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Nucleation pathway and kinetics of
phase-separating active Brownian particles†

David Richard,a Hartmut Löwenb and Thomas Speck*a

Suspensions of purely repulsive but self-propelled Brownian particles might undergo phase separation, a

phenomenon that strongly resembles the phase separation of passive particles with attractions. Here we

employ computer simulations to study the nucleation kinetics and the microscopic pathway active

Brownian disks take in two dimensions when quenched from the homogeneous suspension to

propulsion speeds beyond the binodal. We find the same qualitative behavior for the nucleation rate as a

function of density as for a passive suspension undergoing liquid–vapor separation, suggesting that the

scenario of an effective free energy also extends to the kinetics of phase separation. We study the transi-

tion in more detail through a committor analysis and find that transition states are best described by a

combination of cluster size and the radial polarization of particles in the cluster.

I. Introduction

Understanding the transformation of matter in response to a
change of external conditions such as temperature and pressure
is one of the cornerstones of statistical physics. Recently, the
notion ‘‘matter’’ has come to include ‘‘active matter’’1,2 covering
a broad class of systems in which autonomous constituents
convert (free) energy into directed motion, ranging from flocks
of birds3 to bacteria.4 Of particular interest are suspensions of
self-propelled colloidal particles5 due to their potential applications,
e.g., for self-assembly6–8 and sorting.9

Active Brownian particles are a minimal model for active
matter combining volume exclusion with directed motion but
neglecting long-ranged phoretic and hydrodynamic interactions.
For sufficiently high densities and driving speeds, active Brownian
particles undergo ‘‘clustering’’,10–16 which strongly resembles the
macroscopic liquid–vapor phase separation of passive Brownian
particles. This phenomenon has been described as a ‘‘motility-
induced phase transition’’17,18 caused by the self-blocking of
particles due to the interplay between directed motion and
volume exclusion, the microscopic picture of which has been
confirmed in experiments.12 Starting from the microscopic
many-body dynamics, one can indeed systematically derive an
effective free energy for the density,19–21 which links active
Brownian particles to the scenario of liquid–vapor separation.

However, such an effective description is valid only on length scales
larger than the persistence length of the directed motion.21

For short-ranged interactions, liquid–vapor phase separation
of passive Brownian particles falls into the universality class of
the Ising model and has been studied extensively.22 Below the
critical temperature it is a first-order transition accompanied by
hysteresis, which can be understood from the competition
between the gain of bulk free energy driving the transition and
the penalty that is associated with the formation of an interface
between stable and metastable phase. As a result, the nucleation
rate shows a typical non-monotonic behavior. For fixed tempera-
ture it vanishes at the ‘‘binodal’’ (given by the coexisting densities)
and increases with increasing density (supersaturation), indicating
a decreasing free energy barrier. The region where this barrier
becomes of the order of the thermal energy is typically identified
with the ‘‘spinodal’’ (which becomes an exact line only in mean-
field models). Increasing the supersaturation further leads to a
reduced collective diffusion and consequently the nucleation
rate also decreases.

Active Brownian disks also show nucleation behavior in the
vicinity of the binodal.11,20 Here we demonstrate numerically
that the nucleation rate shows the same qualitative behavior as
expected for liquid–vapor separation. Our analysis reveals that
the transition is characterized by a well-defined transition state
separating the metastable homogeneous suspension (‘‘reactants’’)
from the stable phase-separated state (‘‘products’’). For systems
governed by dynamics that obey detailed balance, such a behavior
is typically rationalized in terms of a free energy barrier that has to
be overcome by a rare, highly collective fluctuation. In agreement
with this picture, we find that when decreasing the density, the
nucleation rate becomes so small that it is not observed anymore
in direct simulation runs. To circumvent the prohibitively long
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time scales, one has to resort to numerical rare-event methods,
which is an active field in computational chemistry.23–25 Here
we employ forward flux sampling,26,27 which can also be used
for dynamics that explicitly break detailed balance28 as is the
case for active Brownian particles. This allows us to obtain rates
that span more than ten orders of magnitude.

