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We explore structural and dynamical behavior of concentrated colloidal suspensions made up by
C-shape particles using Brownian dynamics computer simulations and theory. In particular, we focus
on the entanglement process between nearby particles for almost closed C-shapes with a small
opening angle. Depending on the opening angle and the particle concentration, there is a percolation
transition for the cluster of entangled particles which shows the classical scaling characteristics. In a
broad density range below the percolation threshold, we find a stretched exponential function for the
dynamical decorrelation of the entanglement process. Finally, we study a setup typical in microrhe-
ology by dragging a single tagged particle with constant speed through the suspension. We measure
the cluster connected to and dragged with this tagged particle. In agreement with a phenomenological
theory, the size of the dragged cluster depends on the dragging direction and increases markedly with
the dragging speed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947237]

I. INTRODUCTION

In recent years, the research in the structure and dynamics
of colloidal dispersions has shifted from spherical particles
to colloids with an anisotropic shape.1–5 In particular, various
forms of hard non-convex particles can be synthesized by
now which are governed by excluded-volume interaction.
The non-convex shape gives rise to non-trivial close-packed
structures and also affects the dynamics in concentrated
suspensions. One of the simplest non-convex shapes is a
hard dumbbell, which has been synthesized6–8 and was
studied quite a lot theoretically.9–14 More pronounced non-
convexity is realized for colloidal bowls which may penetrate
and get stacked.15 While these are still rotational symmetric
shapes, more complex non-convex particles with no rotational
symmetry have been considered including bent rods such as
banana-shaped16,17 and boomerang-shaped18–20 particles up to
closed rings or tori.21,22 Ring-like particles can get completely
entangled with important consequence for their dynamics and
rheological properties.

In this paper we consider colloidal particles with a
horseshoe-like shape which we will refer to as C-particles.
These particles are neither rotational symmetric nor convex
and play an important role of linking continuously between
slightly bent banana-shapes and full tori. The simplest form
of a C-shape is a circular part where a segment characterized
by an opening angle α is cut out from a full circle. If
α vanishes, a ring-like particle results, while for α close
to 2π we end up with only slightly bent rods. Therefore,
C-particles constitute important interpolating shapes between
rods and rings which can show significant, but not perfect
entanglement. It is important to note that C-shape colloids

a)Electronic address: choell@thphy.uni-duesseldorf.de
b)Electronic address: hlowen@thphy.uni-duesseldorf.de

can be nowadays fabricated at wish23,24 such that our model
is realized.

Here, we explore the structural and dynamical behavior of
concentrated colloidal suspensions in three spatial dimensions
made up by C-shape particles by using Brownian dynamics
computer simulations and theory. In particular, we focus on
the entanglement process between nearby particles for almost
closed C-shapes with a small opening angle α. By a suitable
definition of entanglement, we associate entangled clusters in
the suspension and explore their percolation properties.25

Connectivity properties have been studied a lot recently
by using concepts of percolation theory, in particular, in
suspensions of rod-like particles with sticky interactions,26–33

but have never systematically been applied to entangled
particles. Depending on the opening angle and the particle
concentration, we find a percolation transition for the cluster
of entangled particles and identify the percolation threshold.
In a broad density range below the percolation threshold, we
find a stretched exponential function ∝ exp(−√t/t0) for the
dynamical decorrelation of the entanglement process between
a particle pair where t0 is a characteristic time scale for
disentanglement. This is similar in spirit, but different in
detail due to the fluctuations in shape for ring polymers, to the
disentanglement of ring polymers in three dimensions,34–37

see also Ref. 38.
Finally we study a setup typical in microrheology

by dragging a single tagged particles with constant speed
through the suspension. We measure the cluster connected
to and dragged with this tagged particle. The size of
the dragged cluster depends on the dragging direction and
increases markedly with the dragging speed. This is due to a
dynamical sweeping-up effect mediated by entanglement. All
our predictions can be verified in real-space experiments on
colloids by tracking positions and orientations of anisotropic
particles.39

0021-9606/2016/144(17)/174901/11/$30.00 144, 174901-1 Published by AIP Publishing.
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This paper is organized as follows: the model is described
in Sec. II. Equilibrium properties are discussed in Sec. III
including both percolation aspects and the dynamics of
disentanglement. Sec. IV is devoted to the non-equilibrium
dragging setup and we conclude in Sec. V.

II. MODEL AND METHODS

A. Particle model

Let us first define our model for C-particles in three
dimensions. Ideally we consider a C-particle as composed
of Nb spherical hard core beads of radius Rb, as shown
in Fig. 1(a). In detail, we start from a full circle (dashed
line in Fig. 1(a)) and place in total Nb + Nm hard spherical
beads along the circle such that they are touching. Then, Nm

“missing” beads are removed such that Nb beads remain,
which gives rise to the characteristic C-shape and introduces
an opening angle

α = 2π
Nm

Nb + Nm
. (1)

We refer to the plane containing all bead centers as the
“symmetry plane” of the particle. The resulting radius of the
C-particle (see Fig. 1(a)) is

R = ϵRb, (2)

where the aspect ratio ϵ is given by

ϵ =
R
Rb
=


2

1 − cos
(

2π
Nb+Nm

) . (3)

In three dimensions, a single C-particle has a physical volume
of

VC =
4π
3

R3
bNb (4)

and its configuration is fully specified by its central position
r and a set of three angles ϖ describing its orientation in
space.5,40

We now consider a pair of two C-particles, see Fig. 2,
which can be characterized by their central positions r1 and r2

FIG. 1. (a) Sketch of a C-particle of effective radius R as composed of
Nb = 14 hard beads of radius Rb. Since Nm = 2 spheres are missing to cover
the full circle (dashed line), there is a resulting opening angle α. A projection
onto the symmetry plane which contains the full circle is shown. (b) Softened
Yukawa-segment interaction potential energy V (x, y) as seen by a Yukawa
bead of another particle, in the same symmetry plane as in (a) and for the
same number of beads, with interaction parameters κRb = 5 andV0/kBT = 1.

