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Dynamical density functional theory for microswimmers
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Dynamical density functional theory (DDFT) has been successfully derived and applied to describe
on one hand passive colloidal suspensions, including hydrodynamic interactions between individual
particles. On the other hand, active “dry” crowds of self-propelled particles have been characterized
using DDFT. Here, we go one essential step further and combine these two approaches. We establish
a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswim-
mers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion.
They hydrodynamically interact with each other through their actively self-induced fluid flows and via
the common “passive” hydrodynamic interactions. An effective soft steric repulsion is also taken into
account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested
and applied by characterizing a suspension of microswimmers, the motion of which is restricted to
a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially
symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking
in combination with the formation of a “hydrodynamic pumping state,” which has previously been
observed in the literature as a result of particle-based simulations. An additional instability of this
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pumping state is revealed. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939630]

. INTRODUCTION
Microswimmers'™ are abundant in nature in the form
of self-propelling microorganisms; moreover, they can be
generated artificially in the laboratory. Prominent examples are
sperm cells, usually propelling along helical paths,’ bacteria
like E. coli moving forward by a rotational motion of their
spiral-shaped flagella,® or synthetic Janus colloids catalyzing
a chemical reaction on one of their hemispheres.’

In recent years, there have been intense research activities
on the individual as well as on the collective properties of
such active particles.' #8310 As a central difference between
active systems and conventionally driven passive ones, the
active systems are driven locally on the individual particle
level, whereas in passive cases an external field acts on
the system from outside. This feature, together with the
interactions between active particles, can result in highly
correlated collective motion and intriguing spatiotemporal
patterns, see, e.g., the transition from disordered motion
to a state of collective migration,''"!7 the emergence of
propagating density waves,'8>* or the onset of turbulent-
like behavior?>-?® and vortex formation.?” Further collective
phenomena comprise dynamic clustering and motility-induced
phase separation,?®3% crystallization,>**! as well as lane
formation.** % Novel experimental techniques, such as
automated digital tracking?’*® or the realization of active
granular and artificial colloidal systems**~® are taking
a major role in this research area. Often in modeling
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approaches, self-propulsion is implemented for “dry” objects
by effective active forces acting on the particles.’* In the
present work, we explicitly take into account self-induced
fluid flows of individual microswimmers, which they employ
for propulsion. These self-induced fluid flows represent a
significant contribution to the particle interactions.

Describing the collective behavior of many inter-
acting self-propelled particles calls for statistical ap-
proaches.!”-?13-60 These comprise Boltzmann theories'>!%->?
and master equations.®’ As a major benefit, it is typically
relatively systematic to coarse-grain the resulting statistical
equations. In this way, hydrodynamic-like equations to
characterize the systems on a macroscopic level are obtained
with specified expressions for the macroscopic system
parameters. Alternatively, macroscopic equations can directly
be derived from symmetry principles,'?"146263 yet leaving the
expressions for the macroscopic parameters undetermined.

The statistical approach that we introduce in the following
to describe suspensions of interacting active microswimmers
is dynamical density functional theory (DDFT).®4% It has
turned out as highly effective to characterize passive systems
that are determined by overdamped relaxation-type dynamics.
Examples are spinodal decomposition,®® phase separation
of binary colloidal fluid mixtures,®’ nucleation and crystal
growth,% colloidal dynamics within polymeric solutions,®
mixtures exposed to a temperature gradient,’® dewetting
phenomena,’! liquid-crystalline systems,”? and rheology under
confinement.”*

In the past, on one hand, DDFT has been successfully
extended for passive colloidal suspensions to include
hydrodynamic interactions.”>~’” On the other hand, DDFT has
been amended to model active self-propelled particle systems,

©2016 AIP Publishing LLC
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yet by directly assigning an effective drive to the individual
constituents.*>#1787 What is missing at the moment is
a DDFT that brings together these two approaches and
addresses suspensions of active microswimmers. This means,
a DDFT that contains active propulsion via self-induced
fluid flows, including the resulting hydrodynamic interactions
between the swimmers. We close this gap in the present
work.