Finally, to gain further insights into the transition state29

and the nucleation pathway, we perform a committor analysis23,30

in the intermediate regime where nucleation is rare but still
accessible by direct simulations. Committor analyses have become
a standard tool in computational chemistry used, e.g., to describe
the demixing of a binary mixture31 and crystallization,32,33 for
example of water34 and hard spheres under shear.35 We describe
three order parameters that capture different microscopic
aspects and construct a reaction coordinate through likelihood
maximization,33,36,37 which indicates that the polarization of
particles plays a role in the nucleation of dense domains of
active Brownian disks.

II. Model

We study suspensions of N disks in two dimensions with
periodic boundary conditions. The position of disk k is rk with
orientation ek = (cosjk, sinjk)T determined by the angle jk.
A single configuration x = {rk, jk} is thus given by the positions
and orientations of all disks. Particles interact pairwise through
the short-ranged, repulsive Weeks–Chandler–Andersen potential

uðrÞ ¼ 4e ðs=rÞ12 � ðs=rÞ6 þ 1

4

� �
(1)

for r o 21/6s and zero otherwise, with (dimensionless) potential
strength e = 100. Disk positions evolve according to

r_k = �rkU + v0ek + xk, (2)

where the noise xk models the interactions with a heat reservoir
assuming correlations hxki(t)xlj(t0)i = 2dkldij(t � t0) and zero
mean. The conservative force stems from the potential energy
UðfrkgÞ ¼

P
ko l

u rk � rlj jð Þ. The direction motion is modelled by

an effective force v0ek along the orientation of particles with
free swimming speed v0. In addition, the orientations undergo
free rotational diffusion with rotational diffusion coefficient
Dr = 3D0/deff

2 modeling the no-slip boundary condition as is
appropriate for colloidal particles. Here, deff C 1.10688s is the
effective (passive) disk diameter computed via the Barker–
Henderson approximation.38 Moreover, it defines the packing
fraction f = �rp(deff/2)2, where �r = N/A is the global number
density with box area A. Throughout, we employ dimensionless
quantities and measure lengths in units of s and time in units
of s2/D0, where D0 is the bare translation diffusion coefficient.

The equations of motion are integrated with time step
2 � 10�6. Fig. 1(a) shows the coexisting densities f� defining
the binodal bounding the two-phase region within which phase
separation is possible. The coexisting densities have been obtained
from sampled density profiles at area fraction f C 0.55 in an
elongated box, see ref. 39 for details. Also shown is the location of
the spinodal estimated within a mean-field theory.20

III. Kinetics
A. Nucleation rate

For the kinetics we study N = 4096 particles varying the packing
fraction f at fixed swimming speed v0 = 100. Indicated in
Fig. 1(a) are the metastable state points for which we have
estimated the nucleation rates k shown in Fig. 1(b) employing
both direct Brownian dynamics (BD) simulations and forward
flux sampling (FFS). For both methods initial homogeneous
configurations of non-overlapping disks are generated using
the algorithm by Clarke and Wiley40 (at v0 = 0). The suspension

Fig. 1 Nucleation kinetics for N = 4096. (a) Phase diagram showing as a function of swimming speed v0 the coexisting packing fractions f� (binodal, red
symbols) and the mean-field estimate for the spinodal (gray line).20 Small symbols correspond to the state points studied for the nucleation kinetics.
(b) Nucleation rate k vs. effective packing faction f for v0 = 100 employing Brownian dynamics (BD, black symbols) and forward flux sampling
(FFS, red symbols) simulations. The dashed line is a guide to the eye (quadratic fit). (c) Critical nucleus sizes n*. Red symbols are extracted from transfer
probabilities in FFS, the black open symbol is the result from an extensive committor analysis of BD trajectories. Lines are fits to eqn (7) with g = 2 (dashed)
and g = 3/2 (solid). Also shown are the values n1 for the first FFS interface. The gray areas in (b and c) correspond to the stable homogeneous gas phase
(f o f� C 0.14). Error bars in (b and c) indicate the standard error of three independent FFS calculations.
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is then quenched instantaneously to v0 = 100. At sufficiently
high supersaturation, the system spontaneously forms many
dense domains that evolve towards a single dense domain
through coalescence.