FIG. 2. Sketch of two entangled C-particles in three dimensions.

and their orientations ϖ1 and ϖ2. Their interaction is steric or
of excluded volume-type, i.e., they are not allowed to overlap.
As characteristic for athermal hard-core particles, we assign
a vanishing potential energy for a non-overlapping pair and a
potential energy of infinity for an overlapping pair, the pair
potential is

V (r1 − r2,ϖ1,ϖ2) =



∞, if there is overlap
0, elsewise.

(5)

The following criterion for entanglement of a particle
pair is adopted: for a given configuration of two C-particles,
their missing spherical beads are formally inserted, i.e., the
C-particle is closed to a full ring such that the opening
angle would be vanishing. Then there are three possibilities;
(i) the two rings can be moved continuously away from
each other without crossing any energetic barrier, we refer
to this as a disentangled pair, (ii) the two rings are
topologically internested, (iii) the two rings physically overlap.
By definition, we call configurations entangled if they are not
disentangled, i.e., if they belong to either case (ii) or (iii).

As a first immediate result, we address the excluded
volume Vex of two hard C-particles. This quantity measures
the degree of steric interactions as embodied in the second
virial coefficient and is essential, e.g., in Onsager’s theory of
the isotropic-nematic transition.41,42 The excluded volume Vex

can be defined as

Vex =


dr⟨1 − exp(−V (r,ϖ1,ϖ2))⟩ϖ2

, (6)

where the orientational average is given by

⟨A⟩ϖ2
=

1
8π2

2π
0

dχ2

π
0

dθ2 sin θ2

2π
0

dφ2A, (7)

when ϖ2 = (φ2, θ2, χ2) is chosen to represent the Euler
angles describing the orientation of a rigid particle with
non-symmetric shape.40 By global rotational symmetry, the
definition of Vex in Eq. (6) does not depend on ϖ1. We
have calculated the excluded volume for different C-shapes
using standard Monte-Carlo simulation.43 Results for Vex for
different particle shapes are presented in Fig. 3 as a function
of the contour length

L = 2πR
(
1 − α

2π

)
(8)
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FIG. 3. The excluded volume of different objects as a function of the contour
length. For closed rings (green line), entangled states were not accounted for,
such that Vex behaves approximately as for hard platelets of the same radius
(dashed black line). Hard C-particles (here α = π/5, orange triangles) have
approximately the same excluded volume as hard cylindrical rods of the same
length (solid black line).

and compared to the straight rod case where44

⟨Vex⟩ ≈ πRbL2. (9)

As can be deduced from Fig. 3, the excluded volume
Vex of C-particles basically follows that of rods of the same
contour length. This is qualitatively different if one excludes
entangled configurations, as exemplified for closed rings for
which we have calculated Vex without accounting for entangled
configurations, see Fig. 3. In fact, for ϵ ≫ 1, the scaling of
Vex in this case is with L3, similar to that of thin platelets,
also shown for comparison in Fig. 3, where Vex = π

2R3
p with

Rp = R.
Since hard objects are more difficult to simulate

within Brownian dynamics simulations,45–49 we softened the
interaction between two beads and treat them as harsh Yukawa
beads. This has been successfully done for rod-like particles
under various conditions.50,51 We treat the bead-bead pair
interactions Vbb(r) as

Vbb(r) = V0
2Rb

r
exp(−κ(r − 2Rb)), (10)

where the parameters were chosen to be V0 = Vbb(r = 2Rb)
= kBT and κRb = 5 throughout the simulations. The Yukawa-
potential is truncated at 3Rb. The corresponding potential
energy landscape felt by a single segment in the neighborhood
of a fixed C-particle is shown in Fig. 1(b). The energy quickly
increases as the segment approaches the real particle shape
such that a mutual crossing in the dynamics is never observed
in practice.

B. Brownian dynamics simulation

The motion of colloidal C-particles is governed by
completely overdamped Brownian dynamics with thermal
noise arising from the solvent. We neglect hydrodynamic
interactions between particles but account for the anisotropic
shape of the particles by using an anisotropic mobility tensor.
Generally, the diffusion tensor of a particle is given by52–54

D = kBTH−1, (11)

where H is the grand resistance matrix, which, at low Reynolds
number, connects forces and torques acting on particle i to its
translational and angular velocity. Here, kBT is the thermal
energy. The diffusion tensor can be written as

D = *
,

Dt Dt
c

Dc Dr

+
-
, (12)

with the pure translational and rotational submatrices Dt and
Dr , and Dc coupling translational and rotational motion.52

Hydrodynamically, the C-particles are approximated as
oblate ellipsoids of revolution with major semi-axes of length
R + Rb and a minor semi-axis of length Rb so that the diffusion
tensor reduces to

D = *
,

Dt 0
0 Dr

+
-
, (13)

with the analytically known55–57 matrices given in
Appendix A, which are diagonal in the body frame of the
particle. We remark that more sophisticated calculations could
be done to match the actual friction coefficients for C-particles
better,39,58 but we do not expect big changes on the disentangle
behavior.

