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Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields
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Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled
droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field
as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions.
Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with
increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers
a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is
absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or
squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an “egglike” shape.
Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the
egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches
the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
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I. INTRODUCTION

In recent years, individual self-propelled particles and
their collective behavior have been the focus of intensive
research (see Refs. [1–6] for recent reviews). This includes the
individual dynamics of particles with complex shape [7–9],
as well as cases of self-rotation [9–15]. Furthermore, the
collective behavior of many such interacting particles has
been explored [16–35]. Collections of self-propelled parti-
cles in liquid environment exhibit fascinating and complex
nonequilibrium phenomena emerging from self-organization,
where hydrodynamic interactions can play a significant
role [11,36–52].

An important example of such microswimmers is colloidal
Janus particles [28,53–59] that propel via a mechanism of self-
induced thermo- or diffusiophoresis [60]. Due to the surface
heterogeneity of Janus particles, they can selectively be heated
on one side, or one of the two sides can catalyze chemical
reactions. In this way, thermal or concentration gradients build
up on length scales of the particle diameter, which in total leads
to a net self-propulsion [61–63].

While colloidal Janus particles represent a class of rigid
(i.e., form-stable) artificial microswimmers, various examples
of microswimmers were identified that actively deform to
achieve self-propulsion. Several instances of proposed theoret-
ical model microswimmers fall into this category [40,64–68],
as well as many biological microorganisms [69]. Examples
for the latter are the frequently studied alga Chlamydomonas
reinhardtii, which beats with its two flagella to achieve
propulsion [70], the less familiar bacterium Spiroplasma
meliferum, which continuously reforms the helicity of its
body to accomplish active motion [71], or euglenids of the
genus Eutreptiella, which deform their entire body to swim
forward [72,73]. Similarly, microswimmers can be realized
in the form of soft particles that are already deformable
in their nonpropelling passive state. In the self-propelling
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state, such deformations can couple to the migration velocity,
which influences the single-particle properties [5,15,74–80] as
well as their collective behavior [5,15,81–86]. Experimental
realizations of deformable self-propelled particles are, for
instance, migrating cells and self-propelled droplets on rigid
surfaces [87–89]. Moreover, activated droplets may self-propel
over liquid surfaces and through bulk fluids [21,61,63,90–93],
which implies induced fluid flows and thus classifies them
as deformable microswimmers. An interaction with imposed
surrounding flow fields becomes important when rheological
properties of active systems are considered [94], when the
features of self-propelled microswimmers are exploited in
microfluidic devices [95,96], or when microorganisms orient
themselves in external shear flows [97].

Recently, the theoretical studies of the influence of de-
formability [15,74–85,98,99] and of external flow fields
[100–102] have been combined, when the behavior of de-
formable self-propelled particles in a linear shear flow [13]
and in a swirl flow [103] has been analyzed. Together with
a possible self-spinning motion [12,14,104], deformability
leads to a multitude of new dynamic states implying different
types of winding and cycloidal trajectories, periodic and
quasiperiodic motions, or chaotic states [13]. The corre-
sponding model equations, especially the couplings between
deformation and migration velocity [15,74–85] as well as
between deformation and the external flow [13,103], are
introduced using symmetry arguments, leaving the coupling
parameters largely undetermined. This renders the result-
ing model more general but requires tedious calculations
to connect the remaining parameters to real experimental
systems [105]. More importantly, so far the back-reaction of
the deformable particles on the surrounding fluid flow, which
becomes important when many such swimmers act together
and interact hydrodynamically, has not been included yet. One
could also start directly with a more resolved model that
explicitly contains the flow field around each finitely sized
model swimmer for this purpose. However, when many such
microswimmers interact with each other, the situation becomes
increasingly complicated, requiring complex particle- and
flow-resolved simulation approaches [43,47,50].
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To cure the missing links in the coupling between finite
extension, deformability, and gradients of external flow fields,
yet still on a readily accessible level of low complexity, we pro-
pose simple minimal bead-spring model microswimmers. It is
straightforward to formulate this model, and it can be realized
in corresponding experiments. Most immediately, we think in
this context of spherical colloidal particles and Janus particles
linked to each other possibly by DNA fragments [106].
In this case, the parameters of the theoretical model are
related to accessible experimental system parameters. Thermal
fluctuations and hydrodynamic interactions within a collection
of microswimmers can consistently be included, if necessary.

Here, we focus on the effect that finite size and deforma-
bility have on the motion in external flow fields. Due to their
finite extension, our swimmers can sense spatial variations in
the fluid flow. As we demonstrate, this for example leads to
overall rotations in swimmer orientations, although we impose
a locally irrotational swirl flow. Variations of our simplified
approach can serve to effectively and economically describe
basic properties of microorganisms in external flows. In fact,
aspects of the behavior predicted below have just been found
for the motion of bacteria in imposed swirl flows [107]. Even
the properties of whole colonies of connected microorganisms,
such as Volvox colonies [108,109], may be characterized ac-
cordingly. Corresponding synthetic experimental realizations
of our model may serve as experimental model systems.
Deformability is contained by construction in our model, but
can be reduced by increasing the spring constant.

We introduce our simple deformable bead-spring model
microswimmers in Sec. II. After that, the simplest realizations
of this model in the form of a two-bead, three-bead, and four-
bead microswimmer are analyzed in Secs. III, IV, and V,
respectively, in the presence of an externally imposed swirl
flow. We choose this flow field because it can easily be realized
experimentally and leads to interesting aspects of the single-
swimmer behavior. In Sec. VI we discuss possible extensions
of our model. Finally, we summarize our results and conclude
in Sec. VII.