For this purpose, as a first step, a simple minimum
model microswimmer must be introduced that propels via
self-induced fluid flows. This step is performed in Sec. II.
Moreover, the resulting hydrodynamic and additional soft
steric interactions between these swimmers are clarified,
together with a confining trapping potential. In Sec. III, we
derive our statistical theory in the form of a DDFT. Our starting
point is the microscopic Smoluchowski equation for the
interacting individual model microswimmers. Next, in Sec. IV,
details of a two-dimensional numerical implementation
are listed together with the numerical results presented
for a system under spherically symmetric confinement. In
agreement with previous particle-based simulations®*8! we
observe a rotational symmetry breaking in certain parameter
ranges, which can be identified as a “hydrodynamic fluid
pump.” An additional novel instability of this state is identified.
Finally, we conclude in Sec. V.

Il. MODEL

To derive our theory, we consider a dilute suspension of
N identical self-propelled microswimmers at low Reynolds
number.?? In particular, hydrodynamic interactions between
these swimmers are to be included. The self-propulsion of
a microswimmer is concatenated to self-induced fluid flows
in the surrounding medium. This represents a major source
of hydrodynamic interaction between different swimmers. To
capture the effect, it is necessary to specify the geometry of the
individual microswimmers, which sets the self-induced fluid
flows. We proceed by first introducing a maximally reduced
model microswimmer and then formulating the resulting
interactions between pairs of such swimmers.

A. Individual microswimmer

To keep the derivation and presentation of the theory in the
Secs. I and III as simple as possible, we introduce a minimum
model microswimmer as depicted in Fig. 1. Similar setups
were mentioned in Refs. 56 and 83-85. Each microswimmer
consists of a spherical body of hydrodynamic radius a. The
swimmer body is subjected to hydrodynamic drag with respect
to surrounding fluid flows. In this way, the swimmer can be
convected by external flow fields. One way of self-convection
is to generate a self-induced fluid flow. For this purpose,
each microswimmer features two active force centers. They
are located at a distance L from each other on a symmetry
axis that has orientation fi and runs through the center of the
swimmer body. The two force centers exert two antiparallel
forces +f and —f, respectively, onto the surrounding fluid
and set it into motion. Summing up the two forces, we find

J. Chem. Phys. 144, 024115 (2016)
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FIG. 1. Individual model microswimmer. The spherical swimmer body of
hydrodynamic radius a is subjected to hydrodynamic drag. Two active point-
like force centers exert active forces +f and —f onto the surrounding fluid.
This results in a self-induced fluid flow indicated by small light arrows. L
is the distance between the two force centers. The whole setup is axially
symmetric with respect to the axis f. If the swimmer body is shifted along
i out of the geometric center, leading to distances @ L and (1-a)L to the
two force centers, it feels a net self-induced hydrodynamic drag. The mi-
croswimmer then self-propels. In the depicted state (pusher), fluid is pushed
outward. Upon inversion of the two forces, fluid is pulled inward (puller).
‘We consider soft isotropic steric interactions between the swimmer bodies of
typical interaction range o, implying an effective steric swimmer radius of
o /2.

that the microswimmer exerts a vanishing net force onto the
fluid. Moreover, since f|[fi, there is no net active torque.®
The force centers are point-like and do not experience any
hydrodynamic drag.

Self-propulsion is now achieved by shifting the swimmer
body along fi out of the geometric center. We introduce a
parameter « to quantify this shift, see Fig. 1. The distances
between the body center and the force centers are now oL and
(1 — a)L, respectively. We confine « to the interval [0,0.5].
For a = 0.5, the body is symmetrically located between the
two force centers, and no net self-induced motion occurs. This
geometry is called shaker.’*%* For a # 0.5, the symmetry is
broken. The swimmer body feels a net self-induced fluid
flow due to the proximity to one of the two force centers.
Due to the resulting self-induced hydrodynamic drag on the
swimmer body, the swimmer self-propels. In the depicted
state of outward oriented forces, the swimmer pushes the fluid
outward and is called a pusher.’® Inverting the forces, the
swimmer pulls fluid inward and is termed a puller.>

B. Hydrodynamic interactions

We now consider an assembly of N interacting identical
self-propelled model microswimmers, suspended in a viscous,
incompressible fluid at low Reynolds number.®> The flow

profile within the system then follows Stokes’ equation:®’

N
—VPV(r,1) + Vp(r,t) = ) £l 1), (M

i=1
Here, ¢t denotes time and r any spatial position in the
suspension, while, on the left-hand side, v(r,z) gives the
corresponding fluid flow velocity field. n is the viscosity of
the fluid and p(r,?) is the pressure field. On the right-hand
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side, f; denotes the total force density field exerted by
the ith microswimmer onto the fluid. r; and f; mark the
current position and orientation of the ith swimmer at time ¢,
respectively.