This way, rotational and translational motion decouple52

and the equations of motion are

ṙi = βRi · Dt · (F′i + ξ ′i) (14)

and

ωi = βRi · Dr · (T′i + ζ ′i), (15)

where β = (kBT)−1, ri is the center of mass of particle i, ωi

its angular velocity, and Ri the rotation matrix describing the
transformation from the body to the laboratory frame. This
matrix clearly depends on the orientation ϖi of particle i,
i.e., Ri ≡ R(ϖi). Therefore, multiplication with Ri transforms
a body frame vector to the laboratory frame, while its
inverse does the reverse transformation, e.g., Fi = Ri · F′i
and F′i = R−1

i · Fi. Here, primed vectors belong to the body
frame, and vectors without a prime symbol to the laboratory
frame.

Moreover, the interaction force Fi on particle i due to the
other particles is given by

Fi =

b∈i

F(i)
b
, (16)

where F(i)
b

is the force on bead b of particle i due to the
Yukawa-interaction with all other particles’ beads and the
sum is over all beads b of particle i. The corresponding torque
Ti is determined by

Ti =

b∈i

(r(i)
b
− ri) × F(i)

b
, (17)

where r(i)
b

denotes the bead center. The stochastic Brownian
force ξi is Gaussian-distributed with zero mean and second
moment 

ξ ′iα(t)ξ ′jβ(t ′)

= kBT Hααδi jδαβδ(t − t ′) (18)

in the body frame, where the axes are the principal axes of
the particle, with α and β denoting Cartesian components.
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In close analogy, the Gaussian Brownian torque ζi has zero
mean and second moment

ζ ′iα(t)ζ ′jβ(t ′)

= kBT H(α+3)(α+3)δi jδαβδ(t − t ′) (19)

in the body frame.
Eqs. (14) and (15) are numerically solved using the

standard Euler-forward scheme for stochastic differential
equations59

ri(t + ∆t) − ri(t) = Ri(t) · �β∆tDt · F′i(t) + σ ′i
�

(20)

and (going into the body frame)

ω′i(t)∆t = β∆tDr · T′i(t) + ψ ′i (21)

with time step ∆t. Here, the Brownian forces ξi and torques ζi
have been integrated over time and thus replaced by Brownian
translational and rotational moves, σi and ψi, which are again
Gaussian with zero mean and second moment

σ′iασ
′
iβ


= 2δαβDt,αα∆t (22)

and 
ψ ′iαψ

′
iβ


= 2δαβDr,αα∆t, (23)

respectively. Moreover, we used Beard and Schlick’s method
for bias-free rotational moves.60

FIG. 4. Simulation snapshots of a system with N = 1000 particles and shape
parameters ϵ = 6.37 and α = π/5 below the percolation threshold at density
nR3= 0.274 (a) and percolated at density nR3= 0.342 (b). Particles be-
longing to the same cluster are shown in the same color. Particles with no
entanglement are colored gray, the giant component in (b) is colored yellow.

In the simulation, coupled equations of motion (14) and
(15) for N C-particles are solved. The time step was made
adaptive to limit particle displacement in one single time
step to below 0.05Rb, with a maximal time step ∆t ≤ 10−4τB,
where the Brownian time is defined as

τB = R2
b/D11. (24)

The orientations of the particles were stored as quaternions,
from which the corresponding rotation matrices Ri were
computed and which allowed for fast updates of the
orientation.

When not noted otherwise, our results stem from
simulations of N = 1000 particles with an aspect ratio ϵ < 10,
see typical system snapshots in Fig. 4. We started with random
orientations on equally distributed grid points and then relaxed
the system for a time 10τB, and gathered statistics until
40τB. The cubic system was treated with periodic boundary
conditions in all three directions, where the box length ℓ is
determined by the prescribed volume fraction

Φ = NVC/ℓ
3 (25)

of the C-particles. The entanglement criterion as developed
earlier was numerically implemented with a piercing
technique outlined in Appendix B. For non-vanishing opening
angles, α, it was carefully checked that the equilibrated
system does not exhibit spontaneous nematic ordering but
stays orientationally disordered.

III. C-PARTICLES IN EQUILIBRIUM

A. Number of entanglements and percolation

We have calculated the number of entangled pairs per
particle, Nep/N , using the entanglement criterion introduced
above. The data in Fig. 5 are shown as a function of nR3 since
this is the natural representation for infinitely thin C-particles,
i.e., if the size ratio ϵ → ∞, so that the particles radius R is
the only length scale left. The double-logarithmic plot reveals
that the number of entanglements scales as nR3 for high
densities. For intermediate densities, we find a long crossover
which looks to scale as n4/3R4 for one to two decades of
nR3. The high-density linear scaling can be qualitatively
explained with the following argument: Entanglement of
one particle can only occur with other particles in a
volume ∝ R3 around the particle. Since the physical volume
is full of particles at high densities, the probability for
such particles scales as nR3 in this case. Whether the
behavior for intermediate density is a real scaling or just a
crossover is an interesting question which we leave for future
studies.

We assign two particles to be in the same entanglement
cluster if there is a chain of entangled particles connecting
them. This criterion is symmetric, transitive, and by definition
reflexive. Thus, a well-defined sorting of particles is
established that divides the system into a discrete set of
clusters. As for an example, see the simulation snapshots in
Fig. 4 where different clusters are shown in different colors.
Near the system percolation transition, the biggest cluster of
the system involves a finite fraction Nbc/N of particles in the
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FIG. 5. The number of entangled pairs per particle as a function of nR3

for fixed opening angle α = π/5. Apart from very low densities, the graphs
collapse. The inset shows that the scaling becomes linear for high densities.

thermodynamic limit N → ∞. Data for the biggest cluster are
presented in Fig. 6 as a function of the volume fraction Φ (a)
and as a function of the reduced density nR3 (b). For aspect
ratios ϵ ≫ 1, i.e., for slender C-particles, there should only be
a dependence on the opening angle α. Indeed, Fig. 6(b) shows
that there is a good scaling on a single Master curve and that
both dependencies on ϵ and α are weak. There is a sharp jump
from almost vanishing values for Nbc/N towards a finite value
at about nR3 ≈ 0.31 for all ϵ and α which reveals that there is
a percolation transition in the system.

