishing magnetic moment (solid
line, ⃝), and m= 0.1m0z (dashed lines, �, △, ▽). Filled and unfilled markers
correspond to storage (E′αα, G′αβ) and loss (E′′αα, G′′αβ) components, re-
spectively. Insets in panels (a) and (b) zoom into the storage parts (a) E′αα(ω)
and (b) G′αβ(ω) at small ω for better resolution (see also Fig. 7).

Similarly, experimental measurements of the loss moduli in
polymeric materials81,85,87,88 are compatible with a Kelvin-
Voigt model [i.e., constant storage part and linearly increasing
loss part of Eαα(ω) and Gαβ(ω)] in the low-frequency
regime. Furthermore, in the limit ω → 0, we always find
vanishing loss moduli and the storage component to recover
the corresponding static elastic modulus, see Eqs. (18), (24),
and (30).

The storage Young moduli E ′αα(ω) (α = x, y, z) in
Fig. 8(a)—here calculated for m = 0.1m0z—show at all
frequencies the trends as described in the static case,
see Fig. 7. The amount of variation with respect to the
m = 0 configuration, however, seems to be larger at larger
frequencies. Furthermore, E ′xx(ω) and E ′y y(ω) show identical
behavior as functions of ω, as required by the symmetry
of this geometry under switching x ↔ y . Likewise, at
low ω, the loss moduli E ′′zz(ω) and E ′′xx, y y(ω) show a
decreasing and increasing trend, respectively, when the
magnetic moment is switched on and increased. Furthermore,
for higher ω, all the loss components linearly increase
with ω with identical coefficients, see also Fig. 17(b) in
Appendix F.

The storage shear moduli G′αβ(ω) at low frequencies
present the same trends of increase and decrease as in the
static case, see Figs. 7(b) and 8(b). We remark that at high
frequencies (beyond 10k/cl0), while G′xy(ω) and G′xz(ω)
show the same and enhanced trend as in the static case,
G′z y(ω) now decreases when m is increased. This graphically
results in a crossing between the curves for G′αβ(ω,m = 0)
and G′z y(ω,m = 0.1m0). The loss shear moduli G′′αβ(ω),
instead, display the same increasing or decreasing trends
as the corresponding static Gαβ(m = 0) both at low and high
frequencies (see also Appendix F).

IX. FACE-CENTERED CUBIC (FCC) LATTICE

We now turn our focus onto the exemplary case of a
face-centered cubic (fcc) lattice. Later in Section X, we
will generate disordered samples by randomizing an initially
fcc particle arrangement. In this setup we introduce springs
connecting nearest neighbors only. This is enough to obtain a
particle distribution stable under both stretching and shearing.
The boundaries of the system are chosen as the outermost
layers of particles in a given direction. The typical interparticle
distance l0 follows from the number density ρ, as explained
in Section II, which for the fcc lattice is 4 particles per unit
cell.

When magnetic moments are introduced we here observe
an elongation of the system in the m-direction and shrinking in
the perpendicular directions, see Fig. 9. The nearest neighbors
on the fcc lattice are located along thex +y,x +z, andy +z
directions, i.e., at an angle of π/4 with respect to the Cartesian
axes. When the system elongates in the z-direction the angles
between the nearest-neighbor directions and m reduce, thus
lowering the magnetic energy Um.

FIG. 9. Deformation of an fcc lattice with springs between nearest neighbors
and N = 3430, when a magnetic moment of m= 0.1m0z is switched on.
For illustrative purposes, only the first two particle layers on the front, top,
and right faces are depicted. Elongation is observed in the m-direction and
contraction in the perpendicular ones. Inset zooms in onto the displacements
of the particles at the bottom left corner of the sample.
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A. Static moduli

First, we present the behavior of the static moduli as
functions of increasing magnetic moment, see also Ref. 51.
We always find a monotonic, smooth behavior for increasing
m [see Figs. 10(a) and 10(b)]. In fact, as shown in Figs. 10(c)
and 10(d), the elastic moduli as functions of m are to
lowest order quadratic functions, in accord with the m → −m
symmetry. Again, and as required by lattice symmetry, at
m = 0 all Young moduli and the shear moduli in the examined
directions coincide, see Figs. 10(a) and 10(b).

Next, we estimate the role played by the relative positions
of neighboring particles for the behavior of the Young moduli.
We consider the case of a regular fcc lattice and take into
account contributions to the Young moduli to lowest order
in m, as explained in Appendix E. Considering terms up to
neighbors as far as 10l0 in Eq. (E3), we obtain

FIG. 10. Static moduli (a) Eαα(m)= E′αα(ω = 0,m) and (b) Gαβ(m)
=G′αβ(ω = 0,m) (α, β = x, y, z) of an fcc lattice with N = 3430 for increas-
ing magnetic moment intensity m. m is oriented along the z-direction. The
Young moduli for stretching perpendicular to m are reduced by increasing
magnetic moments, whereas along the m-direction the modulus is increased.
Black dashed lines in panels (a) and (c) represent the trends in Eq. (33) shifted
vertically to compensate for finite-size and boundary effects and to allow for
a better comparison of the m-dependence. The shear modulus Gx y obtained
by applying shear in the xy plane perpendicular to m increases for increasing
m, whereas Gxz and Gz y reveal a decreasing behavior. (c), (d) All elastic
moduli as functions of m show a quadratic behavior to lowest order, in accord
with the m→ −m symmetry and as depicted by the log-log scale plots.