Obviously, on one hand, each microswimmer contributes
to the overall fluid flow in the system by the force density it
exerts on the fluid. On the other hand, we have noted above
that each swimmer is dragged along by the induced fluid
flow. In this way, each swimmer can transport itself via active
self-propulsion. Moreover, all swimmers hydrodynamically
tear on each other via their induced flow fields. That is, they
hydrodynamically interact, which influences their positions r;
and orientations ;.

Progress can be made due to the linearity of Eq. (1) and
assuming incompressibility of the fluid, i.e., V- v(r,7) = 0.
We denote by F; and T; the forces and torques, respectively,
acting directly on the swimmer bodies (j = 1,...,N), except
for frictional forces and frictional torques resulting from the
surrounding fluid. The non-hydrodynamic body forces and
torques may, for example, result from external potentials or
steric interactions and will be specified below. From them, in
the passive case, i.e., for f = 0, the instantly resulting velocity
v; and angular velocity w; of the ith swimmer body follows
as
F;
T;|

1 tr
Hij  Hij

F;
T, iy M

2

v, N N
[wijl - Z Mij ‘ - Z
Jj=1 Jj=1

Here, M;; are the mobility matrices, the components of which
(/J?j, yi; ug ;) likewise form matrices. They describe
hydrodynamic translation—translation, translation—rotation,
rotation—translation, and rotation—rotation coupling, respec-
tively.

This formalism is the same as for suspensions of passive
colloidal particles.®®# We consider stick boundary conditions
for the fluid flow on the surfaces of the swimmer bodies. The
microswimmers are assumed to be suspended in an infinite
bulk fluid, where the fluid flow vanishes at infinitely remote
distances. Then, there are several methods to determine the
mobility matrices, e.g., the so-called method of reflections®3-20
or the method of induced force multipoles.”! In general, for
N interacting suspended particles, there is no exact analytical
solution to the problem. Yet, the mobility matrices can be
calculated in the form of a power series in a/r;;. Here, r;; is the
distance between the centers of the ith and jth swimmer body,
i.e., rij = |r;;| with r;; = r; —r;. The denser the suspension,
the higher the orders in a/r;; that need to be taken into account
for a reliable characterization. In the following, we confine
ourselves to relatively dilute and semi-dilute systems, taking
into account pairwise hydrodynamic interactions up to and
including order (a/r; j)3. In contrast to this, see, for example,
Refs. 92-94 for simulation approaches to dense suspensions
of microswimmers.

To the order of (a/r;)’, hydrodynamic coupling is
calculated in the following standard way. Since our system
is overdamped, the forces F; and torques T; acting on the
swimmer bodies are directly transmitted to the surrounding
fluid. The fluid flow induced by each spherical swimmer body
of hydrodynamic radius a is calculated on the Rodne-Prager

J
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level.® At the position of the ith swimmer, the flow field
induced by swimmer j # i reads®®

1 3a A a’ A
V(l',') = @(E (1 + rijrij) + —3](1 — 3rijrij)) . Fj
1
+——70rr;; XT;, 3
8nr? ! ! ©)

ij

where 1 is the unity matrix and ;; = r;;/r;;. The velocity v;
and angular velocity w; resulting due to this flow field for the
ith swimmer of hydrodynamic radius a follows from Faxén’s

laws88’95
a2
V; = (1 + EV?) V(l‘[), (4)
1
w; = EVl X V(I'l'). o)

Due to the linearity of Stokes’ equation, Eq. (1), the
overall velocities and angular velocities are obtained by
superimposing the influence of all other swimmer bodies
j # i. In addition to that, the direct effect of F; and T; on the
motion of the ith swimmer is given by Stokes’ drag formulae®®

1

;= F;, 6
v 6rna ©)
1 ™
w; = i
8rna’

Combining all these ingredients, the motion resulting for
f = 0 can be conveniently summarized in the form of Eq. (2)
by setting3%8

pi=Hi=0. @)

for entries i = j (no summation over i in these expressions)
and

M =H'1 =gl

= (g ) 5 (G5) (1 =30t). )

4ri; Tij
1{a)’
,uﬁ;:—ﬂri(a) (1= 38;t)., 10)
3
R R B an
Hij =Hij; =H ri; ijXs

for entries i # j. Here, we have introduced the abbreviations

1 1
£ = LW = —— 12
K 6rna K 8rna’ (12)

In this notation, the matrices yi; = y,’; in Eq. (11) repre-
sent operators with “x” the vector product.®’

So far, only the influence of the passive swimmer bodies
has been included. We now take into account the active
forces. Again, because of the linearity of Eq. (1), their effect
can simply be added to the swimmer velocities and angular
velocities on the right-hand side of Eq. (2).