Figs. 7 and 8 demonstrate that standard percolation
theory62–64 applies for this transition. The theory predicts that
there is a critical percolation point characterized by universal
critical exponents where the biggest cluster fraction is getting
non-zero in the thermodynamic limit.

We have checked that two general properties of classical
percolation do also apply for our system. First, we have plotted
the cluster size distribution function f (s) with s denoting a
size of an entangled cluster in Fig. 7. Below the critical point,
the distribution of cluster sizes should follow the law

f (s) ∝ s−τ exp
(
− s

sco

)
, (26)

with the Fisher exponent τ = 2.189(2) for undirected
percolation in three spatial dimensions.61 At the critical point,
the cut-off size sco diverges and f (s) follows a power law with
universal exponent τ = −2.189(2),61 shown as a reference line

in Fig. 7. Above the critical point, an exponential decay is not
only seen again but also a peak at large s exists, the so-called
giant component. This is indeed confirmed by the data shown
in Fig. 7.

Second, we have checked finite system size corrections
near the percolation transition. Classical percolation theory62

predicts that Nbc behaves as ∝ log N below the percolation
transition, ∝ N2/3 at the percolation transition and ∝ N above
the percolation transitions. The data shown in Fig. 8 indeed
confirm these three predictions.

B. Long-time diffusion and dynamics
of disentanglement

We now address the long-time dynamics as embodied
in the mean-square displacement of the center-of-mass
coordinate defined as

∆(t) =
(

ri(t) − ri(0)
)2


. (27)

For short times, the Brownian dynamics is diffusive by
construction and the orientationally averaged short-time
diffusion constant can be extracted as

DS = lim
t→0
∆(t)/6t. (28)

For long times t → ∞, the mean-square displacement ∆(t)
is again diffusive, such that we define as usual a long-time
self-diffusion coefficient

DL = lim
t→∞
∆(t)/6t . (29)

In general, at finite density, DL is smaller than its short-time
counterpart DS as the dynamics is hindered by the presence
of neighboring C-particles and DL decreases with increasing
density. Numerically, we extract DL from our simulation data
for the mean-square displacement in a finite time window
by extrapolating the relaxation in ∆(t) towards long-time
diffusion algebraically65 as

∆(t) = 6DLt +
At

τ0 + t
, (30)

where the amplitude A and the time scale τ0 are fit parameters
to the simulation data. Fig. 9 shows the density dependence
of DL/DS. The inset reveals that a simple exponential

FIG. 6. The fraction of particles in the biggest cluster as a function of the volume fraction occupied by C-particles (a) and as a function of the number density
times the particle radius cubed (b), for different aspect ratios as given in the legend. When the particles radius is increased, the critical volume fraction decreases.
All simulations in these plots contained N = 1000 particles.
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FIG. 7. Distribution of cluster sizes for particles with aspect ratio ϵ = 5.41
for different reduced densities nR3. The data were obtained for a large system
with N = 8000 C-particles. At the critical density, the distribution follows a
power law with universal exponent τ =−2.189(2).61 The corresponding slope
is indicated by the solid line. Below the percolation threshold, the distribution
is exponentially cut-off; above, there is a peak at large sizes, representing the
giant component.

dependence on density rescaled with R2Rb such that

DL/DS = exp(−λnR2Rb) (31)

is a good fit for the long-time self-diffusion coefficient
over several decades, at least for parameter combinations
considered here. This is interesting as convex Brownian hard
spheres66,67 and hard spherocylinders46 exhibit an almost linear
dependence of DL/DS on density up to the freezing density.
Here, non-convexity and the resulting entanglements slow
down the dynamics more drastically, being close to glass
formation. In fact, in binary hard sphere mixtures68,69 also an
exponential increase of the characteristic relaxation time in
the density was found for densities not too close to the glass
transition. This corresponds to an exponential decrease of DL

as one can extract a typical relaxation time τL as

τL = R2/DL, (32)

which is the characteristic time to diffuse over the size of a
C-particle.

FIG. 8. Finite-size scaling of the biggest cluster size Nbc, normalized with
its value for a system size of N = 1000, with respect to the system size N :
unpercolated (∝logN ), critical (∝N 2/3), and percolated (∝N ) systems.62 The
lines give the expected system size behaviors. The system parameters are
ϵ = 5.41 and α = 0.74. The percolation transition occurs at nR3≈ 0.31.

FIG. 9. The long-time diffusion constant DL decreases exponentially
with increasing density. Larger C-particles feature a stronger decrease.
The inset shows that data collapse for log10(DL/DS) as a function of
nR2Rb.

We grouped particles with respect to how many entan-
glements they have on average during the whole simula-
tion length, and then looked at the mean-squared displace-
ments in these groups. For unpercolated systems, we find
that the more entanglements a particle has, the more slowly
it diffuses. When the system is fully percolated (Nbc ≈ N),
there is no more any difference and all particles diffuse with
the same constant. This indicates that not only the number
of entanglements pins down C-particles and thus hinders
diffusion but also the connectivity is a further obstacle for
diffusion.