II. DEFORMABLE MODEL MICROSWIMMERS

First, we specify our simplified deformable model mi-
croswimmers. In our minimal approach, the swimmer body
is discretized into an arrangement of M identical spherical
beads labeled by an index i. Each bead is exposed to frictional
forces when it moves relatively to the surrounding fluid
with a friction coefficient ζ = 6πηRh; here η is the fluid
viscosity and Rh the hydrodynamic radius of the beads. The
spherical beads are linked to each other by harmonic springs
of spring constant k. These springs have finite extension in the
undeformed state, which implies a nonzero extension of the
deformable microswimmer in its motionless ground state. In
the following, we concentrate on microswimmers composed
of M = 1, 2, 3, and 4 beads, referred to as M-bead swimmers
(M-BS). Figure 1 illustrates the considered regular swimmer
geometries. In the undeformed state, the 2-BS represents a
linear object, the 3-BS an equilateral triangle, and the 4-BS
a square. All springs feature a length l0 in the undeformed
state, except for the additional diagonal springs of undeformed
lengths

√
2l0 that counteract shear deformations of the square.

l0

êa

FIG. 1. Minimal deformable bead-spring model microswimmers
in their undeformed motionless ground states. The spherical beads
are connected via harmonic springs of length l0 in the undeformed
state (

√
2l0 for the diagonal springs in the square). The objects are

referred to as M-bead swimmers (M-BS), where here M = 1,2,3,4.
In the active case, one of the beads [red (brighter)] is self-propelled
with an active drive a = aêa . For M � 2, êa points towards the center
of mass of the other (passive) beads.

In the active case, one of the beads, labeled by an index
m, features an active drive a = aêa . For M � 2, we let the
unit vector êa point towards the center of mass of all other
(passive) beads. Thus, the orientation of the active drive a is
set within the body frame of each deformable swimmer and
is not imposed from outside. Each swimmer is therefore an
autonomous self-driven entity. |a| sets the strength of the active
drive, while the unit vector êa and the sign of a determine the
direction and orientation of the active drive. For a > 0, the
active drive is oriented “inward,” therefore the active bead
“pushes” the other beads. In contrast to that, for a < 0, the
active drive points “outward,” thus the active bead “pulls” on
the remainder of the swimmer.

At this point, we should insert a comment to make clear
the difference between our approach on the one hand and
previous models of linked-sphere microswimmers on the other
hand [40,64–68]. In those previous models, passive spheres
were considered as building blocks. Activity was introduced
via the links between them, i.e., actively contracting and
expanding joints or springs connecting the spheres. Only due
to the work of those active links did the assembled swimmer
objects self-propel, for instance because of overall nonrecip-
rocal deformation cycles. In contrast to that, we here consider
passive elastic springs as links. However, one of the beads
already by itself is active and self-propelling. In reality, it may
be given, for example, by a rigid self-propelling spherical Janus
particle. Such Janus beads self-propel without the aid of any
mechanically active joints, but via phoretic self-induced sur-
rounding temperature or concentration gradients [28,53–63].
In the following, we only consider one active bead per
swimmer entity. Naturally, also several active beads connected
by elastic springs can be taken into account [110–112].

Typically, the dynamics of microswimmers is restricted
to the regime of low Reynolds numbers [113]. Therefore
we assume an overdamped type of dynamics. Hydrodynamic
interactions between the individual beads are neglected in
the present approach, where we concentrate on the effect
of deformability and finite size of the swimmers. This is in
accord with a lowest-order expansion in the ratio between
the bead size and the typical distance between the beads (see
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also Sec. VI for further comments on this point). It has been
demonstrated in detail that the behavior of an individual, not
hydrodynamically interacting microswimmer can be described
using an effective active drive (a = aêa in the present con-
text) [114,115]. This concept does not contradict the notion
of an overall force-free microswimmer. An illustrative way to
understand this perception is the following. A microswimmer
is trapped in a confining external potential. It will not stay in
the potential minimum. Instead, it moves against and climbs up
the potential walls [35,51,116,117], at least as long as it does
not reorient. Being able to work against the walls requires an
effective active drive of the swimmer. The swimmer comes to
rest when this active drive is balanced by the counteracting
potential force. In this “stuck” situation, the active drive
becomes visible: it is now transmitted to the fluid, which
is set into motion as if a net force were acting on it. An
effective hydrodynamic fluid pump can be realized in this
way [51,116,117]. We apply this approach to the one active
bead on our swimmer body.

Combining all these ingredients, we find the following
equation of motion for the ith bead:

ζ

[
dri

dt
− u(ri)

]
= aêa δim +

M∑
j = 1
j �= i

fij , i = 1, . . . ,M. (1)

On the left-hand side, this equation lists the linear viscous
friction of the ith bead with its fluid environment. ri denotes
the position of the ith particle and u(r) the flow field of the
surrounding fluid. Therefore, the brackets contain the relative
velocity of the ith bead with respect to the surrounding fluid.
On the right-hand side, the first term includes the active drive,
with δim the Kronecker delta. The second term contains the
pairwise interaction forces between different beads. In our
case, these result from the harmonic springs and are of the
form

fij = k(‖rij‖ − lij )r̂ij , i,j = 1, . . . ,M. (2)

Here, lij is the length of the undeformed spring connecting
beads i and j , rij = rj − ri , and r̂ij = rij /‖rij‖. In this work,
we will not consider situations that would make it necessary to
introduce steric interactions between the beads. Furthermore,
we neglect possible couplings between rotations of the beads
and spring deformations [118].

In this investigation, we study the dynamic behavior
of such model microswimmers in two spatial dimensions.
Experimentally, this could be realized by tracking the motion
of such swimmers on the surface of a liquid. Another option
would be to confine the motion of microswimmers to the
interface between two immiscible fluids.

Within the accessible two-dimensional area, we consider a
prescribed flow field u(r) given by

u(r) = λ

r
êφ(r) (3)

in polar coordinates. It describes a swirl flow around the origin,
with ∇ · u = 0 for r �= 0, corresponding to an incompressible
fluid flow. The sign of λ sets the rotational orientation of the
swirl, while |λ| characterizes its strength. r = ‖r‖ denotes the
distance from the swirl center, φ the azimuthal angle, and

êφ(r) the unit vector in the azimuthal direction. For r �= 0
we have ∇ × u = 0 so that the flow field can locally be
derived from a potential field U (r) as u(r) = −∇U (r), where
U (r) = λ arctan(x/y) in Cartesian coordinates. Due to the
vanishing vorticity ∇ × u = 0 for r �= 0, our fluid flow cannot
locally rotate isolated pointlike particles. Such effects have
been included, e.g., in studies on accumulation effects in vortex
areas for, in principle, rigid pointlike swimmers [119,120].
Apart from that, the behavior and trajectories of pointlike and
of rigid ellipsoidal self-propelled swimmers were analyzed
for more complicated flow fields containing isolated elliptic
swirl-like islands [121,122].