The concept to include the influence of the active
forces is the same as summarized above for the passive
hydrodynamic interactions. There is only one difference. We
consider the active force centers as point-like, and not of
finite hydrodynamic radius. Moreover, they do not transmit
torques to the fluid. Thus, instead of Eq. (3), their induced
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flow fields are readily described on the Oseen level.3® The
flow fields induced by the two force centers of the jth
microswimmer at the position of the ith swimmer body
read

1 ot a .
W@g=§a25@+ry@yfw, (13)
Vﬁgz—%m&@+ﬁﬁm-ﬁy (14)

These expressions are valid also for i =j, which leads
to self-propulsion of a single isolated swimmer. We have
defined

l’?—jII'ij-i-a’Lﬁj, (15)
ri_j:rij—(l—a/)Lﬁj (16)

to refer to the distance vectors between the active force centers
of the jth swimmer and the center of the ith swimmer body.
Moreover, we have parameterized

f, = fir (17)

so that the sign of f now determines the character of the
swimmer (pusher or puller).

In analogy to the passive case, the velocities and angular
velocities of the swimmer bodies of finite hydrodynamic
radius a that result from the active flow fields Eqgs. (13) and
(14) are calculated from Faxén’s laws, Eqgs. (4) and (5). The
result can be written using mobility matrices

1 a?

1+ At At At At
nE = 1+158 )+ ——— (1 -31717), (18)

= g (1488 + s (1)

+

=T % (19)
Within this framework, the corresponding active forces on
the right-hand side of Eq. (2) have to be inserted as =+ fh;.
Since there are no active torques, we may set ﬂl;;i = ﬂlf;i =0.
Altogether, passive and active hydrodynamic interactions,
including the self-propulsion mechanism, are now formulated
up to third order in a/r;;.

C. Body forces and torques

We now specify the non-hydrodynamic forces F; and
torques T; acting directly on the swimmer bodies. In our case,
these forces can be written as

F;=-V;U-V,InP. (20)

Here, V; denotes the partial derivative d/dr;. Throughout
this work, we measure energies in units of kg7 with kp
the Boltzmann constant and 7 the temperature of the fluid.
Variations in temperature due to the non-equilibrium nature
of our system are ignored. In Eq. (20), the first contribution
results from a potential

N N

1
UY) =5 D umer) + ). 21)
k,l=1 =1
k#l

J. Chem. Phys. 144, 024115 (2016)

where we use the abbreviation rV = {r;,r,,...,ry}. Accord-
ingly, we will abbreviate A" = {fi,f,,... Ay} below. For
simplicity and as a first step, we confine ourselves to soft
pairwise steric interactions of the form

T
u(rk,rl) = €pEXp (—F) . (22)

€o sets the strength of this potential and o an effective
interaction range, see Fig. 1. Such soft interaction potentials
are frequently employed to describe effective interactions in
soft matter systems, e.g., between polymers, star-polymers,
dendrimers, and other macromolecules in solution.’® One task
for the future is to clarify more precisely the nature of the effec-
tive steric interactions between individual microswimmers, for
instance, for self-propelling microorganisms featuring agitated
cilia and flagella.”” We prefer the so-called GEM-4 potential
in Eq. (22) to a simple Gaussian interaction, because it
can describe both liquid and solid phases within mean-field
approximation, in contrast to the Gaussian potential.”® The
phase behavior depends on the parameter €, as well as on
the average density of the suspended particles. Here, we fix
the parameters such that our system remains in the liquid
phase. Moreover, the density is adjusted to avoid overlap
of the swimmers. Properties of crystallized systems may be
investigated in a later study.

In addition to that, we consider the microswimmers to
be confined to a rotationally symmetric external trapping
potential. It constitutes the second contribution on the right-
hand side of Eq. (21) and reads

Uerry) = kry|*. (23)

k sets the strength of the trap. We choose the quartic potential
instead of a more common harmonic trap due to its lower
gradient at smaller radii. Overlap of individual swimmers is
reduced in this way.

