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1.  Introduction

Particle flow through constrictions occurs in widely different 
situations ranging from nanofluidics [1–3] to medicine [4–6] 
and crowd management [7]. On the nanoscale, the permeation 
of molecules through pores is controlled by constrictions 
[8]. On the mesoscale, colloidal suspensions [9–11], dusty 
plasmas [12], and micron-sized bacteria [13, 14] passing 
through micro-patterned channels as well as vascular clogging 
by parasitized red blood cells [15] are important examples. 
Finally, in the macroscopic world, granulate fluxes through 
silos [16–19] and the escape of pedestrians or animals through 
narrow doors [20–23] illustrate the relevance of constricted 
flow phenomena.

Despite its relevance, flow through geometric constric-
tions is still not understood from a non-equilibrium statis-
tical physics point of view within a fundamental microscopic 
theory. Classical density functional theory (DFT) [24–28] 
constitutes such a microscopic approach in equilibrium. In 
principle, DFT can be used to calculate the equilibrium phase 
diagram—including the freezing and melting lines—for given 
interparticle interactions and thermodynamic conditions (such 
as prescribed temperature and chemical potential). This is 
done by minimizing the appropriate free-energy functional 
with respect to the one-particle density distribution, which 
captures the structural properties of each phase. Although the 
theory is in practice approximative, as the exact functional  
is not known, there are very good approximation schemes  
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(e.g. for hard spheres and hard disks) with remarkable predictive 
power [28–30]. A constriction can be conveniently modelled 
by an external curved wall, a set-up which can directly be 
accessed by density functional theory. Particle flow, however, 
is a non-equilibrium situation, such that standard equilibrium 
DFT cannot be applied directly. For completely overdamped 
Brownian dynamics, i.e. for mesoscopic colloidal parti-
cles in a solvent, it was shown that DFT can be generalized 
to describe the non-equilibrium relaxation dynamics of the 
time-dependent one-particle density [31–34]. The resulting 
dynamical density functional theory (DDFT) has been applied 
to a variety of non-equilibrium phenomena. These include 
colloids in external shear fields such they are advected by 
the solvent flow [35–39], microrheology where a particle is 
driven through a colloidal background [40], solvent-mediated 
hydrodynamic interactions [41–48], diffusion in hard sphere 
fluids at high volume fractions [49] and in binary mixtures 
[50], feedback control of colloids [51] and the collapse of a 
colloidal monolayer as governed by attractive interactions 
[52]. Moreover colloidal crystal growth [53–56] and quasi
crystal growth [57, 58] (see [59] for a recent experiment) have 
been tackled by DDFT-like approaches. Finally, active col-
loids [60–63] and even granulate dynamics [64–68] have been 
described using DDFT.

In this paper, we apply DDFT to the flow of Brownian 
particles through a constriction. This is realized by colloidal 
particles flowing through microchannels [10, 11]. Here we 
restrict ourselves to two spatial dimensions and consider the 
flow of colloids in a stationary solvent, driven through a struc-
tured channel [69]. This model was motivated by experiments 
of superparamagnetic colloids in two dimensions [70, 71]. We 
use an equilibrium density functional for two-dimensional 
parallel dipoles similar to earlier work [72], which repro-
duces the fluid-solid transition in two dimensions. We then 
employ DDFT to describe a flow situation in a linear channel 
where particles are driven by a constant external force, such 
as gravity, and the solvent stays at rest. The channel includes 
a constriction, where the channel gets narrower. We system-
atically explore the influence of this constriction on the net 
particle flow, using both DDFT and Brownian dynamics com
puter simulations. In both methods, we equilibrate the system 
in the absence of flow, and measure the time-dependent flow 
through the constriction after instantaneously switching on 
the external driving force.