Exx(m)
k

l0

2
=

Ey y(m)
k

l0

2
≈ 27/6

3
− 13.02(m/m0)2,
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
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≈ 27/6

3
+ 28.05(m/m0)2.

(33)

Comparison with the behavior of the Young’s moduli resulting
from our numerical calculations, see Fig. 10(a), leads to a good
qualitative agreement. The modulus in the m-direction Ezz(m)
increases with increasing m, whereas in the perpendicular
directions Exx(m) and Ey y(m) decrease with m. Thus, the
fcc arrangement shows a completely opposite behavior
compared to the simple cubic case, see Section VIII A.
Moreover, Eq. (33) indicates the Ezz(m) modulus to have a
stronger dependence on m compared to Exx(m) and Ey y(m),
as also found in our numerical results and shown in Figs. 10(a)
and 10(c).

Similarly, the shear moduli are influenced by m in
different ways. Here we find the shear modulus Gxy(m)
to increase and Gxz(m) to decrease with increasing m,
analogously to what we observed in the simple cubic case,
see Section VIII A. Contrarily to the simple cubic case, the
shear modulus referring to displacements perpendicular to m,
Gz y(m), shows a decreasing trend when the magnetic moments
increase. Moreover, Gz y(m) displays a weaker dependence on
m compared to the remaining two shear moduli, as depicted
in Fig. 10(d).

B. Dynamic moduli

Finally, we examine the behaviors of the dynamic elastic
moduli for various frequencies ω and magnetic moment
intensities m. The storage dynamic Young moduli E ′αα
(α = x, y, z) at all frequencies follow the same behavior as
described in the static case (see Fig. 10). In the direction
parallel to m, E ′zz increases for increasing m, whereas E ′xx and
E ′y y decrease for the perpendicular directions, see Fig. 11(a)
and its inset for a zoom onto the low-ω behavior. As shown
in Appendix F, the loss components E ′′αα partially exhibit
opposite trends compared to their storage counterparts (see
Fig. 18 for a detailed plot). In fact, at low frequencies, the loss
modulus for the m direction, E ′′zz, decreases with increasing
m, whereas E ′′xx and E ′′y y for the two perpendicular directions
increase. At higher frequencies, however, and as in the cubic
lattice case, all the loss moduli E ′′αα recover the behavior of
their storage counterparts and show an identical dependence
on ω [see Fig. 11(a) and Fig. 18 in Appendix F].

The storage dynamic shear moduli G′αβ (α, β = x, y, z)
are displayed in Fig. 11(b). Here, at low-ω values the changes
in the shear moduli for the different geometries reproduce
the trends shown in Fig. 10, see the inset of Fig. 11(b).
However, when considering the behavior at higher ω, G′xy
turns from increasing to decreasing with m, while G′z y turns
from decreasing to increasing when compared with the shear
modulus at m = 0. Although we already mentioned that only
the behavior for ω . 10k/cl0 should be interpreted, these data
suggest the possibility that some dynamic shear moduli could
swap their tendency of increasing or decreasing with m to
decreasing or increasing, respectively. Contrarily, the Young
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FIG. 11. Dynamic elastic moduli (a) Eαα(ω) and (b) Gαβ(ω) (α, β
= x, y, z) of an fcc lattice with N = 3430 for vanishing magnetic moment
(solid line, ⃝), and m= 0.1m0z (dashed lines, �, △, ▽). Filled and unfilled
markers correspond to storage (E′, G′) and loss (E′′, G′′) components, re-
spectively. Insets in panels (a) and (b) zoom onto the storage parts (a) E′αα(ω)
and (b) G′αβ(ω) at small ω to better resolve the different curves (see also
Fig. 10).

moduli consistently show a monotonic behavior as functions
of both ω and m. Furthermore, at low ω, the loss shear
moduli G′′αβ exhibit an opposite behavior when compared
with their storage complements. For shear deformations in
the plane perpendicular to m, G′′xy decreases with increasing
magnetic moment, whereas the other two moduli G′′xz and
G′′z y are increased by increasing m, see also Appendix F,
Fig. 18.

X. 3D DISORDERED SAMPLES

A. Numerical generation

We start from a regular three-dimensional fcc lattice.
Having a well defined density ρ and neighbor structure, this
lattice allows us to define the average interparticle distance
l0 as described in Section IX. Then we introduce disorder in
the lattice by randomly displacing each particle by 0.5l0 in
a stochastic direction. After that, we set the elastic springs
between nearest neighbors.