The study of the particular flow field in Eq. (3) offers two
major advantages. On the one hand, and in contrast to the
often analyzed linear shear profile [13,100], a swirl flow can
easily be realized experimentally. In the simplest case, a swirl
can be induced in a cylindrical cavity of sufficient diameter
and height by a rotating magnetic stir bar at the bottom of the
vessel. On the other hand, a previous theoretical investigation
of a different deformable swimmer model has already demon-
strated rich dynamics in this situation [103]. In that previous
study, extensional contributions of the surrounding fluid flow
could induce deformations of the swimmer. However, the
microswimmer itself was approximated as a pointlike object.
In the present model, we consider a finite extension of our
swimmers within the gradient of the externally imposed flow
field. As we will demonstrate, this leads to qualitatively new
types of behavior.

Finally, we switch to dimensionless units by rescaling
r′ = r/l0, r′

i = ri/ l0, l′ij = lij / l0, t ′ = tλ/ l2
0 , a′ = al0/ζλ,

and k′ = kl2
0/ζλ. Thus l′ij = 1, except for the diagonal springs

in the 4-BS, where l′ij = √
2. Omitting the primes in the

following, we are left with the equations of motion

dri

dt
= u(ri) + aêa δim + k

M∑
j = 1
j �= i

(‖rij‖ − lij )r̂ij ,

u(r) = 1

r
êφ(r), i = 1, . . . ,M. (4)

The only two remaining system parameters are the rescaled
strength of self-propulsion a and the rescaled spring constant k.

In the following, we present our results from numerical
investigations in two spatial dimensions. For this purpose,
Eq. (4) was iterated forward in time using a fourth-order
Runge-Kutta scheme [123]. The time step was reduced until
further changes in the trajectories became negligibly small.

III. DEFORMABLE TWO-BEAD MICROSWIMMER
IN THE SWIRL

As a first explicit example of our bead-spring swimmer
model, we start with the 2-BS illustrated in Fig. 1. For a = 0,
we obtain a passive object that is simply convected by the
swirl flow. To minimize the deformation energy of the spring
connecting the two beads, this passive swimmer aligns with
the circular flow lines (see Fig. 2). Due to the finite extension
of the swimmer, the geometric role of the spring connecting
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FIG. 2. Tangential alignment process of a passive 2-BS in the
swirl with the circular flow lines. The initial position and orientation
is marked by “t = 0.” After a short transient, the initially inner bead
(square) overtakes the initially outer bead (triangle) and then moves
ahead. This behavior results from the radial gradient in the flow
velocity. Initially, one of the beads (square) is closer to the swirl center
than the other one (triangle). Therefore, the inner bead (square) is
convected faster by the swirl. The swimmer rotates until both beads
have the same distance from the swirl center (see the bottommost
configuration). For illustration, the extension of the microswimmer
is enlarged by a factor of 20. (Parameters: a = 0, k = 5.)

the two beads becomes that of a secant to the corresponding
flow line. In this way, the spring remains undeformed and the
passive swimmer performs circular trajectories. The radius of
the trajectories is solely determined by the initial conditions
and is marginally stable. A similar situation was found for the
deformable passive object investigated in Ref. [103].

For the active 2-BS of low enough |a|, we still find nearly
circular trajectories. Again, the swimmer axis approximately
forms a secant to the local fluid flow lines. Moreover, we
observe that the active drive a = aêa always aligns oppositely
to the circular flow lines of the swirl (see Fig. 3 for an
illustration in the case of a > 0). Considering the swimmer as
it is convected forward along the swirl flow, it becomes clear
why the active bead in Fig. 3 for a > 0 sits at the front and not
at the rear. (The words “front” and “rear” mark the positions
with respect to the convection direction given by the swirl.) A
situation with the active bead at the rear is not stable. First, due
to the active drive, the active bead becomes faster and tends
to overtake the passive bead. Second, when it does so, due to
the secant geometry it pushes towards regions of higher swirl
flow velocity, which further adds to the overtaking procedure.
In the end, we find the active bead at the front for a > 0.

The opposite case of a < 0 is likewise very intuitive.
Then the active drive points away from the swimmer center.
In this situation, again considering the forward convection
by the swirl, the active bead sits at the rear. It slows the

(0,0)

d

a

a

ar

center of mass

FIG. 3. Schematic illustration of an active 2-BS in the swirl flow.
The active drive a always orients against the circular flow field as
further discussed in the main text. At a certain time, for a flow line
passing through one of the beads, we consider the secant running
through the swimmer axis. Due to the active drive, the swimmer is
shifted along this secant such that the flow line misses the other bead
by a finite distance d �= 0. Due to this shift, when decomposing a as it
acts on the swimmer center, a radial component ar results. Here, we
depict the case of a > 0. The principle is the same for a < 0, where
the active bead is located on the opposite end and a points away from
the swimmer center. For illustration, we exaggerated the curvature of
the flow line with respect to the swimmer extension.

swimmer convection. Having the brake at the rear is a stable
configuration.

In both cases, a > 0 and a < 0, we observe that over time
the swimmer is slowly drifting radially outwards. A corre-
sponding trajectory is depicted in Fig. 4. This phenomenon
is easily understood when we recall that the active drive is
always oriented against the flow lines of the swirl (see Fig. 3).
The active drive a drags the swimmer along the secant passing
through the swimmer axis. Thus, for a �= 0, the two beads

−20

−10

 0

 10

 10−20 −10  0  20x

y

FIG. 4. Example trajectory for an active 2-BS in the swirl (here
for a > 0, but similarly for a < 0). After an initial reorientation
process, the swimmer aligns with the flow field as illustrated in detail
in Fig. 3. Swimmer orientations are indicated by the insets, where
the passive bead is marked in black. The active drive then leads to
an outward drift as becomes evident from the spiral-like trajectory.
As a result, the active 2-BS does not get drowned in the swirl center.
(Parameters: a = 0.019, k = 0.5.)
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are not located on the same circular flow line. When viewed
from the swimmer center, this shift leads to an effective radial
component ar resulting from the active drive. It drags the
swimmer radially outwards. Related effects are reported in
recent experimental studies [107]. As a consequence, the active
2-BS is safe from getting drowned in the swirl.