The quantity P = P(rV,A",f) in Eq. (20) denotes the
probability distribution to find the N microswimmers at time
t at positions r"v with orientations A". Via the contribution
involving In P, we consistently include entropic forces into our
statistical characterization.”” This term represents the effect of
thermal forces acting on each swimmer as a result of thermal
fluctuations.

Due to the spherical shape of the swimmer bodies, and
for simplicity, we assume in the present work that non-
hydrodynamic torques acting on the swimmer bodies solely
result from thermal fluctuations. They can be included into
our statistical formalism by setting”

T; = —ii; x V4, In P. 24)

Further contributions to the torques, e.g., resulting from steric
alignment interactions between different swimmers, may be
considered in future studies.

lll. DERIVATION OF THE DDFT
FOR MICROSWIMMERS

Our starting point to derive the DDFT for active
microswimmers including hydrodynamic interactions is
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the microscopic Smoluchowski equation®® for N identical

interacting swimmers. This continuity equation for the time
evolution of the probability distribution P(rN,a",r) reads

N

% == > (Vi (viP) + (B X Va,) - (@iP)).  (25)

i=1

On the basis of Sec. II, we insert

M=

v; (,1” Fj+ul, T+ Af, -, f), (26)

.
11
—_

€
Mz

([JUF +pf Ty + Ay f ) (27)

~.
Il
—_
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where we have introduced the abbreviations

A”A = ﬂf]* - /,l?]j (28)
Ay = - (29)
Thus, the hydrodynamic interactions enter via the

configuration-dependent expressions for v; and w;. For a
single, isolated microswimmer, i.e., for N =1, the self-
propulsion velocity becomes v = A - i, f, which is directed
along the swimmer axis and vanishes in the case of a shaker,
where a = 0.5.

Our scope is to derive from Eq. (25) a dynamic equation
for the swimmer density p(r,f,f). In general, the n-
swimmer density p")(r",i",f) for n < N is obtained from
the probability distribution P(r", A", ) by integrating out the
degrees of freedom of N — n swimmers,

N!
P A1) = T / drp. / dt. g . . . / dry / diiy P(r™, 0, 1). (30)

Accordingly, we obtain a dynamic equation for p(!(r,,7) by integrating out from Eq. (25) the degrees of freedom of N — 1

swimmers. This leads us to

apWV(r,f,1)
ot
with the abbreviations

=V (J1+T2+T3) - X V) - (Ts+Ts5+To), 31

Ji=-i (Vrp<‘>(r,ﬁ,r>+p“>(r,ﬁ,r)vruexr(r)+ / dr'div p@(r, 1, 8, 1, 1) V,ulr, r))

_ / dr'dﬁ’ﬂf,w'( rp 2,1 0,0, 1) + pO(r, 1, B, B, 1) Vit (1)

+ p(x, i, 1) Veu(r,r') + / dr”dﬁ”p(3)(r,r’,r”,ﬁ,ﬁ’,ﬁ“,t)Vr/u(r’,r”)), (32)

Jr=— / dr'dd’ pll (B X Vi) pP(r,r' B0, 1), (33)

Ts= f(A:,t’r-ﬁp(l)(l',ﬁ,l) +/dr’dﬁ’A’r{r,

ﬁ’p(z)(r,r',ﬁ,ﬁ’,t)) , (34)

Ja=— / dr’dﬁ'p;'r,( w2,y 21, 1) + pP(r, 1 i1, 1)V it e(T)

+ (e, x’ i, 1, 1) Veu(r, ') + / dr”dd” (e, v, v 4, W, 87, 1) Veu(r, r”)), (35)

J's = x Vap(r, 1) - / dr'df’ pl, - (87 X Vi) p(r, 1/, B, 0,1), (36)

Je=Ff / dr'di’ A7 LB p®(r,r A, 7).

Eq. (31) represents the dynamic equation for our
searched-for quantity p). However, as a consequence
of the inter-swimmer interactions within our system, the
equation contains the unknown two- and three-swimmer
densities p® and p®. Dynamic equations for these higher-n
swimmer densities can likewise be derived from Eq. (25) by

(37

integrating out the degrees of freedom of N —n swimmers.
Yet, this only shifts the problem to higher n. It is found
that the dynamic equation for p™ contains p™*" and
p<"+2) for 1 <n < N —2. Therefore, a reliable closure
scheme is needed to cut this hierarchy of coupled dynamic
partial differential equations, typically referred to as the
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Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy.'” DDFT provides such closure relations. In the
following, we employ this approach to break the hierarchy
already at n = 1. Thus, we derive a decoupled dynamic
equation for p(r, f,1).