In the randomization step, we take care to generate an
initially stable disordered system so that magnetic interactions

FIG. 12. Example deformation of a randomized particle distribution (N
= 1688) of initially cubelike shape (gray particles) when a magnetic moment
of m=mz is switched on. Panels (a), (b), (c), and (d) show the equilibrated
particle distribution (black) as the magnetic moment intensity is gradually
increased to m = 0.058m0, m = 0.06m0, m = 0.062m0, and m = 0.064m0,
respectively. Panel (c) represents the onset of chain formation in the m-
direction, see Sections X B and X D.

do not immediately overcome the elastic spring interactions
when the magnetic moments are switched on.54,68 In other
words, the formation of collapsed clusters where the particles
touch each other in a stuck configuration shall be avoided
for low strength of the magnetic interactions. For this
purpose, we impose that in the randomized configuration
for m = 0 no couples of particles are closer than 0.5l0.
Boundary particles are identified as the outermost layers
of the initial fcc lattice in each direction. To help maintain
an overall cubelike shape, we move boundary particles by
half the amount of other particles. An example of the
resulting initial distribution is given by the gray particles in
Fig. 12.

Thus, we generate a disordered system of macroscopic
cubelike shape with N non-overlapping magnetic particles.
In the following we set N = 1688. As described, in the
initial configuration, the springs are set before the magnetic
interactions are switched on. Then, we gradually increase the
magnitude of the magnetic moments and at each step find
the minimum energy configuration, see Section III. When the
equilibrium state for a given m is reached, we obtain the
Young and shear moduli E and G as functions of both m and
ω, using the methods described in Sections V C and VII.

As the magnitude m of the magnetic moments increases,
we can principally distinguish between two regimes. On the
one hand, the behavior for small m is controlled by magnetic
Um and elastic Uel energies, see Fig. 13. The deformation is
relatively small and the elastic moduli are, to lowest order,
quadratic functions of m, as expected by the necessary m →
−m symmetry. On the other hand, when attractive magnetic
interactions become as strong as to overcome linear spring
repulsion, steric interactions come into play (see Fig. 13).
Then, formation of chains is observed, as well as significant
changes in the system size (see Fig. 12). Furthermore, the
close steric contact between particles generates extra stiffness,
which is reflected by a significant change in the elastic
moduli. This behavior reflects a “hardening transition” similar

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.99.64.185 On: Wed, 14 Sep

2016 14:41:20



104904-14 Pessot, Löwen, and Menzel J. Chem. Phys. 145, 104904 (2016)

FIG. 13. (a) Equilibrium energies of the disordered fcc system shown in
Fig. 12 for increasing magnitude of the magnetic moment m. (b) Two
regimes are identified in a logarithmic plot. Up to m ∼ 0.05m0 the total
energy U mostly comprises elastic U el and magnetic Um contributions. For
m & 0.05m0 instead, the steric interaction energy U s becomes higher than
the elastic energy U el. This signals the subsequent formation of chains. The
pronounced step at 0.06m0 .m . 0.064m0 is connected to chain formation.

to the situation described in Ref. 54 for one-dimensional
systems.

B. Static moduli

First, we focus on the static elastic moduli of the
randomized system for increasing magnetic moment m. To
extract a general trend we realized 80 different systems
following the protocol as described in Section X A. Then
we obtain our results by averaging over the moduli for
all different randomized realizations, also calculating the
standard deviations. The resulting static moduli are depicted
in Fig. 14. To lowest order in m and up to approximately
m = 0.06m0, the Young moduli of the system [see inset of
Fig. 14(a)] show a behavior similar to the fcc case [compare
with Fig. 10(a)]: increasing ⟨Ezz⟩ for imposed deformations
in the m direction and decreasing ⟨Exx⟩ and ⟨Ey y⟩ for the
perpendicular cases. Moreover, in this regime the static Young
moduli ⟨Eαα(m)⟩ (α = x, y, z) show a quadratic behavior
as functions of m in accord with the m → −m symmetry,
see Fig. 14(c). Similarly, the static shear moduli ⟨Gαβ(m)⟩
(α, β = x, y, z) in this regime show quadratic behavior, see
Fig. 14(d), while the trends for ⟨Gαβ(m)⟩ vary from those of
the regular fcc lattice [compare the inset of Fig. 14(b) with
Fig. 10(b)].

This behavior changes dramatically for m & 0.06m0,
where magnetic interactions are as strong as to cause the
particles to come into steric contact and form chains in the
m-direction. Here we observe a significant increase in all
elastic moduli [see Figs. 14(a) and 14(b)]. Still, Young’s
modulus for imposed deformations in the m-direction, ⟨Ezz⟩,
shows a much larger increase compared to ⟨Exx⟩ and ⟨Ey y⟩,
in agreement with experimental observations on anisotropic
systems,38 see also the case of bi-axial tension.92 ⟨Exx⟩
and ⟨Ey y⟩ feature an identical behavior within the standard
deviations, as expected by the largely unbroken isotropy of