Within DDFT we find that the averaged flow through the 
constriction is qualitatively different for solids and fluids: in 
the fluid the flow is constant (i.e. time-independent) while in 
the solid it is periodically oscillating as a function of time. 
This interesting intermittent flow is induced by the constric-
tion as it vanishes in the pure linear channel in the absence of 
any constriction. Therefore it is not a trivial passing of par-
ticle layers but rather a self-organized oscillation generated 
by the constraint breaking the one-dimensional translation 
symmetry along the channel. The computer simulations cor-
roborate the theoretical findings qualitatively insofar as a dif-
ferent behaviour is revealed in the time-dependent flow in the 
solid and in the fluid. For solids there is an intermittent flow 
with damped oscillatory correlations in time while for fluids 

these oscillations are overdamped. This can be expected as  
DDFT is a mean-field theory which averages in a global and 
approximative sense, while the simulations contain explicit 
stochastic noise, responsible for damping the oscillatory 
behaviour.

In more detail, depending on the initial state (fluid or solid) 
and on the width of the constriction, we identify four dif-
ferent situations: (i) a complete blockade on the time scale of 
the calculations, (ii) a monotonic convergence to a constant 
particle flux (typical for a fluid), (iii) strongly damped oscil-
lations in the particle flux, and (iv) a long-lived stop-and-go 
behaviour in the flow (typical for a solid). We attribute the 
underlying stop-and-go flow to symmetry conditions on the 
flowing solid by studying the case of five and six crystalline 
layers as an example. Our predictions are verifiable in real-
space experiments on magnetic colloidal monolayers which 
are driven through structured microchannels, e.g. by gravity. 
They can further be exploited to steer the flow throughput in 
microfluidics and to tailor the pouring of colloidal particles 
through nozzles.

The paper is organized as follows: in section 2 we describe 
the details of the system under investigation. In section 3 the 
dynamical density functional theory approach is presented and 
in section 4 we describe the computer simulations. Results of 
both methods are presented and discussed in section 5. Our 
conclusions are presented in section 6.

2. The model

2.1.  Interaction

We consider point-like Brownian particles in two spatial 
dimensions which interact via a pairwise potential

u r
u

r
,0

3
( ) =� (1)

where r is the distance between two particles and the amplitude 
u0  >  0 sets the interaction strength. A real-world analogue of 
this system is given by superparamagnetic particles that are 
confined in a 2d plane with an uniform external magnetic field 
Bext applied perpendicular to the plane. The external magnetic 
field Bext induces a dipole–dipole interaction between the col-
loidal particles, which can be tuned by changing its strength. 
In bulk, the only relevant length scale present in this system is 
the typical interparticle distance, which is given by

l ,0
1 2/ρ= −� (2)

with

N A0 0/ρ =� (3)

the number density of the system, N the number of particles, 
and A0 the accessible area, which will be defined later. Due to 
the inverse power law scaling of equation (1), a change in den-
sity of the system is equivalent to a change in the interaction 
strength u0. It is therefore convenient to rewrite equation (1) as

u r

k T r lB
3

( )
( / )

=
Γ� (4)
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where u k T0 0
3 2

B/( )/ρΓ =  is a dimensionless coupling para
meter. The bulk phase behaviour of these particles is char-
acterized by a fluid at low 11Γ� , and a hexagonally ordered 
solid phase at high 12Γ�  [73, 74].

Naturally, this phase diagram is expected to change sig-
nificantly in the confinement of a channel, as considered here. 
In particular, as the system is effectively one-dimensional, 
we expect only short-range ordering in the channel, and no 
true fluid to crystal transition. Nonetheless, at high Γ we do 
expect local ordering into a hexagonal lattice, aligned with the 
boundaries of the channel [74].

