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PACS 82.70.Dd – Colloids
PACS 47.63.Gd – Swimming microorganisms
PACS 47.20.Ky – Nonlinearity, bifurcation, and symmetry breaking

Abstract – In analogy to nanoscopic molecules that are composed of individual atoms, we consider
an active “microswimmer molecule”. It is made of three individual magnetic colloidal microswim-
mers that are connected by harmonic springs and interact hydrodynamically. In the ground state,
they form a linear straight molecule. We analyze the relaxation dynamics for perturbations of
this straight configuration. As a central result, with increasing self-propulsion, we observe an os-
cillatory instability in accord with a subcritical Hopf bifurcation scenario. It is accompanied by a
corkscrew-like swimming trajectory of increasing radius. Our results can be tested experimentally,
using, for instance, magnetic self-propelled Janus particles, supposably linked by DNA molecules.

Copyright c© EPLA, 2016

Introduction. – Often, self-propelled objects are re-
alized on the colloidal level in the form of active
microswimmers [1,2]. Examples are Janus particles selec-
tively heated [3,4] or catalyzing chemical reactions [5,6] on
one of their hemispheres, or representatives of nature in
the form of swimming microorganisms [7]. As witnessed by
several reviews [1,2,8,9], the migration behavior of individ-
ual self-propelled particles has been studied intensely. If
not guided from outside, the long-term translation dynam-
ics of individual self-propelled particles appears diffusive
due to fluctuations [5]. In contrast to that, interactions
between many self-propelled objects can induce directed
collective motion [10–12]. Steric [13,14] or elastic [15–18]
interactions are sufficient for this purpose.

It is now time to extend the hitherto conception, where
individual microswimmers serve as the immediate building
blocks of active matter, to a more hierarchical approach.
In passive equilibrium, just as atoms form nanoscopic
molecules, individual colloidal particles were combined to
“colloidal molecules” [19–21]. Here, we address active sys-
tems. We introduce the effect of permanent elastic bonds

between individual microswimmers, such that they form a
self-propelled colloidal “microswimmer molecule”. This is
different from phoretically stabilized aggregates of catalyt-
ically active, not necessarily self-propelled colloidal parti-
cles [22–24] or clusters of active dipolar particles [25].

At present, we investigate the stability of the directed
motion of one colloidal microswimmer molecule. Three in-
dividual microswimmers, active spherical particles in our

case, are linearly connected by harmonic springs, see fig. 1.
We stress that each individual sphere represents a mi-
croswimmer by itself, e.g. an active Janus particle [3–6],
and already propels by itself. For previously studied three-
bead swimmers [26–28], net motion results from imposed
relative velocities between the individual beads, possibly
induced by active deformations of the links. Our springs
are passive. Since in our case each individual sphere rep-
resents a torque-free straight-moving microswimmer, only
their overall (possibly static) orientational ordering de-
termines the overall motion of the molecule, in contrast
to previously discussed synchronization problems [29–31].
To stabilize a linear straight alignment of the molecule,
we assign a dipolar magnetic moment to each sphere, in-
spired by active magnetic Janus particles [32]. Differently
from magnetically activated microswimmers [33–35], our
magnetic interactions only have a (static) stabilizing ef-
fect. The coupling to magnetic effects and the possibility
of a truly three-dimensional destabilization further distin-
guishes our approach from the models in refs. [26–28].