FIG. 14. Static moduli (a) ⟨Eαα(m)⟩= ⟨E′αα(ω = 0,m)⟩ and (b) ⟨Gαβ(m)⟩
= ⟨G′αβ(ω = 0,m)⟩ (α, β = x, y, z) of a disordered fcc lattice with N = 1688
for increasing m = |m|, with m oriented in the z-direction. Statistics are col-
lected over 80 differently randomized samples. Data points and bars represent
the resulting averages and standard deviations, respectively. (c), (d) All elastic
moduli as functions of m show a quadratic behavior to lowest order for
small m, in accord with the m→ −m symmetry. For illustrative purposes
we have slightly shifted the bars for different data sets horizontally and
reduced the number of points shown in panels (c) and (d) to better distinguish
between the individual bars and data points. Dips in panels (c) and (d) occur
when ⟨Eαα(m)⟩≈ ⟨Eαα(m = 0)⟩ or ⟨Gαβ(m)⟩≈ ⟨Gαβ(m = 0)⟩. Then, the
logarithm of the absolute deviation from the value for m = 0 diverges to −∞.
The elastic moduli themselves, however, show smooth behavior, as displayed
in panels (a) and (b) and the respective insets.

the systems within the x y-plane. Likewise, the shear moduli
show an increase for all investigated geometries. In a purely
affine deformation of chains perfectly aligned along m, the
z y shear geometry would be the only one displayed that leads
to distortions of the chains. Therefore it is conceivable that
⟨Gz y⟩ grows larger than ⟨Gxy⟩ and ⟨Gxz⟩, although the size
of the standard deviations does not allow to draw a conclusive
result.

Finally, to avoid confusion, we stress that the dips in
Figs. 14(c) and 14(d) simply mean that the elastic moduli
for m , 0 tend to the same values as those for m = 0. Since
in Figs. 14(c) and 14(d) the deviations of the elastic moduli
from their values for m = 0 are plotted on a logarithmic scale,
the dips are not directly related to a mechanical instability
resulting from vanishing elastic moduli. In fact, as shown in
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FIG. 15. Dynamic elastic moduli (a) ⟨Eαα(ω)⟩ and (b) ⟨Gαβ(ω)⟩ (α, β
= x, y, z) of randomized fcc lattices with N = 1688 for vanishing magnetic
moment (solid line, ⃝), and m= 0.056m0z (dashed lines, �, △, ▽). Data points
and standard deviations are obtained by averaging over 80 differently random-
ized samples. Filled and unfilled markers correspond to storage (E′, G′) and
loss (E′′, G′′) components, respectively. Insets zoom into the storage parts
(a) ⟨E′αα(ω)⟩ and (b) ⟨G′αβ(ω)⟩ at small ω to better resolve the different
curves. For illustrative purposes we have slightly shifted the bars for different
data sets horizontally to better distinguish the individual bars.

Figs. 14(a) and 14(b), for a given value of m the elastic moduli
always remain positive.

C. Dynamic moduli, m . 0.06m0

We now move our attention to the dynamic properties of
our disordered systems. Again, we have collected statistics
over 80 different realizations of our randomizing process. The
resulting averages and standard deviations are represented as
data points and bars in the figures.

First we examine the dynamic moduli for the magnitude
of the magnetic moments below the onset of significant chain
formation, i.e., m . 0.06m0. There, the storage parts ⟨E ′αα(ω)⟩
of the dynamic Young moduli for increasing m show the
same trends for the different geometries as the static moduli
[see Fig. 15(a) and compare with the inset of Fig. 14(a)].
Conversely, the loss parts ⟨E ′′αα(ω)⟩ of the Young moduli
feature a trend of increase with increasing m in all cases [see
Appendix F, Fig. 19(a)].

Similarly to the Young moduli, the storage parts ⟨G′αβ(ω)⟩
of the dynamic shear moduli approximately follow their

static counterparts at low ω [see the inset of Fig. 15(b) and
compare it to the inset of Fig. 14(b)]. However, with increasing
frequencies ω and upon switching m from m = 0 to m > 0,
⟨G′z y(ω)⟩ switches from a slight decrease to a significant
increase with respect to the value at m = 0, see Fig. 15(b).
This results in a crossing between the curves corresponding to
⟨G′z y(ω,m = 0)⟩ and ⟨G′z y(ω,m > 0)⟩. Instead, the remaining
two shear moduli, ⟨G′xy(ω)⟩, and ⟨G′xz(ω)⟩ always show
a decrease. Analogously to ⟨E ′′αα(ω)⟩, the loss components
⟨G′′αβ(ω)⟩ are observed to increase at all frequencies when
switching on m, independently of the chosen geometry [see
Appendix F, Fig. 19(b)].

D. Dynamic moduli, m & 0.06m0

In the following, we consider the dynamic moduli of
the system at magnitudes m of the magnetic moment at
the onset of chain formation [see Fig. 12(c)]. Then steric
interactions play a major role in the total interaction energy