We now define a dynamical autocorrelation function
describing the disentanglement process. First, we define the
observable

p(i, j; t) =



1, if (i, j) are entangled at time t
0, elsewise

(33)

as an entanglement order parameter and consider its time
autocorrelation function, given by

Pp(t) = ⟨p(i, j; t0 + t)p(i, j; t0)⟩
⟨p(i, j; t0)p(i, j; t0)⟩ , (34)

where the brackets denote averages over particle pairs (i, j) and
initial times t0. Here, the term in the denominator can be further
simplified, since p2(i, j; t) = p(i, j; t). Thereby, Pp(t = 0) = 1
is normalized at zero time. Conversely, for long times, the
entanglement order parameters are statistically independent
such that

lim
t→∞

Pp(t) = ⟨p(i, j; t0 + t)⟩ ⟨p(i, j; t0)⟩
⟨p(i, j; t0)⟩

= ⟨p(i, j; t0)⟩
=

2Nep

N(N − 1) . (35)

As Nep ∝ N , the long-time limit of Pp(t) vanishes in the
thermodynamic limit.

Fig. 10(a) shows data for the entanglement autocorrelation
function Pp(t) on a linear scale which exhibit a decay that
is significantly slowed down for increasing densities. In fact,
a semi-logarithmic plot (see Figs. 10(b) and 10(c)) shows
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FIG. 10. (a) The entanglement correlation function for C-particles with aspect ratio ϵ = 5.41 and opening angle α = 0.74 for different densities n as a function
of time. ((b) and (c)) The logarithm of the entanglement correlation function as a function of the time (b) and as function of the square root of time (c), for the
same data as (a). For low densities, there is a simple exponential decay (straight lines in (b)), for higher densities and long times a stretched exponential with
exponent β = 1/2 is found (straight lines in (c)).

that either a normal exponential or a stretched exponential
decay in time occurs. The former occurs for small densities as
expected, the latter happens for densities which are below but
not too close to the percolation threshold. Here, the stretched
exponential form

Pp(t) = exp
�
−(t/τp)β� (36)

is a good fit to the data which contains the time scale τp as
a typical relaxation time of the disentanglement process. As
Fig. 10(c) shows, the value for the exponent β is close to 1/2. A
similar stretched exponential relaxation scenario is obtained
in the context of glass formation where it is better known
as a Kohlrausch-Williams-Watt law and results from cage
relaxation. Computer simulations70,71 as well as experiments
and mode-coupling theory72 give indications that the exponent
β = 1/2 can be realized in the context of glasses as well.

In fact, the typical relaxation time τp, defined via
Pp(τp) = 0.1, is closely correlated to τL which sets the time
for long-time self-diffusion. This is documented in Fig. 11,
where we plot both time scales as a function of the density in
the main plot and τp as a function of τL in the inset.

At this stage, we remark that the threading of ring-
polymers is an analogue to the entanglement of C-particles.
These threadings, i.e., one ring penetrating another one, and

FIG. 11. Disentanglement time scale τp and long-time diffusional time scale
τL as functions of the density for C-particles with aspect ratio ϵ = 5.41 and
opening angle α = 0.74. The inset shows the proportionality between the two
time scales, using the same data as the main plot.

their influence on the dynamics of a ring-polymer system were
explored by simulation in a recent series of papers.34–36 Indeed,
a significant slow-down of heavily threaded systems and a
stretched exponential decay in the time-correlation function
of an observable measuring contiguity, i.e., closeness, of two
ring-polymers were found where the exponent approaches
β = 1/2 for sufficiently large rings.36 Therefore, regarding
C-particles and their entanglement as a “topologically driven
glass” as introduced in Refs. 34–36 looks to have merit and
might be a fruitful subject for future examinations.

IV. MICRORHEOLOGY OF C-PARTICLE
SUSPENSIONS

We now address a non-equilibrium aspect of C-particles
which is closely connected to entanglement. A single “tagged”
particle is dragged with prescribed velocity v , constituting a
setup of constant-velocity microrheology.73

A. Simulation scheme

In our constant-velocity microrheology73 simulations,
we suspend the Brownian dynamics move scheme for one
“tagged” particle. Instead, its center-of-mass coordinate is
moved each time step by v∆tû, where û is a constant unit
vector giving the drag direction, v is the dragging speed, and
the particle’s orientation is kept fixed.

First, we consider a situation in which the particle is
dragged towards the opening of the C, see Fig. 12(a). As
a second case, the probing particle is pulled in exactly the
opposite direction. The former favors absorbing new particles
into the pulled cluster, while the latter leads to particles
slipping off the tagged particle’s cluster. The simulations were
started from equilibrated starting positions. The data were
then averaged over 15 different runs each lasting 100 τB.

B. Forward drag

Here, the dragging direction û shows from the particle’s
center towards the opening of the ring, see Fig. 12(a). During
the run, the force on the dragged particle, Fp, was recorded.
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FIG. 12. (a) Forward drag scenario, (b) pulled cluster size as determined structurally and via friction, (c) distribution function of the pulled cluster size measured
structurally and via friction, for the same data as (b).

While it has no effect on the particle’s velocity in our setup,
it would have to be compensated in an experimental situation
to achieve this constant speed. Therefore it may also serve to
define a frictional cluster size N fric

c as follows. We average the
projection of this force onto the drag direction, ⟨Fp · û⟩, and
postulate that this is equal to the hydrodynamic drag force of
N fric
c single uncorrelated particles, i.e., we define N fric

c via the
relation

− ⟨Fp · û⟩ = N fric
c Hûv, (37)

with Hû being the friction coefficient along the û-axis of the
body frame of a single particle.