IV. DEFORMABLE THREE-BEAD MICROSWIMMER
IN THE SWIRL

Next, we turn to the 3-BS. It features a much richer
dynamics than the simple 2-BS, thus we are significantly more
explicit here. For not too high strengths of the active drive, the
3-BS shows a characteristic opposite behavior when compared
to the 2-BS in that it gets drawn into the swirl. This property is
already observed for the passive 3-BS and is traced back to its
two-dimensional spatial extension. Thus, a low-powered 3-BS
is getting drowned in the swirl. Only for strong enough active
drive, the 3-BS can escape the swirl.

A. Passive three-bead microswimmer

We start by investigating the passive case a = 0. Since
by construction of our model we explicitly take into account
the finite spatial extension of the swimmer, qualitatively new
effects arise when compared to previous descriptions [103].
In particular, the swimmer, while being convected along
approximately circular trajectories around the swirl, is slowly
but persistently drawn into the swirl center.

Denoting the center-of-mass position by R and its distance
from the swirl center by R = ‖R‖, we obtain from a fit to our
numerical results the algebraic relation

dR

dt
= −bRm1 (5)

for the decrease of the distance from the swirl center. The
corresponding numerical fitting parameters

ln(b) ≈ 4.020, m1 ≈ −5.000 (6)

were determined to three-digit precision. We obtained the same
value for m1 independently of the chosen spring constant k.
Likewise, this result can be quantified using as a variable the
number of cycles around the swirl center N instead of time t .
Then we obtain

dR

dN
= −cRm2 (7)

with

ln(c) ≈ 2.183, m2 ≈ −3.000. (8)

Assuming virtually spherical trajectories around the swirl
center, we analytically obtain the relations m1 = m2 − 2 and
c = 2πb in agreement with the above numerical values. We
show examples for the decay rates dR/dt and dR/dN in
Fig. 5, where the above relations were found to hold at least
across two orders of magnitude in the distance R. In the
present framework, our description remains meaningful only
for distances R larger than the extension of the microswimmer.

The reason for the observed undertow is the finite extension
of the swimmer together with its deformability. Along its
extension, the swimmer experiences the gradient of the
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 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3lo
g 1

0(
−

dR
/d

t)
, l

og
10

(−
dR

/d
N

)

log10(R)

∝ R−5

∝ R−3

data log10(−dR/dt)
linear fit

data log10(−dR/dN)
linear fit

FIG. 5. Undertow velocity toward the swirl center as a function of
the distance R of the passive 3-BS from the swirl center. We plot the
undertow velocity with respect to the passed time t and with respect
to the number N of circles around the swirl. The plot suggests power
laws dR/dt ∝ R−5 and dR/dN ∝ R−3. The lines represent fits of
the data points according to these power laws. (Parameters: a = 0,
k = 0.05.)

imposed swirl flow. Inner beads are convected quicker on
narrower paths of higher curvature around the swirl center than
outer beads. For geometric reasons, this difference in speeds
of convection together with the curved trajectories leads to an
approach of the center of mass towards the swirl center. That
simple picture best applies, if the beads are convected rather
independently of each other, i.e., for small spring constants
k. In fact, we observe a decreasing undertow for increasing
spring constant according to

dR

dt
∝ k−1 (9)

over several orders of magnitude (see Fig. 6).
We obtain further evidence for the importance of the

gradient in the flow field when we analyze the deformation

−30
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0(
−

dR
/d

t)

log10(k)

∝ k−1

data
linear fit

FIG. 6. Undertow velocity dR/dt of the passive 3-BS as a
function of the spring constant k. The plot suggests a power law
dR/dt ∝ k−1. The line represents a fit of the data points according
to this power law. [Parameters: a = 0, R(t = 0) = 50.]
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α

p

the black beads
center of mass of

x

FIG. 7. Definition of the orientational angle α of a 3-BS. The
vector p points from one labeled bead [green (brighter)] to the center
of mass of the two other beads (black). The same procedure is
performed for the two other beads, where the two resulting vectors
are rotated by 120◦ and 240◦, respectively, towards p. Here, due to the
regular shape, they then all coincide with p. We normalize these three
vectors and calculate their average. α is defined as the orientational
angle of this averaged vector with respect to the x axis of our fixed
laboratory frame.

cycles of the springs. During each cycle around the swirl
center, each spring is periodically contracted and extended
twice, in agreement with the varying orientation of the spring
relatively to the swirl center. As expected, the amplitude of
deformation is proportional to the gradient of the flow field,
which via Eq. (3) implies a proportionality ∝R−2.

Next, we address the orientation of the entire swimming
object. For this purpose, we introduce an orientational angle α

as depicted in Fig. 7: first, the vector pointing from one labeled
bead to the center of mass of the two other beads is determined
and normalized; the analogous vectors are identified starting
from the two other beads; these two latter vectors are rotated
by 120◦ and 240◦, respectively, towards the first vector; finally,
the average of the three resulting vectors is calculated and its
orientational angle α with respect to a fixed laboratory axis is
determined.

Figure 8 shows a typical example for the orientational
angle α of the passive 3-BS while it is circling around
the swirl center. As can be inferred from the scale of
the ordinate, orientational changes are tiny, at least in the
parameter ranges that we investigated. To first approximation,
the orientation of the swimmer remains fixed with respect to the
laboratory frame over the depicted time interval. Yet, there is
a systematic oscillation in the orientation, with approximately
three oscillations during one cycle around the swirl center.
This number agrees with the threefold rotational symmetry of
the dynamics while the passive 3-BS is convected around the
swirl (see Fig. 9).