DDFT uses as an input the concepts from equilibrium
density functional theory (DFT).04-66:100-104 N o5t importantly,
DFT implies that a certain observed equilibrium density
pg])(r, i) can only result from one unique external potential
®,,(r,n) acting on the system. As a consequence, ®,(r, 1)
is set by an observed p(elq)(r,ﬁ) and, moreover, the grand
canonical potential Q and the free energy ¥ can be
expressed as functionals of p((r,f). In our case, we may
write

Q [p(l)] = ﬁd [P(l)] + 7:exc [P(l)] + 7:e)ct [p(l)] . (38)

Here,

Fa | "] = / drdh p(r, ) (In (Ap(r,h)) - 1) (39)

is the entropic contribution for an ideal gas of non-interacting
particles with A the thermal de Broglie wave length.”> We
recall that energies are measured in units of kg7 throughout
this work. Next, the excess free energy % contains all
particle interactions, i.e., contributions beyond the limit of an
ideal gas. ¥, is generally not known analytically and must
be approximated. The third term reads

Feu [p] = / dr dft Dy (r,R)pV(r,R),  (40)

where here we have included the effect of a chemical potential
into ®,(r,f). In this form, DFT reduces to a variational

J
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problem to determine the equilibrium density,

6Q
PO =0. (4D
S PV | i)=p )
Inserting Eq. (38) leads to
In (1 plg (1, 8)) + Doy (r, 1)
6 exc
== % . (42)
6:0 (I', n) p(])(r,ﬁ)ngy(r,ﬁ)

The central approximation of DDFT is to transfer
equilibrium relations to the non-equilibrium case. For this
purpose, at each time ¢ and for the corresponding p(l)(r,ﬁ,t),
one assumes an instantaneous external potential ®,,(r,n,7)
that satisfies the above relations. In particular, we assume that
Eq. (42) still holds with p(elq)(r, i) and ®,(r,n) replaced by
pD(r,f,1) and ®,(r,,1), respectively, i.e.,

6%}{6‘

S pW(r, 1)’

In combination with that, to close our dynamic equation
for p(l)(r, n,t), we use relations that would follow from
Egs. (32)—(37) in static equilibrium. In this case, f =0
and J3 = J¢ = 0. Moreover, our interaction potentials and
the external potential u,, do not depend on the swimmer
orientations. Then, in equilibrium, it follows that f X Vﬁp(”)
=0 for all n and therefore J, =7 5=0. The remaining
translational and rotational currents 4 ; and J 4 must vanish
independently of each other in static equilibrium. From these
conditions, and replacing in the resulting expressions u,,(r) by
®,,,(r,1,¢), which manifests the central DDFT approximation,
we obtain

In (x3p<'>(r,ﬁ,;)) + @ (r,B1) = — (43)

0 = V.o (r, 1, 1) + p(r, 1, 1)V, D, (1, 0, 1) + / dr'di’ pP(r,x’ i, i, 1) V,u(r,r’) (44)

and

0 = Voo (r, v/, i, i, 1) + p (0,1, 0, 10, 1) Ve D (', ', 1) + u(r, 1)) + / dr”da” pP(r, v, r” f, 0,87, OV ,eu(', v, (45)

Here, Eq. (45) was used to eliminate a major part in Eq. (44) that followed from the expression for ;. In fact, Eqs. (44) and
(45) are the first two members of a series of hierarchical relations, the so-called Yvon-Born-Green (YBG) relations, that can be

derived in static equilibrium.'%

Now, inserting Eq. (43) into Egs. (44) and (45) to eliminate the unknown potential ®,,(r,1,?), we find

/ dr'dit’ pP(r,x’, i, 1, 1) Vou(r,r’) = pV(r, i, 1)V,

and

6%XC

e 46
6p(r,n,1) (#0)

Vr/p(z)(r,r',ﬁ,ﬁ’,t)+ p(z)(r,r’,ﬁ,ﬁ’,t)Vrfu(r,r')+ / dr”dﬁ"p(3)(r,r’,r”,ﬁ,ﬁ’,ﬁ",t)Vr/u(r’,r”)