Simultaneously, we measured Nc using the structural
entanglement cluster criterion as defined earlier. An example
is presented in Fig. 12(b). The structurally defined cluster
size has much higher fluctuations than the frictional one, as is
documented also by the corresponding distribution function in
the steady state, see Fig. 12(c), which is much sharper for N fric

c

than for Nc. The high overshoots in Nc correspond to situations
where blocks of particles are just about to leave the cluster
such that they are still counted structurally without having
any contribution to the frictional force. Fig. 13(a) shows that
the cluster attached to the tagged particle—as averaged over
different initial conditions—grows with time but approaches
a finite long-time limit indicative of a steady state.

We shall now model this dynamical process by using
phenomenological arguments, following similar ideas as in
earlier work.74–78 Basically, the cluster dynamics is fixed by

two processes, one leading to growth and the other to loss of
cluster size. For the growth process we assume that the pulled
C-particle collects all particles which it hits with its opening
cross section of area Ac = αRRb. Per time unit it will cover a
volume Acv such that on average nAcv particles per time unit
will be swept up or gathered into the moving C-particle. Each
of this particle is connected with other C-particles according
to the equilibrium mean size ⟨s⟩p of entangled clusters. Hence,
we obtain for the growth process the following rate of particle
getting per time unit attached to the moving cluster

Ṅ+c = nv⟨s⟩pAc. (38)

Conversely, for the loss process, we assume that a particle
only leaves the cluster when its opening shows in the direction
of û. Assuming single particle rotational Brownian dynamics
and an initial perpendicular configuration, the typical time to
reach the opening scales with τR = (2π − α)2/D66, where D66
is the diffusion constant for rotations around the particle’s
normal vector n̂. When a particle strips away, it also removes
all entangled particles behind it from the pulled cluster, leading
to a proportionality on ⟨s⟩p for the loss rate. As the loss process
can result from any individual particle in the cluster, there is
an additional proportionality to the actual cluster size Nc such
that we get the total loss rate

Ṅ−c ∝ ⟨s⟩pNc/τr . (39)

Combining the two equations, we obtain

Ṅc = Ṅ+c + Ṅ−c = nv⟨s⟩pAc − Cl⟨s⟩pD66Nc, (40)

FIG. 13. (a) The time evolution of the pulled cluster size for different drag speeds, all starting from the same equilibrium state, each averaged over 15 runs. ((b),
(c)) The mean steady-state size of the pulled cluster, when varying the Péclet number (b) and the density nR3 (c), measured structurally and via friction.
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FIG. 14. Distribution function f (Nc) of the pulled cluster size, measured
structurally by the entanglement cluster criterion. The inset shows the back-
ward drag situation schematically.

where Cl is a numerical constant. With D66 ≈ D11R−2 (see
Appendix A) and Ac ∝ RbR, we arrive at

Ṅc = Cgnv⟨s⟩pRRb − Cl⟨s⟩pD11R−2Nc, (41)

where Cg is another numerical constant. Solving this ordinary
differential equation with the initial condition Nc(t = 0) = ⟨s⟩p
gives

Nc(t) = ⟨s⟩p exp
(
− t
τgr

)
+ N∞

(
1 − exp

(
− t
τgr

))
, (42)

with the growth time

τgr =
R2

Cl⟨s⟩pD11
(43)

and the steady-state size of the dragged cluster

N∞ = lim
t→∞

Nc =
Cg

Cl
nR3Pe, (44)

where we introduced the Péclet number

Pe = vRb/D11. (45)

Two scaling predictions of our theory are tested in Fig. 13.
In Fig. 13(b), simulation data for the steady-state cluster size
N∞ are shown versus Péclet number Pe for fixed density
and there is indeed linear scaling of N∞ versus Pe over a
broad range of Péclet numbers as predicted by the theory.
It is only for high Péclet numbers that deviations from the
linear dependence point to the relevance of steric exclusion
effects inside the dragged C-particle. Similarly, N∞ scales
roughly linearly in density nR3 for fixed Péclet number Pe,
see Fig. 13(c), thereby confirming the theoretical scaling
prediction.

C. Backward drag

Let us finally consider dragging a particle away from its
opening, where we expect a shrinkage of the dragged cluster.
As shown in Fig. 14, the distribution of the pulled cluster size
indeed indicates shrinking with increasing Péclet number. In
fact, the pulled particle moves mostly alone, no entanglement
persists for a longer time. Thus, ⟨Nc⟩ is getting smaller than
its equilibrium counterpart ⟨s⟩p. For extremely large Pe, the

mean increases again because the pulled particle encounters
more particles which are then part of its cluster for a short
time. Hence, interestingly there is a minimum of ⟨Nc⟩ as a
function of Pe.

V. CONCLUSIONS

In conclusion, we have explored the structure and
dynamics of entangling colloidal horseshoe-like particles
(referred to as C-particles) by using Brownian dynamics
computer simulations. There is a percolation transition of
mutually entangled structures which shows a similar signature
as percolation in other three-dimensional particulate systems.
In the dense regime, the disentanglement dynamics was found
to be governed by a stretched exponential demonstrating the
dynamical arrest caused by entanglement. Finally, we have
found a profound impact of the entangling process on the
microrheological behavior where a single particle is dragged
through the suspension carrying a whole wake of entangled
particles which follow the dragged one. We have identified
scaling laws describing this dragged-induced accumulation
process.