2.2.  Channel confinement

Inside the 2d plane the particles are additionally confined 
in a channel geometry along the x-axis, represented by an 
external potential V x y,ext( ). The lateral profile of the channel 
is modelled as error-function steps at the walls of the channel 
so the external potential is given by

( ) ( ) ( )
= −

+
+

−⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥V x y V

y g x

w

y g x

w
, 1

1

2
erf

2

1

2
erf

2
,ext 0

�

(5)
with V0 being the maximum potential height, g x( )±  describing 
the contour lines of the channel walls and w characterizing 
the softness of the walls. For a straight channel with width 
Ly and without constriction the contour functions are simply 

g x
L

2
y( )≡ . The constriction is modelled as a single cosine 

wave of length Lc at x0 that is added smoothly to the channel 
contour. Therefore, g(x) is given by

( )
α π

=
− +

−
− <
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y
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0
0

�

(6)

with amplitude b1
L

4
y ( )α = − . Here, we introduced the para

meter b as the ratio of constriction width over the total channel 
width. Consequently, b0 1⩽ ⩽ , where b  =  0 refers to a com-
pletely blocked channel and b  =  1 is a channel without con-
striction. See figure 1(a) for an illustrative sketch of V x y,ext( ). 
Note that the form of the potential in equation (5) was chosen 
simply to provide a steeply repulsive wall-particle interaction. 
Experimentally, this can be realized via e.g. optical forces or 
barriers which are permeable to the solvent.

We define the accessible area as the region between the 
midlines of the two walls, i.e.

A g x x2 d .
L

L

0
2

2

x

x

( )
/

/

∫=
−

� (7)

By definition, the number density in the system is given 
by N A l10 0

2/ /ρ = = , with l our unit of length. In this work, 
we focus on channels with a width chosen such that either 
five or six crystalline layers reliably form within the channel, 
oriented such that lines of nearest-neighbours are aligned with 
the channel walls (see figure 1(b)). However, the number of 

defects in this crystal strongly depends on the commensura-
bility between the channel width and the lattice spacing of the 
crystal [74]. In a perfect hexagonal lattice at density l10

2/ρ = , 
the distance between two crystal layers is

d l
3

2
,=� (8)

and we will adopt this definition of d for our confined system as 
well. In order to accommodate a crystal with a low number of 
defects, we therefore choose the channel width to be Ly  =  nd,  
with n  =  5 or 6. Both DDFT and simulations show that this 
indeed leads to crystals with the desired number of layers.

In order to further reduce parameter space, we fix the con-
striction length Lc  =  2.686l, wall softness w  =  0.25l and 
V k T10000 B= .

2.3.  Equations of motion

We model the dynamics of the particles in the channel via 
simple, overdamped Brownian dynamics, where we assume 
the solvent to be at rest. The equations of motions are given by:

D

k T
D tr F r˙ 2 ,i i

N
i

B
( ) ( )ξ= +� (9)

where ri are the coordinates of the ith particle and 
r r r, ,N

N1( )≡ …  is a short-hand notation for the coordinates 
of all particles, D is the diffusion constant of a single particle 
without external forces, F ri

N( ) is the total force acting on the 
ith particle composed of pair interactions, external potential, 
and driving force:

u V fF r r r x,i
j i

i i j i iext( ) ( ) ˆ∑= − ∇ − −∇ +
≠

� (10)

with u(r) given by equation  (4) and i∇ being the gradient 
operator with respect to particle coordinates ri and the unit 
vector in x-direction x̂. The external force responsible for the 
flow of particles through the channel is modelled via a con-
stant force f along the x-axis. Finally, ti( )ξ  is a delta-correlated 
Gaussian noise process modelling the thermal fluctuations. 
In the remainder of this work, we will fix the driving force 

Figure 1.  (a) Potential energy ( )V x y,ext  in the channel, for b  =  0.5, 
Lc  =  2.686l, Ly  =  6d, w  =  0.25l and x0  =  0. The dashed lines 
represent ( )±g x  and enclose the accessible area A0. (b) Schematic 
representation of the channel dimensions and the typical hexagonal 
lattice observed within the channel at high Γ. Note that d is defined 
in a perfect hexagonal lattice and may vary in the channel.
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f k T l1 B /= . As a unit of time, we will use the time it takes a 
particle to diffuse by a typical distance of l, i.e.

l

D
.