Furthermore, we observe a finite gradual net rotation of the
whole swimmer in Fig. 8 caused by its finite extension. From
our analysis of the situation, we conclude that this net rotation
represents a remnant of the passive 2-BS rotation dynamics.
While the 2-BS is convected around the swirl center, its body
axis as seen from the laboratory frame performs a net rotation
(see Fig. 2 after the initial transient has decayed). Each time
the 3-BS adopts an orientation with one particle to the outside
and two particles to the inside with equal distance from the
swirl center, for the two inner particles the situation of the
2-BS is restored. The third outer particle hinders the rotation.
Yet, the drag on the inner particles is a little higher due to the

y

x
1.23

1.26

210

an
gl

e
α

in
ra

d

time t/Tc

FIG. 8. Angular orientation α of a passive 3-BS as a function of
time t . Tc denotes the time necessary for the swimmer to circle around
the swirl once. We observe three tiny sinusoidal oscillations in the
angular orientation during each cycle. With proceeding time, a net
rotational drift takes place, marked by the dashed line. [Parameters:
a = 0, k = 0.03, R(t = 0) = 30, Tc ≈ 5870.]

radial gradient in the flow velocity. In the resulting competition
of two against one with higher drag on the inner particles, a
small net rotation apparently survives. The tiny net rotation
of the swimmer is counterclockwise, in agreement with the
rotational sense of the swirl.

B. Active three-bead microswimmer captured by the swirl

At low enough strengths |a| of the active drive, an active
3-BS placed sufficiently close to the swirl center such that
|a| 	 ‖u‖ remains captured by the swirl. As observed for the
passive 3-BS, the active 3-BS then gets drawn towards the
swirl center. Except for a little net orientational drift and tiny
orientational oscillations (see Fig. 8 for the passive case) the
orientation of the active 3-BS remains approximately constant
during one cycle. Thus, during one cycle around the swirl,
the active drive always works into the same direction when
viewed from the laboratory frame. This leads to a distortion
of the orbit from an approximate circle to an “egglike” shape
(see Fig. 10).

Already in the passive case, we have observed a small
net orientational drift over time. For the active 3-BS, an
orientational drift leads to a rotation of the egg-shaped orbit
around the swirl center (see Fig. 10). Over time, a rosettelike
structure arises due to this rotation as shown in Fig. 11.

We remark, however, that the rotational sense of the egg-
shaped orbit in Figs. 10 and 11 is opposite to the rotational
sense of the swirl flow. This is in contrast to what we have
found for the passive 3-BS. Moreover, we only observed this
behavior for a > 0, i.e., when the active bead pushed towards
the swimmer center.

Figure 12 resolves the orientational behavior with higher
resolution. We find oscillations together with a rotational drift
similar to the passive 3-BS in Fig. 8. Yet, during each cycle
around the swirl, a pronounced rotation with a sense opposite
to the rotational sense of the swirl flow arises. This pronounced
event determines the overall rotational appearance.
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y

360°240°

120°

x

FIG. 9. Threefold configurational symmetry of a passive 3-BS
while being convected around the swirl flow. To first approximation,
the microswimmer is convected along a circular orbit and its
orientation remains fixed in space as indicated by the arrows (in accord
with the tiny magnitudes of rotation in Fig. 8). Due to its threefold
rotational symmetry, the passive 3-BS passes through three symmetry
points along one circular orbit (shifted to each other by 120◦), from
where the physics is the same in each case. For illustration, the size
of the microswimmer is significantly exaggerated when compared to
the distance from the swirl center.
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FIG. 10. Center-of-mass trajectory of an active 3-BS in the swirl
when viewed from the laboratory frame. Due to the active drive, the
circular orbit of the passive 3-BS is deformed to an egglike shape.
Over time, due to a net orientational drift of the swimmer, this egg
rotates. As depicted, for a > 0, we could observe a rotational sense of
this egg opposite to the rotational sense of the swirl flow. (Parameters:
a = 0.01, k = 0.1.)
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FIG. 11. Same situation as in Fig. 10, observed over a longer time
interval. A rosettelike structure of the trajectory is found as indicated
by the solid line. (Parameters: a = 0.01, k = 0.1.)

Further analysis reveals that this extreme event to a big
extent occurs while the active drive is pushing against the
swirl flow. The situation is depicted in Fig. 13.

In this state, the active bead tries to “pin” the swimmer at
its present position when viewed from the laboratory frame.
Since the active bead is pushing from the front, the situation
is unstable. Moreover, the drag acting on the bead closest to
the swirl center is higher than for the outer bead due to the
radial gradient of the flow velocity. Thus it is conceivable that
the swimmer is effectively rotated in this state. The rotational
sense of this event is opposite to the rotational sense of the
swirl flow, in agreement with the orbital rotations observed in
Figs. 10 and 11.

Overall, the described mechanism should become less
effective, if the swimmer is less effectively “pinned.” This is
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FIG. 12. Angular orientation α of the active 3-BS in Figs. 10
and 11 as a function of time t . Tc again denotes the time necessary for
the swimmer to circle around the swirl once. During each cycle around
the swirl, an extreme event of rotation opposite to the rotational sense
of the swirl flow occurs. This event determines the rotational sense
of the egg-shaped orbits in Figs. 10 and 11. [Parameters: a = 0.01,
k = 0.1, R(t = 0) = 100, Tc ≈ 250 000.]
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x

y

flow
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gradient

a

FIG. 13. Illustration of a rotational event in agreement with the
strong descent of the curve in Fig. 12. In the depicted state, the active
bead tries to “pin” the swimmer in its present position: the active
drive is directed against the flow field. Since the inner passive bead
experiences a higher drag than the outer passive bead due to the radial
gradient in the flow velocity, it can be effectively rotated around the
“pinning” active site. Thus a net rotation of the swimmer with a
sense opposite to the rotation of the swirl flow results, as indicated
by the curved arrow within the 3-BS. During the rotation, the outer
passive bead is pulled along due to the spring connection to the inner
passive bead.

the case when the flow field becomes stronger in comparison to
the active drive. Over time, as for the passive 3-BS, the active
3-BS is drawn into the swirl towards the swirl center. The flow
field becomes stronger on this path due to the radial gradient.
Indeed, at a certain distance, we observe a reversal in the
sense of the net swimmer rotation. As a consequence, also the
rotational sense of the egg-shaped orbit reverses (see Fig. 14).
Then the dominant rotational mechanism and the rotational
sense agree with those of the passive 3-BS. For an active 3-BS
of a < 0, we did not observe the inverted sense of rotation. In
that case, the “pinning” bead is at the rear, leading to a more
stable situation than the one depicted in Fig. 13.