Our results are in principle verifiable in colloidal
suspensions of non-convex particles. Moreover, we expect
that most of the qualitative features do also hold for granulates
(such as paper-clips) under microgravity.79 Future work should
address the entanglement dynamics in other systems involving
particles with other non-convex shapes than considered here.
This could maybe include L-particles with a sharp cusp80,81

and semiflexible curved polymers (see, e.g., Ref. 82). It would
be interesting to check the universality of the disentanglement
dynamics. The presence of a sharp cusp in the particle shape
is expected to increase entanglement effects significantly.
Further open problems concern the stability of crystals for
horseshoe-like particles at high densities which may depend
sensitively on the details of the shape, and the effect of
attractive interactions which will favor stacked configurations.
Finally, the limit for very small opening angles needs to be
considered further, where the disentanglement dynamics is
becoming extremely slow because of high energy barriers for
crossing. At moderate densities, a glassy behavior is expected
in this extreme limit, which should be explored systematically
in the future.
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APPENDIX A: DIFFUSION TENSOR OF AN ELLIPSOID
OF REVOLUTION

The following diffusion coefficients for oblate ellipsoids
of revolution55–57 were used:
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16πηaDt =

*........
,

(3ξ2 − 2)S − 1
ξ2 − 1

. .

.
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ξ2 − 1
.

. . 2
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ξ2 − 1

+////////
-

(A1)

and

16π
3
ηa3Dr =

*........
,

(ξ2 − 2)S + 1
ξ4 − 1

. .

.
(ξ2 − 2)S + 1

ξ4 − 1
.

. .
S − ξ−2

ξ2 − 1

+////////
-

, (A2)

where ξ = (R + Rb)/Rb = ϵ + 1 is the ratio of the lengths of
the long semi-axes and the short semi-axis, and

S =
1
ξ2 − 1

arctan
(

ξ2 − 1
)
. (A3)

Here, we used the right-handed coordinate system (ℓ̂,m̂, n̂)
where n̂ is perpendicular to the symmetry plane, ℓ̂ is parallel
to the line between the particle’s center and the center of its
opening, and m̂ = n̂ × ℓ̂.

APPENDIX B: ENTANGLEMENT CRITERION

In the following, we present a simple criterion of
entanglement, for which we just need the distance vector
ri j B ri − r j between the centers of mass of two particles i
and j, and the unit vectors n̂i and n̂ j normal to their symmetry
planes, see Fig. 15 for an exemplary situation.

The geometrical idea from which we start is the following:
Consider the two discs described by the beads of the particles.
If there is an entanglement, the first disc’s rim pierces the
other disc in exactly one point, and vice versa. If they do not
pierce or pierce in two points, there is no entanglement. Thus,
the number of piercing points is crucial for entanglement.

All points common to both discs of the particles fulfill

(r − ri) · n̂i = 0 = (r − r j) · n̂ j . (B1)

FIG. 15. Vectors involved in the entanglement criterion. The green rectan-
gle represents the ring of C-particle j which is oriented perpendicular to
C-particle i here.

Thus, these points are described by r = ri + b + λk, where
k = n̂i × n̂ j and b is a vector pointing from the center of mass
of particle i to the common line. It follows that

b · n̂i = 0 = (b + ri j) · n̂ j . (B2)

We further set

b · k = 0, (B3)

which simplifies Eq. (B7) and get

b =
n̂ j · ri j

k2 [(n̂i · n̂ j) n̂i − n̂ j]. (B4)

For entangled i and j, two points r1,2 are found which
lie in both planes, i.e., r1,2 = ri + b + λ1,2k, and on the line of
circle i, i.e.,

(r1,2 − ri)2 = R2, (B5)

and of which one lies on disk j, while the other one does not,
i.e.,

(r1 − r j)2 > R2,

(r2 − r j)2 < R2.
(B6)

To check for entanglement, we thus look if such two points
exist, i.e., if a pair of (λ1, λ2) with these properties exists.

Combining the ansatz for r and Eqs. (B3) and (B5) leads
to

R2 = (b + λ1,2k)2 = b2 + λ2
1,2k2, (B7)

which gives λ1,2 = ±λ with k2λ2 = (R2 − b2). If R2 < b2, there
are no points fulfilling the given conditions.

Inserting

(r1,2 − r j)2 = (b ± λk + ri j)2
= R2 + r2

i j ± 2λk · ri j + 2b · ri j, (B8)

into Eq. (B6) leads to

r2
i j + 2λk · ri j + 2b · ri j > 0,

r2
i j − 2λk · ri j + 2b · ri j < 0.

(B9)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.99.64.193 On: Tue, 03 May

2016 09:43:25



174901-11 C. Hoell and H. Löwen J. Chem. Phys. 144, 174901 (2016)

These two inequalities are only simultaneously solvable if

(R2 − b2)(k · ri j)2 > k2*
,

r2
i j

2
+ b · ri j+

-

2

. (B10)

For any two given particles, this criterion can be easily checked
numerically.
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69I. Williams, E. C. Oğuz, P. Bartlett, H. Löwen, and C. P. Royall, J. Chem.