= p(r, 1, i, 1V, 1) (Vr/ In (W o', 8,1)) + Vi

F exc ) ) (47)

SpD(r’, 1, 1)

As a major benefit of this procedure, the three-swimmer density p® can be eliminated from the currents in Eqgs. (32)—(37) by
inserting Eq. (47). Moreover, one occurrence of p® is eliminated using Eq. (46). The currents then reduce to
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Jl = _#I (Vrp(l)(r, ﬁ3 t) + p(l)(rsﬁ’t)vruext(r) + p(l)(r9ﬁst)vl‘

F e
_ FTPN I (2) ’ A A , 3 (D a7 , ’ , exc
/drdnﬂm, (p (r,r,n,n,t)(Vr In (13p (r,n,t))+Vruext(r)+Vr—6p(l)(r,’ﬁ,,t))),

Jr=- / dr/d’ gl (0 x V) o2,/ B0, 1),

Ts= f(Afr{r.ﬁp<'>(r,ﬁ,t)+ / dr'dﬁ’A;{r,.ﬁ'p<2>(r,r',ﬁ,ﬁ',z)),
Ja=— [ drdd’u, | pP0.r’ b 8,0) (Veln (oD@ 0.0) + Verteu(r) + V e
4 r,r >, 1,1, I > A, r’'ext rdp(l)(l",ﬁ',t) s

Js=—pnx Vap(r,h,1) - / dr/d’ g/, - (' x Vo) o2, v/ 1,1, 1),

Te=f / dr’dd’ A7 i’ pP(r, v/, 8, 7, 7).

5

a n

In effect, we have replaced p®)(r,r’,r”, i, i, ", 1) and one
instance of p@(r,r’,h,#’,7) by their equilibrium expressions
that would apply, if the equilibrium one-swimmer density
were given by p(r,f,7). This procedure works best when
p® and p® relax significantly quicker than p(V). Tt is therefore
referred to as adiabatic elimination.!®> In our case, the
overdamped nature of the microswimmer dynamics supports
this procedure.

Finally, we need to express % and p(z) as functionals
of pV to close the dynamical equation for p")(r,f,r). For
moderate interaction strengths €y < 1 in our soft GEM-4
interaction potential Eq. (22), the classical mean-field
approximation provides a reasonable and simple closure
scheme.”® It is given by

1
7@=§/aﬁmmm@mﬂmmmmﬂ,6®
for the excess free energy and the approximation

P2 b1, 1) = )i, p V(8 1),  (55)

for the two-swimmer density.

Overall, Egs. (31) and (48)—(53) together with Egs. (54)
and (55) complete our derivation of a DDFT for dilute
to semi-dilute suspensions of active microswimmers. We
included hydrodynamic and soft steric interactions. Inserting
the mobility tensors listed in Egs. (8)—(12), (15), (16), (18),
(19), (28), and (29), it applies for a suspension of our model
microswimmers within a bulk viscous fluid in three spatial
dimensions.

IV. PLANAR TRAPPED MICROSWIMMER
ARRANGEMENTS

As afirst application of the above DDFT, we are interested
in the effect that the self-propulsion forces have on a confined
assembly of microswimmers. In particular, this concerns
the time evolution towards a final steady state when self-
propulsion is suddenly switched on in an initially equilibrated
system. Such a behavior could, for instance, be realized in
experiments using light-activated microswimmers,3>-36-106-110

J. Chem. Phys. 144, 024115 (2016)

6¢€XC
6pW(r, 0, 1)

(48)
(49)
(50)
61V
(52)

(53)

(

Here, we present numerical results for two-dimensional
arrangements. That is, the density field p(”(r,ﬁ,t) is calculated
in the Cartesian x-y plane, with the direction fi likewise
confined to that plane and parameterized by one orientational
angle. Concerning hydrodynamic interactions, the presence
of a surrounding three-dimensional bulk fluid is still taken
into account, as introduced in Sec. II. Such a system could
be realized approximately, for example, by confining the
microswimmers to a plane using external laser potentials.
Another realization could be microswimmers confined to
the liquid-liquid interface between two immiscible fluids of
identical viscosity.