Reducing the packing fraction, only a single domain appears
after a waiting time (the nucleation time), which then rapidly
grows until the system reaches a final steady state. In this
regime we employ straightforward BD simulations to obtain the
nucleation times tx. To this end we run 50 independent
trajectories for each packing fraction and monitor the number
and sizes of clusters as a measure for dense domains. Clusters
are constructed from mutually bonded particles, where a bond
is formed when two disks interact, i.e., if their distance r is less
than r o 21/6s. The nucleation time tx is stored when the largest
cluster with size n reaches the threshold of n Z 2048, which is
much larger than the critical nucleus sizes for the densities
studied by direct BD simulations. Since growth is much faster,
the actual value of the threshold does not influence significantly
the values of tx, cf. Fig. 3. The nucleation rate is then estimated
from the mean nucleation time through

k ¼ 1

txh iA
; (3)

where A is the area of the simulation box and h�i denotes the
average over sampled trajectories.

B. Forward flux sampling

As the packing fraction f is reduced further, the nucleation rate
k drops. Below f t 0.29 no formation of dense clusters is
observed anymore in direct BD simulations. To estimate the
nucleation rate we thus have to resort to FFS, for technical
details see ref. 27. To this end we use the size of the largest
cluster and define M interfaces at cluster sizes ni. Configurations
that have n o n0 are designated ‘‘basin A’’ (the homogenous
state), where n0 corresponds to the peak of the cluster size
distribution (obtained from direct BD runs) [SM]. Configurations
with largest cluster n 4 nM belong to ‘‘basin B’’ (phase-separated).
The interfaces then guide the system from A to B by running
trajectories sequentially and collecting configurations at every
interface, see Fig. 2 for a schematic.

We employ as few interfaces as possible so that conditional
probabilities P(ni+1|ni) for the transitions i - i + 1 are approxi-
mately independent but there is still a substantial number of
trajectories reaching the next interface. The position of the last
interface nM is chosen to have a numerical transfer probability
of unity in the forward direction, meaning the irreversible
growth of the nucleated cluster. The position of the first inter-
face n1 is determined from the distribution of cluster sizes so that
the probability B10�3 to observe clusters with size n1 is small but
not too small [SM]. Values range from n1 = 100, nM = 600 and M = 6
interfaces for the highest packing fraction to n1 = 50, nM = 800 and
M = 16 for the lowest packing fraction studied.

The nucleation rate can be estimated from these simulations
through

k ¼ kð1jAÞPðBjAÞ ¼ kð1jAÞ
YM�1
i¼1

P niþ1jnið Þ: (4)

Here, k(1|A) is the rate to reach the first interface from the
homogenous initial condition. This rate is multiplied by the
probability to reach B, which, assuming uncorrelated interfaces,
can be expressed as the product of conditional probabilities
P(ni+1|ni) that trajectories reach the next interface i + 1 when
started from interface i. We use 50 independent runs to evaluate
k(1|A) and collect a set of 500 configurations at n1. In Fig. 1(b)
it can been seen that FFS interpolates correctly the BD data
to lower packing fractions. To estimate the error we actually
perform three independent FFS calculations and determine the
standard error.

Moreover, from the transfer probabilities of FFS we extract
the critical nucleus size n*, see Fig. 1(c). For this purpose we
need the probabilities

Pj ¼
YM�1
i¼j

P niþ1jnið Þ (5)

to reach B from interface j. We model the dependence of this
function on cluster size by

P(n) = 1
2[1 + tanh(cn + d)] (6)

Fig. 2 Forward flux sampling. Independent trajectories are run from basin
A (black) for two purposes: collecting configurations from crossing events
(reaching n1 and falling back to n0) and calculating the flux k(1|A). From the
collected configurations new trajectories are started (red), which either
reach the next interface or fall back, the ratio of which is used to estimate
the conditional probability P(n2|n1). This procedure is repeated for all
interfaces, with only forward trajectories crossing the last interface (green).