FIG. 16. Storage dynamic elastic moduli (a) ⟨E′αα(ω)⟩ and (b) ⟨G′αβ(ω)⟩
(α, β = x, y, z) of randomized fcc lattices with N = 1688 for vanishing mag-
netic moment (solid line, ⃝), and m= 0.064m0z (dashed lines, �, △, ▽). We
plot on a double logarithmic scale the absolute deviation from the respective
average static modulus at m = 0. Data points and standard deviations are ob-
tained from statistics over 80 differently randomized samples. For illustrative
purposes we have slightly shifted the bars for different data sets horizontally
to better distinguish the individual bars. Insets zoom onto the storage parts
(a) ⟨E′αα(ω)⟩ and (b) ⟨G′αβ(ω)⟩ at large ω to better resolve the different
curves. Small values of the curves for the m = 0 cases at low ω indicate
smooth convergence to the respective static moduli in Fig. 14.
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U (see Fig. 13). To better illustrate the behavior of the
storage dynamic moduli in this regime it is convenient to
plot the deviation from the respective static value at m = 0,
as shown in Fig. 16 (for brevity, although deviations are
plotted, the curves are still labeled by ⟨E ′αα⟩ and ⟨G′αβ⟩).
Thus the diminishing behavior of the curves ⟨E ′⟩(m = 0) and
⟨G′⟩(m = 0) for decreasingω represents a smooth convergence
of the moduli to the values for ω = 0, similarly to the
results in Fig. 15. Experimentally, deviations as small as
0.01k/l2

0 − 0.1k/l2
0 should be accessible within rheometer

sensitivities.
The main difference between the small- and large-

m regimes is the qualitative change in ⟨E ′αα(ω)⟩ and
⟨G′αβ(ω)⟩ (α, β = x, y, z) for increasing magnetic moment.
For m . 0.06m0, and according to the different geometries,
we observed increase or decrease of the elastic moduli with
increasing m. Conversely, for m & 0.06m0 we observe all
elastic moduli to increase with increasing magnetic interaction
for all frequencies and geometries.

The storage Young’s modulus for deformations in the m-
direction ⟨E ′zz(ω)⟩ shows the most significant increase when
compared to ⟨E ′xx(ω)⟩ and ⟨E ′y y(ω)⟩. This trend continues
at large 6 [see inset of Fig. 16(a)]. In a similar fashion, the
large-ω behavior of the storage modulus ⟨G′z y(ω)⟩ for shear
deformations of the chains aligned along m [see inset of
Fig. 16(b)] suggests a larger increase than for ⟨G′xz(ω)⟩ and
⟨G′xy(ω)⟩. These overall trends of the dynamic moduli are
further enhanced and increased for even larger m.

The loss components of the dynamic moduli, both Young
and shear, show again an increase with increasing m over
all frequencies and geometries. Furthermore, the amount of
increase follows approximately the same trends as for the
corresponding storage components (see Appendix F, Fig. 20).

XI. CONCLUSIONS

We have described and applied a method to determine
the dynamic elastic moduli in discretized mesoscopic model
systems representing magnetic elastic composite materials.
More precisely, we have confined ourselves to particle-based
dipole-spring models54–59 to characterize the behavior of
magnetic gels and elastomers. The magnitudes of Young and
shear moduli were evaluated for different frequencies, particle
distributions, magnitudes and orientations of the magnetic
moments. We find the elastic moduli to lowest order to
increase or decrease with the magnitude of the magnetic
moment according to the particle distribution, the selected
orientation, and the selected frequency.

To summarize our results, we find that increasing
magnetic interactions tends to line up the particles in
the direction of the magnetic dipoles. This, in regular
lattices, can result in different effects according to the
considered structure. In general, however, we find the Young
modulus in the directions of elongation to increase51 and,
vice versa, to decrease in the directions of shrinking. For
randomized particle arrangements we find a “hardened”
regime, where dipole–dipole attractions overcome the elastic
spring interactions and the elastic moduli significantly

increase. Here, the increase of the storage part of the Young
modulus in the direction parallel to the magnetic moments is
significantly larger compared to the perpendicular directions,
in agreement with experiments reported in the literature.38,92

Furthermore, for all distributions (except for the randomized
arrangements at high m) we find the storage part of some of the
investigated shear moduli to change tendency from increase
to decrease with m or vice versa, for increasing frequency
ω. The loss component of the dynamic moduli follows an
overall linear behavior for all cases at low and high ω with
a crossover regime in between. In conclusion, the behavior
of the dynamic elastic moduli with varying m and ω strongly
depends on the spatial arrangement of the magnetic particles.
The angles between the magnetic moments and the directions
to find the nearest neighbors are crucial to determine whether,
for a selected direction, the system shrinks or elongates when
switching on magnetic interactions and whether the elastic
moduli increase or decrease.

Our systems were of cubelike shape and finite size. On
two opposing boundaries, we imposed prescribed force fields
leading to an overall strain response of the whole system. The
other boundaries remained unconstrained. Such a geometry is
characteristic for experimental investigations using plate–plate
rheometers. Assuming particle sizes in the micrometer range,
our systems correspond to samples of several ten micrometers
in thickness. Such experimental samples can be analyzed
using piezorheometric devices.85,93 In fact, for anisotropic
magnetic gels, corresponding piezorheometric measurements
were performed already more than a decade ago.81 It will be
interesting to compare our approach in more detail with such
experimental investigations in the future.