2

τ =� (11)

A stochastically equivalent description of equation  (9) 
is given by the Smoluchowski picture in which the time-
dependent N-particle probability distribution p tr ,N( ) is con-
sidered. The Smoluchowski equation is given by

p t

t
D k T p t

r
F r

,
, .

N

i

N

i i i
N

1
B

( ) [ ] ( )∑
∂
∂

= ∇ ∇+
=

� (12)

An integration over the probability distribution p tr,( ) with 
respect to all but one coordinate gives the one-particle density

t N p tr r r r, d d , ,N
N

1 2( ) ( )∫ ∫ρ = …� (13)

which describes the ensemble averaged particle density at 
time t and is the basic quantity in the DDFT.

3.  Dynamical density functional theory

3.1.  General theory

Dynamical density functional theory (DDFT) is conveniently 
derived from the Smoluchowski equation (12) by projecting 
onto the one-particle density and invoking the additional adia-
batic approximation [32]. As a result, DDFT is an approxima-
tive theory. It can be written as a continuity equation

( ) ( ) [ ]
( )

ρ
ρ

δ ρ
δρ

∂
∂

= ∇ ∇
⎛
⎝
⎜

⎞
⎠
⎟

Ft

t
D t

t

r
r

r
,

,
,

,� (14)

which expresses the particle number concentration tr,( )ρ . 
The current density tj r,( ) is explicitly given by a generalized 
Fick’s law:

ρ
δ ρ
δρ

= − ∇
F

t D t
t

j r r
r

, ,
,

,( ) ( ) [ ]
( )� (15)

with the Helmholtz free energy functional

id ext exc[ ] [ ] [ ] [ ]ρ ρ ρ ρ= + +F F F F� (16)

which can be split in three principal contributions. The ideal 
gas term

k T t tr r rd , log , 1id B
2[ ] ( )( ( ( )) )∫ρ ρ ρ= Λ −F� (17)

and the external potential contribution

∫ρ ρ= −F V fxr r rdext ext[ ] ( )( ( ) )� (18)

with thermal de Broglie wavelength Λ are known expressions. 
In contrast, the excess free energy functional exc[ ]ρF , which 
describes the particle interactions, is unknown and has to 
be approximated. Here, we use the Ramakrishnan–Yussouff 
functional described in the next section. Substituting the 
first two terms in equation  (15), the current is thus given  
explicitly by

t D t t V fx
t

j r r r r
r

, , ,
,

.ext
exc( ) ( ) ( ) ( ) [ ]
( )

⎛
⎝
⎜

⎞
⎠
⎟ρ ρ

δ ρ
δρ

= − ∇ + ∇ − +
F

� (19)
Since we are only interested in the flux along the channel, we 
define the particle flow in the x-direction, i.e.

( ) ( ) ˆ∫= ⋅
−∞

∞
j x t y tj r x, d , .x� (20)

The average flow through the channel jx̄ can then simply be 
defined as the long-time average value of jx(x, t):

j
T

t j x tlim
1

d , .x
T

T

x
0

¯ ( )
→ ∫=
∞

� (21)

Note that as the particle density is a conserved quantity, jx̄ is 
independent of the position x.

3.2.  Excess functional

We chose the Ramakrishnan–Yussouff expression [75] as an 
approximate excess free energy functional, which is a conve-
nient way to model soft and long-ranged particle interactions. 
The functional derivative of the Ramakrishnan–Yussouff 
functional is given as a convolution of tr,( )ρ  and the pair 
(two-point) direct correlation function c r; ,0

2
0( )( ) ρ Γ  of an iso-

tropic and homogeneous reference fluid with the prescribed 
density l10

2/ρ = , at interaction strength Γ:

[ ]
( )

( ) ( )( )∫
δ ρ
δρ

ρ ρ= − | − | Γ′ ′ ′
F

t
k T t c

r
r r r r

,
d , ; , .exc

B 0
2

0� (22)

We use the direct correlation functions obtained by liquid 
integral theory with the Rogers–Young closure which were 
calculated in [76], where it was shown that despite its sim-
plicity the Ramakrishnan–Yussouff functional accounts for 
the freezing transition in two dimensions at 36.2Γ� .