C. Active three-bead microswimmer scattered by the swirl

Finally, we address situations in which the active 3-BS
is initially heading towards the swirl starting from a certain
remote distance. Two qualitatively different events may occur.
Either the swimmer is captured by the swirl and afterwards
drawn towards the swirl center as observed in Sec. IV B;
thus the swimmer may get drowned. Or, it is scattered
and afterwards can escape from the swirl. We depict the
corresponding setup in Fig. 15.

At time t = 0, the swimmer starts from an initial position
of coordinates x0 = x(t = 0) and y0 = y(t = 0) with an initial
orientation of the active drive parallel to the x axis. We refer
to the subsequent event as scattering, if the swimmer reaches a
distance from the swirl center three times as large as the initial
distance without needing more than 20 cycles around the swirl
to achieve this distance. Otherwise, the swimmer is considered

further cycles first cycle
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FIG. 14. Center-of-mass trajectory of the active 3-BS of Figs. 10
and 11 in the swirl, observed over a longer time interval. Initially,
the egg-shaped orbit rotates with a sense opposite to the rotational
sense of the swirl flow. However, with proceeding time, the swimmer
is drawn into the swirl towards the swirl center. At a certain distance
from the swirl center, the rotational sense of the egg reverses.
(Parameters: a = 0.01, k = 0.1.)

to get captured, at least transiently. The setup reminds one of
a classical Rutherford scattering experiment. We refer to y0 as
the impact parameter.

As in a previous analysis using a different model of a
deformable active microswimmer [103] we first only vary the
strength of the active drive a as well as the impact parameter
y0 (see Fig. 16). The initial abscissa x0 and the deformability
of the swimmer, quantified by the spring constant k, are kept
constant. As a result and as it appears plausible, a stronger
active drive generally helps the swimmer to escape from the
swirl (see Fig. 16). Capturing is most efficient when the
swimmer starts from slightly positive values of the impact
parameter y0. The pronounced bump in Fig. 16 indicates

x(t=0)

y

x

y(t=0)

FIG. 15. Setup and example trajectory of the scattering process
of an active 3-BS in the swirl flow in analogy to a classical
scattering experiment. At time t = 0, the microswimmer is located at
coordinates x0 = x(t = 0) and y0 = y(t = 0) with an active drive
parallel to the x axis. (Parameters: a = 0.1, k = 1, x0 = −1000,
y0 = 20.)
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FIG. 16. “Event diagram” for the setup illustrated in Fig. 15. We
distinguish between capturing and scattering events as a function of
the strength of active drive a and the impact parameter y0. Stars (blue)
indicate events of getting captured; triangles (brown) mark scattering
processes. When the impact parameter y0 is increased at a constant
intermediate value of the active drive a, we can observe reentrant
behavior of the scattering process. (Parameters: x0 = −500, k = 5.)

an optimal impact parameter for getting captured around
ln(y0) ≈ 5.5. This shift to positive values of y0 follows from
the long-ranged influence of the swirl flow that bends the
trajectory downwards in our setup (see Fig. 15). In Fig. 16,
along a horizontal line of constant active drive a, we thus find
reentrance of the scattering events.

Finally, we place the active 3-BS closer to the swirl center
and test whether the initial positions lead to capturing or
scattering, i.e., whether the swimmer gets drowned by the
swirl or can escape. The strength of the active drive a and
the deformability of the swimmer, quantified by the spring
constant k, are kept constant. Figure 17 confirms that initial
locations closer to the swirl center lead to capturing while
more remote initial positions allow an escape. The noncircular
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−40 −40  0  40

events of escaping events of capturing

a(t = 0)

x0

y 0

FIG. 17. Capturing and escape events resulting from different ini-
tial locations x0 and y0 of the active 3-BS. Stars (blue) indicate events
of getting captured; triangles (brown) indicate escape processes. The
nonspherical shape of the area of initial positions leading to capturing
events results from the initial orientation of the active drive a(t = 0)
as indicated on the right. (Parameters: a = 0.03, k = 5.)
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FIG. 18. Angular orientation α of a passive 4-BS as a function
of time t . Again, Tc denotes the time necessary for the swimmer
to circle around the swirl once. In agreement with the swimmer
symmetry, we now observe four tiny sinusoidal oscillations in the
angular orientation during each cycle. As for the passive 3-BS, a
net rotational drift takes place over time, marked by the dashed line.
[Parameters: a = 0, k = 0.1, R(t = 0) = 22, Tc ≈ 3040.]

shape of the area of capturing events highlights the role of the
initial orientation of the active drive.

V. DEFORMABLE FOUR-BEAD MICROSWIMMER
IN THE SWIRL

Our approach introduces a simplified procedure to construct
and investigate well-defined finitely sized model microswim-
mers in external flow fields. The 2-BS is special due to its
linear extension. It senses the gradient of the external flow
field in only one spatial direction. In the swirl flow, it can
avoid the gradient by aligning with the flow lines. From this
point of view, we expect the results for the two-dimensionally
extended 3-BS to be more generic than those of the 2-BS. To
test this conjecture, we briefly investigated the behavior of the
4-BS introduced in Fig. 1.

In analogy to Figs. 8 and 9, we expect for the passive 4-BS
a small net rotational drift in the swirl flow. Moreover, we
anticipate tiny fourfold orientational oscillations during each
cycle around the swirl center, due to the fourfold rotational
symmetry of the passive 4-BS. Indeed, Fig. 18 confirms our
expectations. Apart from that, as for the passive 3-BS, we find
that the passive 4-BS is drawn into the swirl.