It is important to model and understand the dynamic
response of the materials at different frequencies in the view of
many practical applications, from soft actuators24 to vibration
absorbers.25,26 Our method explicitly connects the relaxational
modes of the system on the mesoscopic level56 with the
macroscopic dynamic response.47,48,50,94 Our approach allows
to capture the internal rearrangements of the system under an
externally applied stress or magnetic field and to link it to the
consequences for the overall system behavior. Furthermore,
our technique can be applied to any particle distribution,
particularly also to those drawn from experimental analysis of
real samples.55,56

Generalizations to systems composed of anisotropic
particles,95 as well as including rotational degrees of
freedom36,54 and possibly induced-dipole effects68,69 could
be added to the present framework in subsequent steps. Apart
from that, the mesoscopically based dynamic investigations
could be extended to more refined approaches, where the
elastic matrix between discretized particles of finite volume
is described in terms of continuum elasticity theory.34 As
indicated above, it will be possible to use experimental
data44,55,56,96 as input for the initial particle positions and
compare calculated dynamic moduli with their measured
counterparts, also as a function of magnetic interaction
strengths. In a combined effort between experiments and
theory, such an approach can serve to devise smarter and
new materials with optimized magnetic field dependence and
adjusted behavior at different frequencies.
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APPENDIX A: STERIC REPULSION PARAMETERS

The relatively soft steric repulsion between two particles
i and j at positions Ri and R j connected by the vector
ri j = R j − Ri is modeled by a generic potential v s(ri j).
Introducing the exponents p and q, the functional form of
this potential is given by

v s(r) = εs
( r
σs

)−p
−

( r
σs

)−q
−

( rc
σs

)−p
+

( rc
σs

)−q
− cs(r − rc)2

2


(A1)

if r = |ri j | < rc and v s(r) = 0 otherwise. The parameter
rc = σs(p/q)1/(p−q) follows from the condition v s(rc)′ = 0,
whereas cs is chosen such that v s(rc)′′ = 0. We find

cs =
p−

2+q
p−q (p − q)q 2+p

p−q

(σs)2 . (A2)

APPENDIX B: DERIVATIVES OF PAIR
INTERACTION POTENTIALS

We consider pair interactions between particles i and
j, at positions Ri and R j, respectively, and connected by
ri j = R j − Ri. When the particles are linked by a harmonic
spring, their harmonic pair interaction potential is

vel
i j =

k
2ℓ0

i j

(
ri j − ℓ0

i j

)2
, (B1)

compare with Eq. (1). ri j = |ri j | and l0
i j is the unstrained length

of the spring. The gradient components (α = x, y, z) follow as
(we here drop the i j subscripts for simplicity)

∂vel

∂rα
=

k
ℓ0

�
r − ℓ0� rα

r
. (B2)

The derivatives appearing below in Eq. (C4) are then

∂2vel

∂rβ∂rα
=

k
ℓ0


rαrβ

r2 + (r − ℓ0) δ
αβr2 − rαrβ

r3


. (B3)

Furthermore, the steric repulsion pair potential v s has been
addressed in detail in Appendix A. The gradient components
(α = x, y, z) of the steric pair potential [see Eq. (A1)] follow
for r < rc as

∂v s

∂rα
=
−εsrα

r

 p
r

( r
σs

)−p
− q

r

( r
σs

)−q
+ cs (r − rc)


(B4)

and vanish for r ≥ rc. The derivatives below contributing to
Eq. (C4) are given by

∂2v s

∂rβ∂rα
= −εs

(
δαβ

r2 − 2
rαrβ

r4

) 
p
( r
σs

)−p
− q

( r
σs

)−q
− rαrβ

r4


p2

( r
σs

)−p
− q2

( r
σs

)−q
+ cs


rαrβ

r2 + (r − rc) δ
αβr2 − rαrβ

r3


(B5)

for r < rc and vanish when r ≥ rc.
Finally, the magnetic pair interaction potential vm as in

Eq. (4) reads

vmi j =
m2r2

i j − 3(m · ri j)2
r5
i j

(B6)

in using reduced units. The gradient components (α = x, y, z)
of the previous expression read

∂vm

∂rα
= − 3

r5


m2rα + 2mα(m · r) − 5

rα(m · r)2
r2


. (B7)

The derivatives appearing below in Eq. (C4) are given by

∂2vm

∂rβ∂rα
= − 3

r5


m2δαβ − 5m2rαrβr−2

− 10(m · r)r−2 �mαrβ + mβrα
�
+ 2mαmβ

− 5(m · r)2 r−2 �δαβ − 7rαrβr−2�

. (B8)

APPENDIX C: HESSIAN MATRIX FOR PAIR
INTERACTION POTENTIALS

Here we repeat in detail the derivation of the Hessian for
a system interacting solely via pair potentials. That is, any
two particles i and j at positions Ri and R j interact through
a pair potential v depending only on the connecting vector
ri j = R j − Ri. Then we can write

U =
1
2

N
i, j=1
i, j

v(ri j), (C1)

where N is the total number of particles. Again, Ri is the
position of the i-th particle (i = 1 . . . N), ri j = R j − Ri, and
we denote by Rα

i (α = x, y, z) the α-component of Ri. For
reasons of symmetry, v(ri j) = v(r j i). The sum in Eq. (C1)
together with the prefactor 1

2 then runs over all different pairs
counting each of them only once. We abbreviate vi j = v(ri j).
The gradient components (α = x, y, z) of the energy U follow
as