Each of our spherical swimmers acts on the surround-
ing fluid in the form of a force dipole [36]. That is,
two little-distanced force centers apply antiparallel forces
of equal magnitude onto the fluid, setting it into mo-
tion. If the sphere is asymmetrically located with respect
to its self-induced fluid flow, it experiences a net drag
and is driven forward [37,38]. Through the self-induced
fluid flows, our three linked spherical swimmers hydro-
dynamically interact. As a central result, we find that
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Fig. 1: (Color online) Simplified magnetic colloidal microswim-
mer molecule, here slightly perturbed out of the aligned
straight ground state. Three active spherical swimmers are
linked by harmonic springs of spring constant k. On each
swimmer, an active force dipole acts on the surrounding fluid,
shifted out of the center by a distance ε along the magnetic
moment mi (i = 1, 2, 3). In the depicted case of ε < 0 we set
σ0 > 0 for the strength of the active drive (pusher); for ε > 0
the active centers are shifted towards the heads of the vectors
mi and we set σ0 < 0 (puller).

straight configurations of the overall molecule and straight
trajectories become unstable above a certain strength
of self-propulsion. Above this threshold, an oscillatory
(Hopf-like) instability resulting in corkscrew-like motion
arises.

Model. – Three identical spherical colloidal mi-
croswimmers are labeled by i = 1, 2, 3, see fig. 1. Each
carries a permanent magnetic dipole moment mi of equal
and constant magnitude m. The swimmers are linked by
harmonic springs of spring constant k and finite equilib-
rium length b > 0. For simplicity, the springs are attached
to the swimmer centers. In the equilibrium ground state,
the colloidal molecule forms a linear straight object with
the dipoles aligned along its axis. The Hamiltonian reads

H =
µ0m

2

4π

3
∑

i,j=1
j<i

m̂i · m̂j − 3 (m̂i · r̂ij) (m̂j · r̂ij)

|rij |3

+
k

2

2
∑

i=1

(|ri,i+1| − b)2 . (1)

Here, µ0 denotes the vacuum permeability and m̂i =
mi/m. We refer to the swimmer positions as Ri =
(xi, yi, zi) in Cartesian coordinates. The distance vectors
are given by rij = Rj − Ri, and r̂ij = rij/|rij |.

We consider low-Reynolds-number dynamics in an in-
compressible fluid. The swimmer bodies experience
hydrodynamic couplings between each other. Their veloc-
ities vi and angular velocities ωi result from all forces
Fj = −∂H/∂Rj and torques Tj = −m̂j × (∂H/∂m̂j) on
all swimmer bodies via the usual mobility matrices [39]:

(

vi

ωi

)

=

3
∑

j=1

(

µtt
ij µtr

ij

µrt
ij µrr

ij

)

·

(

Fj

Tj

)

. (2)

Up to second order in 1/|rij|, the mobility matrices read

µtt
ij =

1

8πη|rij |
(I + r̂ij r̂ij) for i �= j, µtt

ii =
I

6πηa
, (3)

µtr
ij = µrt

ij =
1

8πη

1

|rij |2
r̂ij× for i �= j, µtr

ii =µrt
ii =0, (4)

µrr
ij = 0 for i �= j, µrr

ii =
I

8πηa3
, (5)

where η is the viscosity of the surrounding fluid, a is the
hydrodynamic radius of the swimmer bodies, I denotes the
identity matrix, and r̂ij r̂ij is a dyadic product. There is
no summation over i and j in these expressions.

As noted above, each swimmer acts on the fluid
via an active force dipole σi. We parameterize σi =
σ0 (m̂im̂i − I/3) [40], thus the forces point along and ro-
tate together with ±m̂i. σ0 sets the propulsion strength
and the character of the propulsion mechanism. For σ0 < 0
we use the term “puller” and for σ0 > 0 the term “pusher”.
To achieve self-propulsion, the force dipoles σi are shifted
out of the swimmer centers along m̂i by ε > 0 for pullers
and ε < 0 for pushers, respectively, see fig. 1. In this way,
isolated swimmers always propel into the direction m̂i. As
a result, to the above order, one obtains “active” contri-
butions to the swimmer velocities [41,42]

va
i =

3
∑

j=1

µtt,a(Ri − Rj − εm̂j) : σj , (6)

where µtt,a(r) is a third-rank tensor of the form

µtt,a(r) = (−r̂I + 3r̂r̂r̂) /(8πηr2). (7)