Fig. 3 (a) Single nucleation event for packing fraction f C 0.31. Shown is
the size n of the largest cluster. There is a clear separation between
induction followed by the growth of the cluster. (b) Growth behavior of
5 independent runs, where time is shifted by the nucleation time tx (time to
reach n = 2048 particles). The growth velocities are very similar with tf C 5
to reach the threshold.
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with two parameters c and d fitted to the scatter data (nj, Pj)
[SM]. The critical nuclei obey P(n*) = 1

2, the value of which are
shown in Fig. 1(c) as a function of packing fraction f. We
observe that, as the packing fraction decreases, the critical
nucleus size increases. To describe the critical sizes we employ
the functional form

n�ðfÞ ¼ n0 þ
b

f� f�ð Þg (7)

with location f�C 0.14 of the binodal, cf. Fig. 1(a). For passive
suspensions, classical nucleation theory41 predicts a function
n* p |Dm|�2 corresponding to exponent g = 2, where Dm p

f� � f is the difference of chemical potential between liquid
and vapor. The limited range of critical cluster sizes does not
allow to reliably determine g and we test two exponents:
g = 2 with fitted offset n0 C 200 and b C 1.25, and g = 3/2 with
n0 C 166 and b C 5.06, see Fig. 1(c). While both agree with the
error bars, the smaller exponent fits the data slightly better.
Intriguingly, whereas for a passive suspension the critical
cluster size approaches zero, for active Brownian disks it seems
to approach the constant offset n0. BD runs for packing fraction
f C 0.4 show that the suspension immediately starts to form
dense domains, which indicates that it has become linearly
unstable. Still, the size of the critical cluster seems to be
n* B 200 particles. This is not necessarily a contradiction since
the apparent critical size is now a value that is reached by
typical fluctuations, which are much stronger in the driven
active system. Hence, at least the critical cluster size departs
from the classical picture.

C. Committor analysis

To validate the results for the critical nuclei and to gain further
insights into the microscopic pathway how the suspension
transforms from homogeneous to phase-separated, we perform
a detailed committor analysis for the packing fraction
f C 0.31. This is the highest packing fraction that still shows
a clear time separation between the appearance of a critical
cluster and its growth, cf. Fig. 3(a). For any reaction, the
committor probability PB(x) is the exact reaction coordinate.
It quantifies the probability to reach basin B from configuration
x with isocommittor surfaces PB(x) = const in configuration
space. In particular, configurations for which PB(x) C 1

2 con-
stitute the transition state ensemble (TSE).

For the committor analysis we use the 50 trajectories har-
vested for calculating the rate. From every stored configuration
xl along these trajectories, Nl short ‘‘fleeting’’ trajectories are
generated. The length tf of these trajectories is fixed and set to
tf = 5, which corresponds to the mean time to reach basin B for
reactive trajectories, see Fig. 3(b). The committor probability is
then estimated as the ratio of reactive fleeting trajectories
(having reached the threshold) to the total number of fleeting
trajectories for that configuration. For the TSE we collect all
configurations for which 0.45 r PB(x) r 0.55 and calculate the
average cluster size hniTSE = 232� 14 of these configurations. As
shown in Fig. 1(c), this value agrees well with the FFS results
and continues the trend.

IV. Transition pathway
A. Reaction coordinate

The full committor function PB(x) is costly to determine and does not
yield insights into the microscopic details of the transition per se. It is
often more useful to approximate PB in terms of a few order
parameters, functions qi(x) that project high-dimensional configura-
tions onto a single number. These order parameters should provide
a simplified, low-dimensional description of the progress of the
‘‘reaction’’, i.e., the transition from basin A to basin B. In particular,
they should allow to construct a good reaction coordinate
r(x) = r({qi(x)}). Because the committor probability PB(x) is the
exact reaction coordinate, the isosurfaces of r(x) should closely
approximate the isocommittor surfaces, at least close to the TSE
corresponding to the value r*. For a good reaction coordinate r,
the distribution P(PB|TSE) of values PB(x) for configurations x
with r(x) C r* will be strongly peaked around 1

2.
Since the exact committor probability PB(x) is an unknown

function, we need to define a model. A common choice is
[cf. eqn (6)]

Pm
B (r) = 1

2(1 + tanh r) (8)

with linear ansatz

r x; aif gð Þ ¼ a0 þ
X
i

aiqiðxÞ (9)

for the reaction coordinate.33,36,42 Without loss of generality, we
set r* = 0. At least close to the TSE such a linear Taylor expansion
of a potentially more complicated, non-linear function r({qi})
should be sufficient.