Phys. 142, 024505 (2015).
70L. Angelani, G. Parisi, G. Ruocco, and G. Viliani, Phys. Rev. Lett. 81, 4648

(1998).
71E. Rabani, J. D. Gezelter, and B. J. Berne, Phys. Rev. Lett. 82, 3649 (1999).
72W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling

Theory (Oxford University Press, 2008), Vol. 143.
73A. M. Puertas and T. Voigtmann, J. Phys.: Condens. Matter 26, 243101

(2014).
74G. F. Carnevale, Y. Pomeau, and W. R. Young, Phys. Rev. Lett. 64, 2913

(1990).
75M. Kolb, Phys. Rev. Lett. 53, 1653 (1984).
76E. Trizac and J.-P. Hansen, J. Stat. Phys. 82, 1345 (1996).
77H. H. Wensink and H. Löwen, Phys. Rev. Lett. 97, 038303 (2006).
78P. Cremer and H. Löwen, Phys. Rev. E 89, 022307 (2014).
79K. Harth, U. Kornek, T. Trittel, U. Strachauer, S. Höme, K. Will, and R.

Stannarius, Phys. Rev. Lett. 110, 144102 (2013).
80F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G.

Volpe, H. Löwen, and C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013).
81B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, and C.

Bechinger, Nat. Commun. 5 (2014).
82T. Iwaki, T. Ishido, K. Hirano, A. A. Lazutin, V. V. Vasilevskaya, T. Ken-

motsu, and K. Yoshikawa, J. Chem. Phys. 142, 145101 (2015).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.99.64.193 On: Tue, 03 May

2016 09:43:25

http://dx.doi.org/10.1126/science.1086189
http://dx.doi.org/10.1038/nmat1949
http://dx.doi.org/10.1002/9781118949702.ch2
http://dx.doi.org/10.1080/00268976.2011.609145
http://dx.doi.org/10.1021/la0518750
http://dx.doi.org/10.1021/la102134w
http://dx.doi.org/10.1103/PhysRevLett.105.078301
http://dx.doi.org/10.1063/1.463372
http://dx.doi.org/10.1103/PhysRevE.77.061405
http://dx.doi.org/10.1103/PhysRevLett.66.3168
http://dx.doi.org/10.1063/1.3664742
http://dx.doi.org/10.1021/la504932p
http://dx.doi.org/10.1063/1.4928502
http://dx.doi.org/10.1021/nl100783g
http://dx.doi.org/10.1080/02678290110104586
http://dx.doi.org/10.1209/0295-5075/97/26004
http://dx.doi.org/10.1103/PhysRevLett.111.160603
http://dx.doi.org/10.1103/PhysRevLett.112.158101
http://dx.doi.org/10.1140/epjst/e2015-02459-x
http://dx.doi.org/10.1103/PhysRevE.89.022133
http://dx.doi.org/10.1103/PhysRevE.86.011102
http://dx.doi.org/10.1038/nature08906
http://dx.doi.org/10.1038/ncomms7976
http://dx.doi.org/10.1063/1.4926946
http://dx.doi.org/10.1103/PhysRevE.85.061407
http://dx.doi.org/10.1103/PhysRevLett.98.108303
http://dx.doi.org/10.1103/PhysRevE.88.042140
http://dx.doi.org/10.1103/PhysRevE.88.042140
http://dx.doi.org/10.1103/PhysRevLett.108.088301
http://dx.doi.org/10.1063/1.3559004
http://dx.doi.org/10.1103/PhysRevLett.110.015701
http://dx.doi.org/10.1073/pnas.0711449105
http://dx.doi.org/10.1021/mz500060c
http://dx.doi.org/10.1039/C4SM00619D
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://arxiv.org/abs/1510.05625
http://dx.doi.org/10.1002/marc.201400713
http://dx.doi.org/10.1126/science.1091215
http://dx.doi.org/10.1103/PhysRevE.88.050301
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
http://dx.doi.org/10.1098/rsta.2012.0263
http://dx.doi.org/10.1080/13642818708215336
http://dx.doi.org/10.1016/0378-4371(90)90068-4
http://dx.doi.org/10.1103/PhysRevE.50.1232
http://dx.doi.org/10.1063/1.2719190
http://dx.doi.org/10.1103/PhysRevE.58.2611
http://dx.doi.org/10.1103/PhysRevE.59.2175
http://dx.doi.org/10.1103/PhysRevE.53.5011
http://dx.doi.org/10.1088/0953-8984/24/46/464130
http://dx.doi.org/10.1016/S0006-3495(02)75309-5
http://dx.doi.org/10.1143/JPSJ.73.2739
http://dx.doi.org/10.1051/jphysrad:01934005010049700
http://dx.doi.org/10.1063/1.4926931
http://dx.doi.org/10.1063/1.430300
http://dx.doi.org/10.1016/S0006-3495(03)74717-1
http://dx.doi.org/10.1103/PhysRevE.57.230
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1016/j.physrep.2015.03.003
http://dx.doi.org/10.1103/PhysRevLett.70.1557
http://dx.doi.org/10.1088/0953-8984/5/15/003
http://dx.doi.org/10.1103/PhysRevE.53.R29
http://dx.doi.org/10.1103/PhysRevE.86.041505
http://dx.doi.org/10.1063/1.4905472
http://dx.doi.org/10.1063/1.4905472
http://dx.doi.org/10.1103/PhysRevLett.81.4648
http://dx.doi.org/10.1103/PhysRevLett.82.3649
http://dx.doi.org/10.1088/0953-8984/26/24/243101
http://dx.doi.org/10.1103/PhysRevLett.64.2913
http://dx.doi.org/10.1103/PhysRevLett.53.1653
http://dx.doi.org/10.1007/BF02183386
http://dx.doi.org/10.1103/PhysRevLett.97.038303
http://dx.doi.org/10.1103/PhysRevE.89.022307
http://dx.doi.org/10.1103/PhysRevLett.110.144102
http://dx.doi.org/10.1103/PhysRevLett.110.198302
http://dx.doi.org/10.1038/ncomms5829
http://dx.doi.org/10.1063/1.4916309