From now on, we measure all lengths in units of b, time t
in units of 6πηa/k, and energies in units of kb2. Moreover,
we introduce the dimensionless parameters ã = a/b, ε̃ =
ε/b, σ̃ = 3σ0ã/2kb2, and m̃2 = m2µ0/4πkb5. Altogether,
since dRi/dt = vi and dm̂i/dt = ωi × m̂i, we obtain the
rescaled equations of motion

dRi

dt
= −

∂H

∂Ri
−

3ã

4

3
∑

j=1
j �=i

1

|rij |
(I + r̂ij r̂ij) ·

∂H

∂Rj
+ va

i

−
3ã

4

3
∑

j=1
j �=i

r̂ij

|rij |2
×

(

m̂j ×
∂H

∂m̂j

)

(8)

for the positions and

dm̂i

dt
= −

3

4ã2

(

m̂i ×
∂H

∂m̂i

)

× m̂i

−
3ã

4

∑

j �=i

1

|rij |2

(

r̂ij ×
∂H

∂Rj

)

× m̂i (9)

for the orientations.
At rest, i.e. for σ̃ = 0, the molecule is straight and

aligned due to the magnetic interactions, see fig. 2(a).
When σ̃ is switched to nonzero values, the whole molecule
starts to self-propel for ε̃ �= 0. Artificially, we can for any
value of σ̃ delimit the molecule to the straight configura-
tion by confining all swimmer positions and orientations to
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Fig. 2: (Color online) Sketch of the one-dimensional longitu-
dinal deformation modes in the aligned straight configuration:
(a) rigid translation, (b) extension or compression, (c) displace-
ment of the center swimmer with respect to the outer ones.
Lighter colors indicate the unperturbed state for reference.

a common axis, here the x-axis. The distances between the
swimmers and the overall speed in the resulting steadily
propelling straight state are calculated numerically, using
a fourth-order Runge-Kutta scheme. We set the magnetic
interactions m̃ small enough such that a magnetic collapse
due to the attractive dipole interactions does not occur.

One isolated swimmer would propel with a speed σ̃/ε̃2.
Due to the hydrodynamic interactions, the collective speed
of the overall straight molecule deviates from this value.
Moreover, for pushers (ε̃ < 0, σ̃ > 0) the molecule elon-
gates, while for pullers (ε̃ > 0, σ̃ < 0) it contracts when
compared to the nonpropelling state. In both situations,
due to the ε̃ shift, the distance between the front and cen-
ter swimmers is larger than between the center and rear
swimmers. For simplicity, we set |ε̃| = ã from now on.

Our scope is to determine the stability of the result-
ing steady straight configuration against small perturba-
tions, as they may arise, e.g., from imperfections in the
system, thermal fluctuations, or perturbations from out-
side. We parameterize the swimmer positions as Ri(t) =
(xi(t) + δxi(t), δyi(t), δzi(t)) and the orientations of the
magnetic moments as m̂i(t) =

(

1, δmiy
(t), δmiz

(t)
)

to lin-
ear order in the deviations δxi(t), δyi(t), δzi(t), δmiy

(t),
and δmiz

(t) from the straight aligned configuration. Next,
we linearize the system of eqs. (8) and (9) in these de-
viations. Summarizing all deviations (i = 1, 2, 3) in a
15-dimensional vector δQ(t), the resulting system of dy-
namic equations for the deviations has the form

dδQ(t)

dt
= M · δQ(t). (10)

The coefficient matrix M depends on σ̃ as it contains the
swimmer separation distances in the unperturbed steady
straight state. Using δQ(t) = δQ0 exp(λt), we obtain

M · δQ0(t) = λ δQ0(t). (11)

Thus, the eigenvalues of M identify the relaxation rates of
deviations from the straight configuration. The eigenvec-
tors determine the possible corresponding deformational
modes. Both were determined numerically [43].