∂U
∂Rα

k

=
1
2

N
i, j=1
i, j

∂vi j

∂Rα
k

=

N
j=1
j,k

∂vk j

∂Rα
k

= −
N
j=1
j,k

∂vk j

∂rα
k j

, (C2)

setting the force −∂U/∂Rk on the positional degrees of
freedom of the k-th particle.
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Next, we obtain the Hessian of the system as

∂2U

∂Rα
i ∂Rβ

k

=




∂2vik

∂Rα
i ∂Rβ

k

(i , k),
N
j=1
j,i

∂2vi j

∂Rα
i ∂Rβ

i

(i = k). (C3)

Thus, for pair interactions, the diagonal elements of the
Hessian contain the second derivatives of all pair interactions,
whereas the off-diagonal elements are given by a single term.
Since ri j = R j − Ri, the previous equation can be expressed
in terms of connecting vectors only,

∂2U

∂Rα
i ∂Rβ

k

=




− ∂2vik

∂rα
ik
∂rβ

ik

(i , k),
N
j=1
j,i

∂2vi j

∂rαi j∂rβ
i j

(i = k). (C4)

APPENDIX D: TORQUE-FREE FORCE FIELDS

Our scope is to describe the system behavior for
preselected specified orientations. However, both during the
search for the corresponding equilibrium state of the system
(see Section III) and the implementation of an external force
(see Section V B), the system may tend to perform a rigid
rotation. We therefore must exclude such rigid rotations. Here
we describe a simple method to redefine the generalized force
field (or likewise the gradient of the total energy) so that the
net overall torque on the system vanishes.

We consider the force field f acting on the particles at
positions Ri with components f i (i = 1, . . . ,N). The net torque
τ is given by

τ =
N
i=1

qi × f i, (D1)

where qi = Ri − Rc is the distance of the particle positions Ri

from the center of mass Rc =
1
N


i Ri. To prevent, e.g., a

global rotation of the system around the z-axis, the z-
component of τ, i.e., τz, must vanish. We define a uniform,
counter-clockwise rotational force field around the z-axis
P (q) = cR(−qy,qx,0), with q a vector in the x y-plane and cR
a constant. Next, we determine cR by imposing P to have the
same torque as given by f ,

N
i=1

(qi × f i)z = τz =

N
i=1

�
qi × P (qi)

�z

= cR
N
i=1

�
qx
i

�2
+
�
qy
i

�2
. (D2)

We obtain the field P by solving for the constant cR, leading
to

cR =
τzN

i=1

�
qx
i

�2
+
�
qy
i

�2 . (D3)

Therefore we can make f “torque-free” concerning the z-
direction by subtracting P, i.e., f i → f i − P(qi) (i = 1, . . . ,N).
By repeating the procedure for the remaining directions, we
get rid of the rigid rotations induced by f and obtain a
torque-free force field.

APPENDIX E: STATIC YOUNG MODULI
OF REGULAR LATTICES

We here present a simple energy argument to interpret the
behavior of the Young moduli of the regular lattices presented
in Sections VIII and IX. A regular lattice is generated by
the basis vectors a1, a2, and a3. Therefore a lattice point can
be written as ri jk = ia1 + ja2 + ka3, with i, j, k ∈ Z integers.
If the particles interact by the pair potential v , the total
energy per particle in an infinitely extended lattice is given
by

Up =
1
2


n∈N0

v(rn), (E1)

where the sum runs over all lattice points (origin excluded)
labeled by the discrete index n contained in the set
N0 = Z

3 \ {(0,0,0)}.
Since we consider the regular lattice to be the ground state

of the system, a small deformation that transforms rn → r′n
(n ∈ N0) has an energy-per-particle cost that to lowest order
reads

∆Up =
1
2


n∈N0

1
2

uᵀn · h(rn) · un, (E2)

where un = r′n − rn, ᵀ indicates transposition, and h(rn) is the
Hessian matrix of the interaction v(rn) between the particle
fixed in the origin and the nth neighbor. Its elements are given
by hµν(rn) = ∂2v(rn)/∂rµ

n∂rνn, with µ, ν = x, y, z.
The displacements un = D · rn corresponding to a

uniform strain are given by the constant components of the
displacement tensor D. The energy of the strain deformation
then follows as

∆Up =
1
2


αβγδ

Cαβγδ
0 DαβDγδ

with Cαβγδ
0 =

1
2


n∈N0

rαn hβγ(rn) rδn,
(E3)

where α, β,γ, δ = x, y, z.
In the following we focus on compressive/dilative strains

and therefore consider diagonal D displacement tensors. For an
applied strain εαα along the α-direction Dαα , 0 is imposed.
The remaining components of D are relaxed to minimize the
lattice energy

∂∆Up

∂Dµµ
= 0, ∀µ , α. (E4)

This leads to a system of linear equations the solution of
which relates the components Dµµ (µ , α) to the imposed
deformation Dαα. As a result, we obtain Young’s modulus
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FIG. 17. Loss parts ((a)–(c)) E′′αα(ω) and ((d)–(f)) G′′αβ(ω) (α, β = x, y, z)
for the dynamic elastic moduli of a simple cubic lattice with N = 3375 for
vanishing magnetic moment (solid line, ⃝), and m= 0.1m0z (dashed lines,
�, △, ▽). Because of the overall trend of a linear increase with frequency at
low and high frequencies, we here present the moduli divided by ω. Zoom-ins
onto the low-, intermediate-, and high-ω regions are shown in panels (a) and
(d), (b) and (e), and (c) and (f), respectively.