Since the functional derivative of the excess functional 
equation  (22) is a convolution of tr,( )ρ  and c r; ,0

2
0( )( ) ρ Γ  we 

can efficiently compute its value using fast Fourier transform.

3.3.  Protocol

The overall length of the system is chosen as Lx  =  21.5l with 
periodic boundary conditions along the x-direction. As a dis-
cretisation we used N N 256 64x y× = ×  gridpoints. With pre-
scribed density 0ρ  we have about N  =  113–120 particles in 
our system, depending on the constriction width b.

Starting from several initial density profiles, we solve the 
DDFT equation without any driving force to obtain an equilib-
rium density profile r0 ( )( )ρ . We confirmed that the equilibrium 
profile does not depend on the initial profile. Depending on 
the coupling parameter Γ we either obtain an inhomogeneous 
fluid (figure 2(a)) or a crystalline profile of hexagonal order 
(figure 2(b)). The one-dimensional crystal in channel con-
finement can be observed for 30Γ� , for both investigated 
channel widths Ly  =  5d and Ly  =  6d.

J. Phys.: Condens. Matter 28 (2016) 244019
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For t  >  0 we switch on the driving force f, initiating the flow 
through the constriction. We solve equation (14) numerically 
using a finite volume partial differential equation solver [77].

4.  Brownian dynamics simulations

In addition to DDFT calculations, we perform Brownian 
dynamics simulations of the same system. In particular, we 
simulate N  =  200 particles with the same interparticle and 
particle-wall interactions as described above, using the equa-
tions of motion in equation (9). As in the DDFT calculations, 
we assume periodic boundary conditions along the x-direc-
tion. In our simulations, we randomly place the particles into 
the channel, and let the system equilibrate in the absence of an 
external flow (  f  =  0). At sufficiently high interaction strength Γ,  
this typically results in a rapid ordering of the particles into 
a hexagonal crystal-like structure aligned with the confining 
walls. It should be noted that even in the absence of a constric-
tion, this crystal is never defect-free: the two layers closest 
to the walls typically contain significantly more particles 
than those in the interior layers. This can be attributed to the 
long-ranged repulsion between the particles. Part of a typ-
ical snapshot of an equilibrated crystal is shown in figure 3. 
Larger defects (such as local square ordering) are occasion-
ally observed at very high Γ, where the system can get trapped 
into a local energy minimum. However, these defects typically 
vanish rapidly once the flow is started.

Upon turning on the flow in the channel, the particles start 
moving (on average) in the direction of the flow. After an 
initial relaxation time, the flow through the channel reaches 
a steady state. In order to quantitatively examine the flow 
of particles in the channel, we directly measure the particle 

flux j x x t,x 0( )=  through the constriction by counting in each 
timestep the number of particles passing through x  =  x0. We 
average this flux over a large number (∼104) of runs. To do 
this, we run the simulation with flow for 100 τ, then stop the 
flow and re-equilibrate the system first at a substantially lower 
effective interaction strength 10relax /Γ = Γ  in order to allow 
for significant particle reorganization, and then re-equilibrate 
again at the original Γ. We then restart the flow and perform 
another measurement. Averaging over these runs, we obtain 
flow relaxation profiles for a range of combinations of Γ and b.

5.  Results

5.1.  Average flux

The average flux in the system jx̄ for a range of coupling 
parameters Γ and constriction widths b is shown in figures 4 
and 5. In general, we observe that for stronger particle interac-
tions the average flux is smaller, as the particles more effec-
tively block each other from passing through the constriction. 
As expected, we also observe a decrease in average flux with 
decreasing constriction width b. We note, however, that in 
the simulations this trend is not always monotonic: there are 
regions where jx̄ decreases with increasing b.