Longitudinal perturbations. – First, we stick to the
aligned straight configuration of the swimmer molecule

Fig. 3: (Color online) Influence of (a) swimmer size ã

and (b) propulsion strength σ̃ on the relaxation of lon-
gitudinally perturbed aligned straight swimmer molecules.
The rates λ1, λ2, λ3 correspond to the modes depicted in
fig. 2(a), (b), (c), respectively. Rigid translation is a zero
mode, λ1 = 0. Relaxation slows down with swimmer size ã

and, for pullers, with propulsion strength σ̃ < 0. It speeds up
with σ̃ > 0 for pushers. (Parameters: m̃2 = 0.005, (a) σ̃ = 0,
(b) ã = 0.01.)

and only consider longitudinal perturbations. That is,
we set δyi, δzi, δmiy

, δmiz
= 0 and only allow deviations

δxi(t) (i = 1, 2, 3). This offers a first insight into the role
of the surrounding fluid and the active drive. The three
resulting deformational modes (for not too high |σ̃|) qual-
itatively agree with those in the absence of self-propulsion
and hydrodynamic interactions, see fig. 2. As expected,
the translational mode (fig. 2(a)) represents a zero mode
(λ1 = 0), independently of the radius ã of the swimmer
bodies and the propulsion strength σ̃, see fig. 3.

The relaxation of the two remaining modes, i.e.

extension/compression of the whole swimmer molecule
(fig. 2(b)) and displacements of the central swimmer with
respect to the outer ones (fig. 2(c)), slows down with in-
creasing swimmer size ã. This is reflected by decreasing
relaxation rates |λ2| and |λ3| in fig. 3(a). As a cause of
this behavior, larger ã increase the friction with the sur-
rounding fluid and enhance the hydrodynamic interaction
between the swimmers. However, neighboring swimmers
that tend to relax the deformation of their linking spring
must move into opposite directions. Resulting fluid flows
induced by one of the two swimmers oppose the motion of
the other.

For increasing propulsion strength |σ̃|, the relaxation of
perturbations speeds up for pushers (σ̃ > 0) and slows
down for pullers (σ̃ < 0), see fig. 3(b). To understand
this difference, we should recall eq. (7): the flow fields
induced by the active force dipoles decay as r−2 with dis-
tance r. Thus, relaxations of compressed springs have
more weight in determining the dependence on σ̃ than re-
laxations of extended springs. Naturally, the flow fields
induced by pushers (σ̃ > 0) support the separation pro-
cess of two neighboring swimmers after they have come
too close. This enhances the elongation of compressed
linking springs. In contrast to that, the flow field induced
by pullers (σ̃ < 0) tends to drag the swimmers towards
each other and thus hinders or slows down decompression
of the springs.

58003-p3
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Fig. 4: (Color online) Real parts of the relaxation rates λ for
(a) a stable case (|σ̃| = 0.005) and (b) an unstable situation
(|σ̃| = 0.01). We first find five zero modes corresponding to
rigid translations or rotations. The next two modes are iden-
tified as the one-dimensional longitudinal modes displayed in
fig. 2(b), (c). Both, rotations and translations into the trans-
verse directions, appear in the remaining eight modes. Out of
these, the last four are dominated by rotational perturbations
and relax much faster than the translational components in the
intermediate modes. Those modes leading to destabilization
at high |σ̃| are marked by a loop. (Parameters: m̃2 = 0.005,
ã = 0.01.)

Destabilization of the aligned straight state. –

Finally, we analyze the stability of the straight con-
figuration of the swimmer molecule against all possible
perturbational degrees of freedom δQ. This leads to 15
perturbational modes, resulting from the three spatial and
two orientational degrees of freedom per swimmer. Typi-
cal relaxation spectra, i.e. the real parts of the relaxation
rates λ, are shown in fig. 4. Naturally, five zero modes rep-
resenting rigid translations and rotations emerge. Next,
we find that longitudinal perturbations (see fig. 2(b), (c))
always decay. Apart from that, in the investigated regime,
we observe the molecule to be stable against perturbations
dominated by local rotations of the individual swimmers
(the last four modes in fig. 4). Yet, with increasing propul-
sion strength |σ̃|, the molecule becomes linearly unstable
against four intermediate perturbational modes, signaled
by positive real parts of their eigenvalues λ. They are
marked by the loop in fig. 4. Actually these modes form
two pairs, resulting from the fact that there are two de-
generate transverse directions.