B. Likelihood maximization

Likelihood methods for the determination of reaction coordi-
nates for nucleation have been developed in ref. 33, 36 and 42
in the context of importance sampling of shooting points.
Here we follow the similar approach of ref. 37 using as data
the fleeting trajectories harvested for the committor analysis.
For every stored configuration xl we run Nl short trajectories
of which nl reach a stable cluster configuration (xl - B) and
Nl � nl fall back to the homogeneous suspension (xl - A). The
probability to observe a given sequence of numbers nl is then

P fnlgjfaigð Þ ¼
Y
l

Nl

nl

� �
Pm
B ðrlÞ

� �nl 1� Pm
B ðrlÞ

� �Nl�nl (10)

with values rl = r(xl;{ai}) for the reaction coordinate, for which
we use the model defined in eqn (8) and (9). The likelihood
function follows as L({ai}) = P({nl}|{ai}).

Practically, we maximize ln L using an iterative Newton
optimization method to obtain the coefficients ai in eqn (9).
Moreover, to estimate the uncertainty we employ a bootstrap
method to compute the variance of the maximal log-likelihood
for each model by resampling our data adding normal noise [SM].

C. Order parameters

We now introduce three order parameters that capture different
aspects of transition configurations. The first, q1 = n, is the size
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n of the largest cluster, which in the picture of classical nucleation
theory is sufficient to describe nucleation processes. Fig. 4(a) shows
a scatter plot of cluster size n(x) vs. the committor probability
PB(x) for all harvested configurations x. It shows the correct
trend: for small n the probability PB to commit to basin B is small
while for large clusters n it reaches unity. To assess the quality
of n as a reaction coordinate, we employ the log-likelihood
maximization to extract a0 and a1 with a2 = a3 = 0. From the
condition Pm

B (n*) = 1
2 we again obtain an estimate for n*. We then

collect all configurations with

�0.25 r r r 0.25 (11)

and plot the distribution of PB values for these configurations
in Fig. 4(f), which is rather different from the desired, peaked
shape. Hence, while n correctly describes the two basins, it is
not sufficient to describe the TSE.

As a second order parameter q2 = r we consider the density
r = n/a of the largest cluster. This order parameter describe how
‘‘compact’’ the cluster is and also reflects the density change
between dilute and dense phase. While we already know the
number of particles n, we also need to determine the area a occupied
by the cluster. To this end we employ the scipy.interpolate library43

using Gaussian basis functions to interpolate the density. The
instantaneous interface is then formed by an appropriate density
isocontour.44 We repeat the same analysis as for the cluster size
shown in Fig. 4(b) and (g). Again, we find that the density is a
good order parameter but not a good reaction coordinate.

As the final order parameter q3 = c, we employ the radial
polarization

cðxÞ ¼ �1
n

X
k2C

ek � rk � rcmð Þ; (12)

where the sum runs over all n indices k A C of particles that
constitute the largest cluster C and rcm denotes the cluster’s

center of mass. This order parameter takes into account the
orientations of the self-propelled disks. In contrast to the net
polarization (the sum of orientations) it projects particle orientations
onto the vector from the cluster center to the particle, with particles
in the rim of the cluster acquiring a larger weight (due to their larger
distance) than the inner particles. The behavior of c is illustrated in
Fig. 5. Again, we repeat the analysis as for the two previous order
parameters, the result of which is shown in Fig. 4(c) and (h), with
similar conclusions.

D. Optimal reaction coordinate

Table 1 lists all possible linear combinations together with the
normalized log-likelihood. Of the three single order para-
meters, the cluster size n is the best approximation to a reaction
coordinate. Since r = 0 corresponds to the TSE, from the
coefficients for the single order parameters we can calculate
their transition value. For example, the critical cluster size is
found to be n* = �a0/a1 C 237, which compares well with the
direct average of n* C 232.