We observe qualitative agreement between the DDFT and 
simulation results. The main difference occurs at high Γ, where 
the simulations observe complete blocking ( j 0x̄ = ), while 
the DDFT calculations predict a finite flux. Additionally, the 
DDFT calculations predict only a monotonous increase in jx̄ 
with b for the investigated parameter range.

It should be noted here that the observed results are expected 
to be influenced strongly by the length of the channel: at con-
stant number density, a longer channel implies that the driving 

Figure 2.  Equilibrium density profiles ( )( )ρ r0  as obtained from 
DDFT calculations without driving force (  f  =  0) for (a) low 
interaction strength Γ = 20 (fluid) and (b) high interaction strength 
Γ = 60 (solid) at Ly  =  6d and b  =  0.7.

Figure 3.  Typical simulation snapshot of the system after 
equilibration without flow at Γ = 20, Ly  =  6d, and b  =  0.9.

Figure 4.  Average particle flux j̄x along the channel, as obtained 
from DDFT for channel widths (a) Ly  =  5d, and (b) Ly  =  6d. The 
flux is normalized by the average flux of an unconstricted system 
along the channel j0.

J. Phys.: Condens. Matter 28 (2016) 244019
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force f is applied to a larger number of particles in front of 
the constriction. This results in a proportional increase in the 
pressure near the constriction, which is expected to enhance 

the flow of particles. Indeed, simulations on larger systems 
(N  =  400) and on systems with larger external forces confirm 
that doubling the channel length is approximately equivalent 
to doubling the external driving force on the particles.

5.2.  Flow behavior

After starting the flow, we observe four qualitatively different 
types of flow behavior in both our DDFT results and our sim-
ulations. First, we distinguish between systems that show a 
complete blockade (i.e. zero particle flow jx̄), and systems that 
show a finite flow of particles. In the case of a finite flow, the 
average flux through the constriction eventually reaches a con-
stant value in the simulations. However, shortly after starting 
the flow, we often observe oscillations in the flux that decay 
over time. In this regime, we observe three types of decay: 
an almost immediate decay to a smooth flow, a brief period 
of transient oscillations without a clearly defined periodicity, 
and a long-time oscillation with a period which is independent 
of b and Γ. In the DDFT calculations we observe the same 
regimes. However, due to the lack of stochastic noise, in the 
long-time oscillation regime, the DDFT calculations predict 
periodic (i.e. non-decaying) oscillations. Below, we discuss 
each type of flow in detail. In figures  6 and 7, we plot the 
average flux through the constriction as a function of time as 
obtained from DDFT and simulations, respectively, for each 
of the four types of flow, and for channel widths Ly  =  5d and 
Ly  =  6d. Additionally, in figure  8, we show state diagrams 

Figure 5.  Average particle flux j̄x in the channel, as obtained from 
Brownian dynamics simulations for channel widths (a) Ly  =  5d, 
and (b) Ly  =  6d. The flux is normalized by the average flux of free 
particles in an unconstricted channel j0.

Figure 6.  Average particle flux ( )j x t,x 0  along the channel through 
the constriction as a function of time t elapsed since starting the 
flow, as obtained from DDFT calculations for channel widths (a) 
Ly  =  5d, and (b) Ly  =  6 d for Γ = =b30, 0.9 (top, green) and 
Γ = 20 with constriction width b  =  0.6, 0.3 and 0.2 (bottom, 
red). These selected examples illustrate the different states as 
shown in figure 8. The flux is normalized by its average value j0 
in an unconstricted channel (i.e. j̄x at b  =  1) at the same f. The 
inset shows a zoom of the particle flux in the transient state and 
highlights a weak and decaying oscillation.

Figure 7.  Plots of the average particle flux ( )j x t,x 0  through the 
middle of the constriction as a function of time t elapsed since 
starting the flow, as obtained from Brownian dynamics simulations 
for channel widths (a) Ly  =  5d, with Γ = 20, and (b) Ly  =  6d,  
with Γ = 40. For both widths, the constriction widths are given  
by b  =  0.8 (top, green), 0.7, 0.5 and 0.2 (bottom, red). The flux  
is normalized by its average value in an unconstricted channel  
(i.e. j̄x at b  =  1) at the same f.
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for the same two channel widths from both simulations and 
DDFT, where we show the type of flow observed for a range 
of investigated values of b and Γ.