For one of these two degenerate pairs, we plot the real
parts of the eigenvalues λ as a function of the strength of
self-propulsion |σ̃| in fig. 5. At low propulsion strength |σ̃|,
these λ are real and negative. Thus, small perturbations
decay in a simple relaxation process. On the curves in
fig. 5 this regime corresponds to the inner rounded parts.
Interestingly, starting from the center of these curves,
upon increase of |σ̃|, the straight configuration is first sta-
bilized. The upper branch, corresponding to the less stable
mode, drops towards lower λ < 0. At a certain σ̃, the two
branches of λ < 0 meet. Beyond this point, the two re-
laxation rates form a complex conjugate pair. Then, the
dynamic response of the swimmer molecule to the pertur-
bations changes qualitatively. Perturbations now decay in
an oscillatory way.

Fig. 5: (Color online) Real parts of the eigenvalues λ encir-
cled in fig. 4, against which the straight aligned configuration
first becomes unstable with increasing propulsion strength |σ̃|.
Cases for different values of the magnetic interaction strength
m̃2 are depicted. Stronger magnetic interactions stabilize the
straight state. Between the branching points, the relaxation
rates λ are negative and real; beyond these points, they form a
pair of complex conjugate eigenvalues. (Parameters: ã = 0.01.)

Fig. 6: (Color online) Oscillatory linear instability of a straight
initial configuration, here for the case of pushers (qualitatively
the same properties are observed for pullers). (a) Tracking the
real parts of the amplitudes of the two degenerate unstable
pairs of modes over time, real(A1) and real(A2), reveals the
unstable oscillatory cycle that spirals outwards. (b)–(d) Illus-
tration of the destabilized configurations at the times marked
in (a). Spirals indicate the real-space trajectories of the individ-
ual microswimmers during destabilization in a comoving frame.
For better visualization, rotations are enlarged by a relative
factor of 4. (Parameters: m̃2 = 0.005, ã = 0.01, σ̃ = 0.01.)

Further increasing |σ̃| in fig. 5, the real parts of
the eigenvalues λ become positive. Then, the straight
aligned state is linearly unstable. The more the system
is stabilized by magnetic interactions m̃, the later this
happens. The instability is of an oscillatory type. Tech-
nically speaking, at the threshold of linear instability,
the real parts of the pair of complex conjugate eigen-
values change sign, meeting the requirement for a Hopf

bifurcation scenario [44].

Figure 6 illustrates the dynamics of the swimmer
molecule during the oscillatory instability as predicted by
the linear analysis. We numerically iterate the linearized
dynamic equation (10) forward in time, starting from a
weak perturbation of the straight initial state. At each

58003-p4
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Fig. 7: (Color online) Example trajectory of the three-swimmer
molecule in the linearly unstable regime after slight perturba-
tion of the initially straight configuration. A corkscrew-like tra-
jectory is observed for the individual swimmers and the center
of mass (com). (Parameters: m̃2 = 0.005, ã = 0.01, σ̃ = 0.01.)

time step, we project the state of the whole molecule onto
the unstable complex eigenmodes. This gives their ampli-
tudes, which quantifies how these modes contribute to the
present configuration. In the parametric plot of fig. 6(a),
we track the configuration as a function of time: the ab-
scissa and ordinate, respectively, indicate the real parts
of the amplitudes of the two pairs of degenerate unsta-
ble eigenmodes. This plot demonstrates that i) the occu-
pation of each of the two pairs of unstable eigenmodes,
given by the abscissa and ordinate, respectively, oscil-
lates over time; ii) the occupation oscillates between the
two pairs of unstable eigenmodes, leading to the cycles;
and iii) the system is unstable as the cycle spirals out-
wards. Figures 6(b)–(d) illustrate snapshots of the overall
configuration during one cycle. The oscillatory cycle in
fig. 6(a) shows up as spiral-like motions of the individual
swimmers, although, in isolation, they perform straight
rotation-free motions. An active torque is not explicitly
imposed [45].