Our analysis so far has revealed that all three order para-
meters, by themselves, are not good reaction coordinates. We
now go a step further and test different combinations using the
method of likelihood maximization, the result of which is
included in Table 1. More complex models have a higher
likelihood, however, the gain when using all three order para-
meters is marginal so that as the best model we consider the
combination of cluster size n and polarization c. For two order
parameters, from r = 0 we obtain a linear relation for the TSE,
which is shown in Fig. 4(d) and (e). We again apply the criterion
eqn (11) to identify the configurations constituting the TSE. The
corresponding distributions P(PB|TSE) shown in Fig. 4(i) and (j)
are now indeed peaked around 1

2 as desired. While the inclusion
of the cluster density r is already a significant improvement,
the radial polarization c is even more relevant.

Fig. 4 Transition state ensemble (TSE). (a–c) Committor probability PB vs. the considered order parameters: (a) size n, (b) density r, and (c) polarization c
of the largest cluster. Solid lines show Pm

B (r) [eqn (8)]. Colored squares are configurations close to the TSE using the criterion eqn (11). (f–h) Associated
distributions P(PB|TSE) of PB at the TSE. (d and e) Results of the log-likelihood maximization for the two models with two variables: (d) {n, r} and (e) {n, c}.
(i and j) Associated distributions of PB. The number of TSE configurations is: 68, 73, 70, 54, 49 (from left to right).
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Of course, the three order parameters taken into account
here are not the only possible choices. Among others, we have
also considered the anisotropy of clusters and the ratio of
circumference. However, employing the described method of
likelihood maximization, these three have been found to be the
most relevant. This does not exclude the possibility that there is
yet another order parameter that is superior in describing the
nucleation of dense clusters of active Brownian disks.

E. Role of polarization

As mentioned, the cluster size n is a natural choice that is often
sufficient to describe nucleation. As a counterexample, for the
crystallization of soft particles studied in ref. 33 it has been
found that including the cluster surface improves the reaction
coordinate. The physical picture for active Brownian particles is
quite similar, also here the particles at the cluster’s surface play
a role. However, it is now their orientation that is important.
This can be understood quite easily. If orientations at the
surface point outwards [cf. Fig. 5(a)] they would leave the
cluster, which then becomes instable and small clusters might
even vanish. If the majority of particles at the surface points
inwards [cf. Fig. 5(c)], these particles are blocked due to the
inner particles, effectively stabilizing the cluster. Hence, the
creation of a cluster is linked to a polarization of orientations, a
collective fluctuation away from the expectation value of zero
for active Brownian particles.

To confirm this picture, we have analyzed in more detail
configurations harvested with FFS. In Fig. 6 we show all stored

configurations with their cluster size n and radial polarization
c for two densities. Configurations are colored according to
whether they have reached the next interface, or have fallen
back to the homogeneous suspension. Clearly, successful con-
figurations typically have a larger value for c, indicating a
higher polarization. Even beyond the critical cluster size n*,
large clusters fall back if their polarization is low.

F. Droplet condensation/evaporation

Computer simulations are necessarily performed in finite sys-
tems, which often has interesting and subtle consequences. For
example, for liquid–vapor coexistence it has been found that in
finite systems with linear dimension L the homogeneous phase
is stable also above the coexistence density f� o f o f0 and
there is a condensation transition at a (slightly) higher packing
fraction f0, which in passive systems in two dimensions scales
as f0 � f� p L�2/3.45

It is straightforward to see that a similar picture should hold
for active Brownian disks: the size of stable droplets is reduced
when reducing the global packing fraction while the size of the
critical nucleus increases. At some point small droplets cannot
be stable anymore in finite systems. Interestingly, we find an
‘‘echo’’ of this evaporation transition showing that large fluc-
tuations can destabilize clusters at low supersaturation with the
suspension returning to the homogeneous state. To this end,
we have run direct BD simulations at packing fraction fC 0.23
initialized with configurations harvested by FFS at the last

Fig. 5 Illustration of the radial polarization eqn (12). (a) Orientations in a
cluster point predominately outwards, leading to a negative value for c.
(b) If orientations mainly point in the same direction the cluster has a large
net polarization but a small radial polarization. (c) Only if orientations point
inwards does the value for c become positive.