Considering an active 4-BS, we observe that the orbit
is distorted to an egglike shape, similarly to the 3-BS. An
example is shown in Fig. 19. Moreover, as indicated in the
figure, we likewise find rotations of this egg-shaped orbit. In
the depicted case, the strength of the active drive a is high
enough so that the swimmer over time increases its distance
from the swirl center. During this process we can observe
an inversion of the sense of rotation of the egg-shaped orbit,
similarly to the case of the 3-BS in Fig. 14. However, in our
example of the 4-BS in Fig. 19, the drift of the swimmer is
outwards instead of inwards. We observe in Fig. 19 a change
of rotational sense oppositely to the one in Fig. 14.

It is our understanding that the observed peculiarities,
particularly the drag towards the swirl center and the net
orientational drifts, result from the nonvanishing extension
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FIG. 19. Center-of-mass trajectory of an active 4-BS. As for the
active 3-BS, the orbit around the swirl center is distorted to an egglike
shape. Over time this egg rotates. In the present case, the strength of
the active drive a is high enough so that the swimmer drifts outwards,
away from the swirl center. During this process, the rotational sense
of the egg reverses. (Parameters: a = 0.056, k = 0.1.)

of our regular bead-spring microswimmers. Thus we expect
that other regular bead-spring swimmers composed of a higher
number of beads (M > 4) show analogous behavior as found
for the 3-BS and the 4-BS. Yet, this hypothesis and the detailed
influence of additional beads and springs will have to be
clarified in the future.

VI. DISCUSSION AND POSSIBLE EXTENSIONS
OF THE MODEL

As a benefit of our simplified paradigmatic approach,
effects resulting from the finite extension and deformability
of the swimmers are readily isolated and identified. For
instance, due to the finite spatial extension, the gradients in
the surrounding external flow field are directly sensed by the
swimmers with important consequences. One example is that
M-BSs with M = 3,4 and weak active drive are drawn into the
swirl. This effect has not been found in a previous model [103],
where the finite spatial extension of the swimmer has not been
taken into account.

In the following, we list some possible extensions of our
minimal model. It is straightforward to include additional
features of realistic systems, which in more elaborate models
often requires high computational effort. For instance, one
could take into account thermal fluctuations of the beads in
the present model. Corresponding stochastic noise terms then
must be added to Eq. (1). We performed some first tests and
naturally found that the trajectories get noisy, but, as long as the
fluctuations are not too strong, qualitatively the same effects
as described above can be observed. It should be mentioned,
however, that also fluctuations of the external flow field should
then be taken into account, which requires further knowledge
of the specific setup.

Moreover, hydrodynamic interactions between the beads of
the swimmer could be included. These depend on the boundary
conditions under consideration. For passive swimmers, within
the bulk of a fluid, and for large enough spatial separation of the
beads with respect to their size, hydrodynamic interactions are
readily described by Oseen tensors to lowest order [124]. We
have performed according tests and found that hydrodynamic
interactions increase on average the degree of deformation in
the flow gradient.

When hydrodynamic interactions are included in the
active case, a description in terms of an effective active
drive [114,115] of one of the beads is no longer consistent. A
microswimmer typically sets the surrounding fluid into motion
while achieving self-propulsion [1,5,6]. These self-induced
fluid flows constitute another source of hydrodynamic interac-
tion, or may even be the cause of self-propulsion (see, for in-
stance, Refs. [36,125,126]). Fluid is usually pushed outwards,
i.e., away from the microswimmer, along certain directions,
and pulled inwards, i.e., drawn towards the microswimmer,
along different directions. Previous two-bead swimmers were
identified as “pushers” or “pullers,” respectively, when the fluid
was pushed out or pulled in along the swimmer axis [125,126].
If one of the passive beads is located within the window of
activated flow away from the active bead, the swimmer is
likely to be on average extended along this direction [112];
in the opposite case, where a passive bead is located within
the inward flow, the swimmer is likely to be contracted
along that direction [112]. Importantly, the change in the
swimmer extension modifies the ability of the microswimmer
to sense gradients in the externally imposed flow field. As
one illustrative example, the tendency of the active 2-BS to
spiral outwards in the swirl flow should increase when the
swimmer is extended due to hydrodynamic interactions; in
contrast to that, it should decrease, when the 2-BS is on
average contracted. It will be interesting to study in the future
in more detail the influence of hydrodynamic interactions in
this context. For that purpose, as a minimal approach, the
swimming mechanism should be modeled using an active force
dipole as described, e.g., in Refs. [112,127–129].

So far, we have only investigated the two-dimensional mo-
tion of our model microswimmers, and only planar swimmer
geometries were considered. Naturally, our concept is easily
extended to propulsion in three spatial dimensions, including
the effect of imposed three-dimensional flow fields. Tetrahe-
dral model microswimmers would represent the simplest three-
dimensional bead-spring swimmer geometry. Moreover, the
behavior of less regular swimmer structures could be analyzed,
with different bead sizes and thus different hydrodynamic
friction constants, varying spring stiffnesses, and varying
undeformed spring lengths, or different strengths of self-
propulsion of individual beads on the same microswimmer.

VII. CONCLUSIONS

In summary, we introduced simplified bead-spring model
microswimmers and investigated their behavior in a circular
swirl flow. The colloidal beads are connected by harmonic
springs, and in the active case one of the beads experiences an
active drive. A linear swimmer consisting of two beads aligns
with the flow lines and is circularly convected around the swirl.
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An active drive slowly transports it radially outwards. For a
three-bead microswimmer, a small rotational drift together
with tiny orientational oscillations are observed while being
convected around the swirl. The circular orbit around the
swirl is deformed to an egglike shape when an active drive
is switched on. Small net rotations of this egg-shaped orbit are
observed, leading to rosettelike trajectories. For low enough
magnitude of the active drive, the swimmer is drawn towards
the swirl center. Remarkably, the sense of rotation of the
egg-shaped orbit can reverse during this process. For higher
magnitudes of active drive, we distinguish between capturing
and scattering events by the swirl, if the swimmer is initially
heading towards the swirl. Aspects of this behavior persist for
a swimmer consisting of four beads, with certain variations.
This opens the space for further investigations in the future on
deformable multibead microswimmers.