5.2.1.  Blockade.  A blockade of the particle flow in the sys-
tem (as observed on the time scale of the calculation) occurs 
at narrow constrictions b 0.2�  for all Γ. This is an effect of the 
softness of the confining potential Vext. Due to this softness, a 
potential barrier on the order k TB  starts appearing in the center 
of the channel around b 0.3�  for both channel widths consid-
ered, which increases rapidly for smaller b.

For high particle interaction strengths 40Γ�  an additional 
blockade situation for wider constrictions can be observed in 
the computer simulations. At sufficiently high Γ, the highly 
ordered lattice resists the deformations necessary to allow the 
flow of particles through the constriction. In the DDFT calcul
ations, this effect is not observed, likely due to the insufficient 
treatment of particle correlations within the Ramakrishnan–
Yussouff approximation.

5.2.2.  Smooth flow.  This flow behavior is characterised by an 
overdamped transient flow that converges to a constant level 
almost immediately. It can be observed in the fluid phase at 
intermediate constriction widths. For larger Γ values we can 
find the smooth flow behavior also in the 5 layer DDFT sys-
tem and the 6 layer simulation system.

5.2.3. Three or five-particle Oscillation.  For intermediate to 
strong particle interactions and for intermediate to wide con-
strictions we observe strong oscillatory behavior in the par-
ticle flow. While in the Brownian dynamics simulations the 
oscillation is damped we can find for the DDFT results an 
undamped oscillation that is periodic after a brief transient 
phase. This can be understood from the fact that the damp-
ing in the simulation is due to the presence of fluctuations, 
which are missed in the mean-field approach of the DDFT. 
We expect that the fluctuations which destroy long-ranged 
periodic order in one dimension are also responsible for 
washing out the correlations in the flow dynamics. The fre-
quency of the oscillation depends on the number of particle 
layers in the system. For a five layer system the frequency is 
lower and corresponds to five particles passing the constric-
tion during one oscillation period. In contrast, in the six layer 
system we observe a higher frequency in the flow oscillation, 
corresponding to three particles passing the constriction. In 
figure  9 we illustrate the mechanism that is responsible for 
this qualitative difference. For both channel widths, the oscil-
lation period represents the smallest number of particles that 
can pass through the constriction in such a way that the system 
reverts to its original configuration. In the case of an odd num-
ber of layers (i.e. five), this is simply five particles, such that 
the crystalline lattice shifts by one lattice spacing. For an even 
number of crystalline layers (i.e. Ly  =  6d ), this period instead 

Figure 8.  State diagrams indicating the types of flow observed for channels of width (a), (c) Ly  =  5d and (b), (d) Ly  =  6d, as obtained from 
Brownian dynamics simulations (a), (b) and DDFT calculations (c), (d). The dark coloured points indicate points where DDFT calculation 
and simulations were performed.

)b)a

)d)c
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corresponds to three particles passing through the constric-
tion, such that the lattice moves by half a lattice spacing, and 
then coincides with a vertically mirrored version of the ini-
tial lattice. We have confirmed with simulations that the same 
mechanism occurs for other (small) numbers of layers.

In the supplementary material stacks.iop.org/JPhysCM/ 
28/244019/mmedia we include two movies of these dynamics 
in a system with Ly  =  6d and b  =  0.8 as obtained from DDFT 
and simulations.

As can be seen in figure 8, in our DDFT findings this type 
of oscillatory flow is dominant in a significantly larger region 
of the (b, Γ) parameter space. In the simulations, this mech
anism only occurs around b 0.8� . Likely, this can be attributed 
to the approximative excess functional which cannot account 
for complex crystal configurations that are responsible for the 
blockade in front of the constriction.