Table 1 Combination of order parameters sorted by their log-likelihood
and normalized by the log-likelihood ln Ln of the cluster size (uncertainty
of last digit in brackets). The combination of all three order parameters has
the highest likelihood, but is only marginally better than the combination
of cluster size n with polarization c. Also given are the expansion coeffi-
cients ai

Combination ln Ln/ln L a0 a1 a2 a3

n, r, c 1.067(2) �6.54 0.0099 3.30 0.82
n, c 1.065(2) �4.50 0.0106 0.97
n, r 1.038(2) �10.41 0.0106 10.41
n 1.000(2) �3.41 0.0144
c 0.830(3) �5.71 2.45
r 0.823(4) �23.96 30.85

Fig. 6 Scatter plot of cluster size n and polarization c for the FFS
configurations for two packing fractions (a) f C 0.29 and (b) f C 0.23.
The vertical lines indicate the critical cluster sizes n*. The colors indicate
whether the FFS trajectories started from this configuration have reached
the next interface (bright) or fallen back (dark). Clearly, reactive trajectories
originate in configurations with higher values of c.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
9 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
by

 H
ei

nr
ic

h 
H

ei
ne

 U
ni

ve
rs

ity
 o

f 
D

ue
ss

el
do

rf
 o

n 
30

/0
6/

20
16

 1
0:

30
:1

2.
 

View Article Online

http://dx.doi.org/10.1039/c6sm00485g


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 5257--5264 | 5263

interface, which have a numerical probability of unity to
commit to the phase-separated state. Fig. 7 shows the time
series of relative cluster sizes n/N (the fraction of particles that
make up the largest cluster). While clusters remain stable in
most runs, we observe one run in which the cluster initially is
stable but suddenly decays, after which the system remains
homogeneous for a long time. This indicates that we are
sufficiently close to the condensation/evaporation transition
to observe fluctuations between homogeneous suspension
and the droplet.

V. Conclusions

For active hard Brownian disks, we have studied the nucleation
of dense domains using both Brownian dynamics and forward
flux sampling simulations. While active Brownian particles are
driven away from thermal equilibrium due to self-propulsion, it
has been found previously that their large-scale behavior can be
described by an effective free energy,18,21 linking their phase
behavior to that of passive liquid–vapor separation. In particular,
active hard Brownian disks undergo phase separation for
sufficiently large propulsion speeds. Here we have shown that
also the phase-separation kinetics is qualitatively very similar:
the nucleation rate is exponentially small close to the binodal
and increases with increasing density. At the same time the
critical size of domains (clusters) leading to phase separation
decreases. This implies an effective description in terms of a
barrier that needs to be overcome by rare and collective fluctua-
tions. Performing a committor analysis we have found that the
orientations of particles in the rim of clusters play an important
role. In agreement with the idea of a ‘‘spinodal’’ marking the loss
of linear stability, going to high supersaturation the barrier
becomes low and there is a qualitative change from nucleation
to demixing, i.e., domains appear almost instantaneously and
coarsen over time. Overall, the kinetics of phase-separating
active Brownian disks is surprisingly well described by equili-
brium concepts. We even find evidence that close to coexistence
droplets evaporate in finite systems.

The nucleation scenario unravelled in our simulations can
be confirmed by experiments on light-activated diffusiophoretic
colloids which exhibit phase separation.12 In principle, experi-
mental information on the cluster kinetics is directly available
and the activity can be conveniently tuned to initiating the
nucleation process. Future work should address the impact on
hydrodynamic interactions16,46 on phase separation kinetics.
Moreover, our findings provide a starting point to construct a
microscopic theory for nucleation, where the effective free
energy functional is employed and the relevant order parameters
identified here play a crucial role.47

Note added

In a recent preprint, Redner et al. also address the nucleation
kinetics of active Brownian particles using a complementary
simulation approach and theoretical arguments in favor of the
applicability of classical nucleation theory.48
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Lett., 2014, 112, 218304.
21 T. Speck, A. M. Menzel, J. Bialké and H. Löwen, J. Chem.
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