It should be possible to analyze the behavior of the
proposed types of microswimmers experimentally. Colloidal
particles can be effectively connected to each other using DNA
fragments as linkers [106]. An active drive can be imposed
when an appropriate self-propelling Janus particle [28,53–59]
is inserted instead of one of the other passive colloidal particles.
Different geometries in the form of the investigated two-,
three-, and four-bead swimmers could be realized in this way.
In the simplest case, a two-dimensional motion results when
the swimmer is confined to the two-dimensional surface of
a fluid. We chose the circular swirl flow as an externally
imposed fluid flow because it should be easily implemented
experimentally. In principle, a cylindrical cavity with a steadily
rotating magnetic stir bar at the bottom can be used in a first
attempt. Our approach may serve as a simplified paradigmatic
model to describe the behavior of more complex deformable
self-propelled microswimmers in external flow fields. Ex-
amples are self-propelled droplets [21,61–63,90–92,105].

This possible connection should be further probed and tested
in the future.

On the theoretical side, the simple model microswimmer
shall be a starting point for our future investigations of the
collective behavior of many interacting deformable swimmers.
For this purpose, additional steric interswimmer interactions
must be imposed to avoid unphysical overlaps. In such a
situation, our model will show its strength: all interactions,
hydrodynamic and steric, together with thermal fluctuations,
deformability, and finite extensions of the individual swimmers
can be formulated consistently. Simultaneously, the model
is simple enough to handle a collection of many interacting
swimmers. Numerical simulations of crowds of hydrody-
namically interacting two-bead swimmers have previously
been performed [36,125,126], using for instance Ewald-like
summation techniques [130–132]. This shall inspire further
direct particle-based computer simulations of our model, or
the derivation of corresponding statistical theories.

A variant of our model, also currently under investigation,
is “active colloidal polymers” [110,111,133–135]. In this case,
many colloidal particles are linked to a linear chain. Two cases
are analyzed in this context. On the one hand, the chain can be
made of passive colloidal particles placed into a background of
self-propelling microswimmers [133–135]. On the other hand,
the chain itself could be composed of self-propelling Janus
particles [110,111]. Naturally, also combinations of the two
cases, or chains that are only partially active, can be studied in
analogy to our simplified finitely sized model microswimmers.
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Ohta, and H. Löwen, J. Chem. Phys. 139, 104906 (2013).

[14] K. H. Nagai, F. Takabatake, Y. Sumino, H. Kitahata, M.
Ichikawa, and N. Yoshinaga, Phys. Rev. E 87, 013009 (2013).

[15] M. Tarama, Y. Itino, A. M. Menzel, and T. Ohta, Eur. Phys. J.:
Spec. Top. 223, 121 (2014).
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268307 (2012).
[24] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702

(2012).

022610-11

http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1039/b918598d
http://dx.doi.org/10.1039/b918598d
http://dx.doi.org/10.1039/b918598d
http://dx.doi.org/10.1039/b918598d
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1088/0034-4885/75/4/042601
http://dx.doi.org/10.1088/0034-4885/75/4/042601
http://dx.doi.org/10.1088/0034-4885/75/4/042601
http://dx.doi.org/10.1088/0034-4885/75/4/042601
http://dx.doi.org/10.1016/j.physrep.2014.10.001
http://dx.doi.org/10.1016/j.physrep.2014.10.001
http://dx.doi.org/10.1016/j.physrep.2014.10.001
http://dx.doi.org/10.1016/j.physrep.2014.10.001
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1103/PhysRevLett.110.198302
http://dx.doi.org/10.1103/PhysRevLett.110.198302
http://dx.doi.org/10.1103/PhysRevLett.110.198302
http://dx.doi.org/10.1103/PhysRevLett.110.198302
http://dx.doi.org/10.1103/PhysRevE.89.010302
http://dx.doi.org/10.1103/PhysRevE.89.010302
http://dx.doi.org/10.1103/PhysRevE.89.010302
http://dx.doi.org/10.1103/PhysRevE.89.010302
http://dx.doi.org/10.1103/PhysRevLett.112.075701
http://dx.doi.org/10.1103/PhysRevLett.112.075701
http://dx.doi.org/10.1103/PhysRevLett.112.075701
http://dx.doi.org/10.1103/PhysRevLett.112.075701
http://dx.doi.org/10.1103/PhysRevE.78.020101
http://dx.doi.org/10.1103/PhysRevE.78.020101
http://dx.doi.org/10.1103/PhysRevE.78.020101
http://dx.doi.org/10.1103/PhysRevE.78.020101
http://dx.doi.org/10.1039/c2sm06952k
http://dx.doi.org/10.1039/c2sm06952k
http://dx.doi.org/10.1039/c2sm06952k
http://dx.doi.org/10.1039/c2sm06952k
http://dx.doi.org/10.1093/ptep/pts051
http://dx.doi.org/10.1093/ptep/pts051
http://dx.doi.org/10.1093/ptep/pts051
http://dx.doi.org/10.1093/ptep/pts051
http://dx.doi.org/10.1063/1.4820416
http://dx.doi.org/10.1063/1.4820416
http://dx.doi.org/10.1063/1.4820416
http://dx.doi.org/10.1063/1.4820416
http://dx.doi.org/10.1103/PhysRevE.87.013009
http://dx.doi.org/10.1103/PhysRevE.87.013009
http://dx.doi.org/10.1103/PhysRevE.87.013009
http://dx.doi.org/10.1103/PhysRevE.87.013009
http://dx.doi.org/10.1140/epjst/e2014-02088-y
http://dx.doi.org/10.1140/epjst/e2014-02088-y
http://dx.doi.org/10.1140/epjst/e2014-02088-y
http://dx.doi.org/10.1140/epjst/e2014-02088-y
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1038/nature09312
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1103/PhysRevE.85.021912
http://dx.doi.org/10.1103/PhysRevE.85.021912
http://dx.doi.org/10.1103/PhysRevE.85.021912
http://dx.doi.org/10.1103/PhysRevE.85.021912
http://dx.doi.org/10.1103/PhysRevLett.108.268307
http://dx.doi.org/10.1103/PhysRevLett.108.268307
http://dx.doi.org/10.1103/PhysRevLett.108.268307
http://dx.doi.org/10.1103/PhysRevLett.108.268307
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
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