Strictly speaking, the linearized equation (10) can only
predict the onset of the linear instability and describe the
system behavior at low amplitudes just after destabiliza-
tion. To further illustrate the motion beyond the insta-
bility, we numerically iterate the full nonlinear system of
eqs. (8) and (9) forward in time. An example trajectory
obtained in this way after slight perturbation of a straight
initial configuration is depicted in fig. 7. There, the oscilla-
tory instability is reflected in real space by a corkscrew-like
trajectory of the whole swimmer molecule.

Finally, we wish to clarify the nature of the bifurcation.
For this purpose, we numerically iterate eqs. (8) and (9)
forward in time for varying propulsion strength σ̃. After
each change in σ̃, we wait until a steady state is reached.
The deviation from the straight configuration is quantified

by an amplitude A = [
∑3

i=1(Δ
2
i,‖ + Δ2

i,⊥)]1/2, where Δi,‖

and Δi,⊥ measure the longitudinal and transversal dis-
placements of the swimmer bodies with respect to a steady
straight configuration of the whole molecule. Increasing
σ̃ ≥ 0 in fig. 8, we observe a jump to nonzero values of

Fig. 8: (Color online) Hysteresis loop for the deviation from
a straight configuration of the swimmer molecule, measured
by the amplitude A (see text for the definition). The straight
configuration becomes linearly unstable at σ̃ = σ̃c, where the
amplitude jumps to finite values A �= 0. Upon subsequent
decrease of σ̃, the amplitude jumps back to A = 0 at σ̃ < σ̃c as
highlighted by the inset. (Parameters: m̃2 = 0.005, ã = 0.01.)

A �= 0 at a value σ̃ = σ̃c that agrees with the predic-
tion of our linear stability analysis. Upon decreasing σ̃
again, the swimmer molecule returns to its straight con-
figuration only at significantly lower values σ̃ < σ̃c. The
system shows hysteretic behavior. Altogether, this signals
a subcritical nature of the Hopf bifurcation.

Conclusions. – We have investigated the dynamic be-
havior of a linear magnetic microswimmer molecule. The
colloidal molecule consists of three individual spherical
self-propelled microswimmers, connected in a linear ar-
rangement by elastic harmonic springs. These individ-
ual swimmers hydrodynamically interact with each other,
with slight variations arising from pusher or puller propul-
sion mechanisms. Magnetic interactions support a straight
configuration of the molecule. Yet, increasing the propul-
sion strength, the straight configuration is destabilized. As
a central result, we find that the destabilization occurs in
the form of an oscillatory instability, in accord with a sub-
critical Hopf bifurcation scenario. Hysteresis is observed
as a function of the propulsion strength.

Our description can be extended in many ways, for in-
stance by addressing more than three linked self-propelled
particles [46] or different swimmer topologies, e.g. higher-
dimensional objects [47] or ring-like structures [25,48].
Individual swimmers of varying sizes and propulsion
strengths, direct correlations between swimmer rotations
and their mutual distances [49], as well as the col-
lective behavior of many interacting molecules may be
analyzed. We further hope that our predictions will stimu-
late experimental investigations. Corresponding colloidal
microswimmer molecules could, e.g., be generated by link-
ing magnetic self-propelled Janus particles [32] via DNA
polymer chains [34]. The strength of self-propulsion can be
tuned in light-controlled experiments [4]. Aspects of our
results may further be important for the behavior of in-
teracting magnetotactic bacteria [50,51]. More artificially,
spring-like interactions between the constituents could be
mimicked by caging them in comoving optical laser traps
using feedback control loops [52].
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