5.2.4. Transient oscillation.  In addition to the overdamped 
decay to a smooth flow and the long-time mechanism 
described above, we also observe short transient fluctuations 
that converge to a constant level within a few oscillations. 
Unlike the smooth flow the transient regime is not overdamped 
but performs several oscillations around the final level. It can 
be found for intermediate particle interaction strengths and 
wide constrictions. Note that while these transient oscillations 
are clearly distinguishable from the long-term fluctuations 
described above via their period, the distinction between the 
overdamped decay to a smooth flow and these transient fluc-
tuations are often less clear. In particular, in the simulations, 
the presence of statistical noise makes determining the pres-
ence of secondary or tertiary peaks in the flow profile difficult 
if their amplitude is small. Due to the absence of statistical 
noise in the DDFT calculations transient fluctuations are bet-
ter distinguishable from the smooth flow.

6.  Conclusions

In conclusion, we have explored the flow of two-dimensional 
solids and fluids through constrictions on a particle-resolved 
level by using models describing the Brownian dynamics of 
strongly interacting colloids in a linear channel. Upon starting 
the flow, four different situations were identified using dynam-
ical density functional theory and particle-resolved computer 
simulations: (i) a complete blockade, (ii) a smooth flow, (iii) 
an oscillatory behaviour in the particle flux, (iv) a long-lived 
stop-and-go behaviour in the flow. Though the dynamical den-
sity functional theory is an approximative mean-field theory, it 
qualitatively describes most of the states and trends.

Our predictions can be confirmed by using magnetic col-
loidal particles driven through microchannels [11, 78] as 
already used for the flow over energetic barriers but in the 
absence of constrictions [79]. For this realization, flow and dif-
fusion through linear channels involving 4–8 layers has been 
considered before [80–82] and a layer reduction was found. 
Although an extreme geometric narrowing in the channel was 
not studied in previous work, this could in principle be done 
by using micropatterned channels [10].

Future work should address three-dimensional constric-
tions (like an colloidal hour-glass) although clearly the 
numerical evaluation of DDFT in three dimensions is harder. 
It would be nice to explore colloidal mixtures driven through 
constrictions [83] where we expect a rich scenario of flow 
states depending on the microscopic interactions.

We note that in our model the constriction was seen only 
by the colloids only but not by the solvent. Such barriers can 
be prepared using laser-optical forces which only act on the 
colloids but are invisible by the solvent, i.e. they allow for 
a full solvent penetration. Real geometric constrictions gov-
erned by the shape of the channel also affect the solvent flow. 

Figure 9.  Schematic picture of the periodic flow of the crystal observed for high interaction strength Γ and wide constrictions (large b). 
The figures are idealized snapshots of the system separated in time by exactly one oscillation period. Flow is from left to right. (a) For 
a channel width Ly  =  5d, five crystal layers form, and one oscillation corresponds to the movement of the crystal by one lattice spacing. 
During this time, each particle assumes the position of the particle in front of it. (b) For a crystal with six layers (Ly  =  6d), one oscillation 
period corresponds to the movement of the crystal by half of a lattice spacing. Note that in the case of six layers, the up-down symmetry 
in the system is broken, and we observe two symmetric dislocations in the crystal pattern, as indicated by the gray lattice lines. After one 
oscillation, the locations of the particles (and dislocations) are vertically mirrored with respect to the initial configuration (middle snapshot). 
After the next oscillation (right snapshot), we recover the original configuration. Note that for both channel widths, the higher concentration 
of particles in the top and bottom layers of the crystal results in a lower velocity of the particles in those layers.

a)

b)
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The same is true when the flow is generated by a pressure gra-
dient in the solvent. These situations require a more detailed 
modelling regarding the solvent flow field which provides 
additional advective drag forces to the colloids. For a single 
particle moving through a constriction, the solvent effect was 
taken into account by Martens and coworkers [84, 85], for 
another situation see [86]. More realistic calculations which 
include the hydrodynamics of the solvent and the hydrody-
namic interactions between the colloids are still to be done in 
future studies.
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