Eαα [following the notation as in the main text, see Eq. (16)]
given by

Eαα =
1

Vp

d2∆Up

(dDαα)2 =
1

Vp

�
Cαα

0 − Bα
�

with Bα =

βγ

Cαβ
0

Cγγ
0 Cαβ

0 − Cαγ
0 Cβγ

0

Cββ
0 Cγγ

0 − (Cβγ
0 )2 (ϵαβγ)2,

(E5)

FIG. 18. Loss parts ((a)–(c)) E′′αα(ω) and ((d)–(f)) G′′αβ(ω) (α, β = x, y, z)
for the dynamic elastic moduli of an fcc lattice with N = 3430 for vanishing
magnetic moment (solid line, ⃝), and m= 0.1m0z (dashed lines, �, △, ▽).
Since the loss moduli increase linearly with the frequency at low and high
frequencies, we here show them divided by ω. Zoom-ins onto the low-,
intermediate-, and high-ω regions are shown in panels (a) and (d), (b) and
(e), and (c), and (f), respectively.

where Vp = 1/ρ = V/N is the volume per particle, we
abbreviated Cαβ

0 = Cααββ
0 , and ϵαβγ is the Levi-Civita symbol.

The contributions −Bα to the elastic moduli take into account
relaxation along the remaining perpendicular axes and lower
the moduli.

For small values of the magnetic moment m, we write,
to lowest order in m, h(rn) = h0(rn) + m2hm(rn), where the
elements of the matrix m2hm(rn) are as listed in Eq. (B8).
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FIG. 19. Average loss parts ((a) and (b)) ⟨E′′αα(ω)⟩ and ((c) and (d))
⟨G′′αβ(ω)⟩ (α, β = x, y, z) for the dynamic elastic moduli of randomized
fcc lattices with N = 1688 for vanishing magnetic moment (solid line, ⃝),
and m= 0.056m0z (dashed lines, �, △, ▽). Because of the overall trend of a
linear increase with frequency at low and high frequencies, we here present
the moduli divided by ω. Data points and standard deviations are obtained by
averaging over 80 differently randomized samples. Because of the different
randomizations, the initial slope of the moduli in the ω→ 0 limit can vary
significantly, thus leading to large bars in the small-ω regime and for the
m > 0 cases, which are not shown here. Insets (a) and (b) zoom in onto the
Young and shear loss moduli behavior, respectively, at high frequencies for
better resolving the individual curves.

Thus, we can obtain both the static Young’s modulus at m = 0
and the initial quadratic behavior for small m.

APPENDIX F: ADDITIONAL INFORMATION ON THE
LOSS PART OF THE DYNAMIC ELASTIC MODULI

Here we show in more detail the various behaviors of the
loss part of the dynamic moduli as functions of frequency ω
and magnitude of the magnetic moment m for the different
considered geometries. As we have mentioned before, we
find as a general trend the loss parts to linearly increase with
ω at low and high frequencies. It results from our viscous
friction term [see Eq. (19)] which, in the case of an oscillatory
deformation as in Eq. (22), is proportional to ω. Moreover,
it is consistent with the predicted loss component of the
dynamic moduli in the Kelvin-Voigt model.89,90 Therefore,
and for better illustration, we plot the loss parts after division
by ω. The agreement with linear behavior is confirmed in this
way, i.e., E ′′αα(ω)/ω and G′′αβ(ω)/ω (α, β = x, y, z) converge

FIG. 20. Average loss parts ((a) and (b)) ⟨E′′αα(ω)⟩ and ((c) and (d))
⟨G′′αβ(ω)⟩ (α, β = x, y, z) for the dynamic elastic moduli of randomized
fcc lattices with N = 1688 for vanishing magnetic moment (solid line, ⃝),
and m= 0.064m0z (dashed lines, �, △, ▽). Since the loss moduli increase
linearly with the frequency at low and high frequencies, we here show
them divided by ω. Data points and standard deviations are obtained by
averaging over 80 differently randomized samples. Because of the different
randomizations, the initial slope of the moduli in the ω→ 0 limit can vary
significantly, thus leading to large bars in the small-ω regime and for the
m > 0 cases, which are not shown here. Insets zoom in onto the (a) Young
and (b) shear loss moduli behavior at high frequencies for better resolving the
individual curves.

to a finite value in both the low- and high-ω limit, see
Figs. 17–20.

On the one hand, the regular lattices addressed in
Sections VIII and IX show different trends for the loss parts
as functions of m and ω, as mentioned in the main text
and illustrated in Figs. 17 and 18. On the other hand our
randomized lattices generally show increasing loss parts with
increasing m for all frequencies, although the amount of gain
varies with the selected geometries, see Figs. 19 and 20.
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