The partial differential equation resulting from our DDFT,
ie., Eq. (31) together with Eqgs. (48)—(53), was discretized
using a finite-difference scheme on a regular grid. The grid
points were separated by distances Ax = 0.1 in the spatial and
A¢ = /10 in the angular direction, where we measure all
lengths in units of . In each spatial direction, the numerical
box length was 8. p)(r,f,7) was iterated forward in time
by employing a second-order Runge-Kutta scheme with fixed
time step Ar = 1073, Here, we measure all times in units
of the Brownian time scale 75 = 1/u’, where we recall that
energies are given in units of kg7 (and lengths in units of o).
For simplicity and for practical purposes, periodic boundary
conditions were used and the long-ranged hydrodynamic
interactions were truncated at a cut-off radius of r. = 1.875.

Typically, self-propulsion is quantified by the Péclet num-
ber Pe. Here, Pe corresponds to the ratio between the strength
of self-propulsion and the strength of thermal fluctuations.
In our units, we have Pe = |f|. We choose fixed numer-
ical values for all other system parameters, a = L = 0.75,
a =0.15, g = 2, and k = 30, unless stated otherwise.

To study the time evolution of the confined system after
switching on self-propulsion, we adhere to the following
numerical protocol. First, we initialize the system by a random
density profile and let it equilibrate with self-propulsion being
switched off, i.e., Pe = f = 0. After equilibration, we turn on
the active forces to f # 0 and let the system find its new
steady state, if existent, in non-equilibrium. Our results are
presented in terms of the density profile
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FIG. 2. Microswimmer density (color map) under confinement in equilib-
rium, i.e., for Pe=|f|=0. In this situation, the density profile is rotation-
ally symmetric, while the orientations are completely disordered. (a) Steric
swimmer interactions switched off, €y = 0, showing a maximum density in the
center of the confinement. (b) Steric swimmer interactions turned on, €)= 2,
leading to a depletion of the swimmer density in the center.

p(r,1) = / di pV(r, 1, 1), (56)

shown as color maps in the subsequent figures, as well as the
orientational vector field

(A)(r,7) = / difi pV(r, 1, 1), (57)

depicted as white arrows in the figures. In the following, we
first describe our equilibrated initial state for f = 0. Then we
switch on self-propulsion to moderate values setting f # 0,
but we neglect hydrodynamic interactions between different

z/o
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swimmers. After that, we additionally include hydrodynamic
interactions.

First, for f =0, the system is in equilibrium. In
our case, there are no orientation-dependent equilibrium
interactions. Indeed, we find from Eqgs. (31) and (48)—(53)
that the swimmer orientations completely disorder. The
equilibrium densities become independent of the swimmer
orientations. Moreover, the system reaches a steady state,
in which the entropic, steric inter-swimmer, and trapping
forces balance each other. Hydrodynamic interactions do
not affect these equilibrium states. As a result, the situation
becomes rotationally symmetric in accordance with the
rotational symmetry of the confinement. Fig. 2 shows two
situations, one with the steric swimmer interactions switched
off, €9 =0, see Fig. 2(a), where the maximum swimmer
density is found in the center of the confinement; and one
with the steric interactions switched on, €y = 2, see Fig. 2(b),
which leads to a weak depletion of the density at the center
point.

We now turn on the active drive, f # 0, yet to moderate
magnitudes. Hydrodynamic interactions between different
swimmers still remain switched off for the moment. Due
to the active forces, the self-propelling microswimmers have
an additional drive to work against the confining potential. In
this way, they spread out and reach locations further separated
from the center of the confinement. A time series is depicted
in Figs. 3(a) and 3(b).

z/o

FIG. 3. Time evolution of the density profiles (color maps) and orientation profiles (white arrows) of our confined microswimmer systems starting from the
equilibrated states of f =0 depicted in Fig. 2. At time 7 =0, the active force is switched on to f =8. (a) Snapshots without any steric (€9 =0) and without
any hydrodynamic interactions between the swimmers at times # =0.05,  =0.1, r =0.15, and # =0.4. (b) Snapshots with steric (ep=2) but still without any
hydrodynamic interactions between the swimmers at times ¢ =0.02, ¢ =0.06, ¢ =0.08, and ¢ =0.4. (c) Snapshots with both steric (ep=2) and hydrodynamic
interactions between the swimmers at times ¢t =0.05, t =0.15, t =0.25, and t =0.4.
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Still, the situation apparently remains rotationally
symmetric and finally reaches a steady state. Yet, the density
in the center is now depleted, while a density ring forms at
finite distance from the center as has been observed before in
statistical and in particle-based approaches.®!:!'%!!! From the
white arrows in Fig. 3, we find that the active forces drive the
swimmers outwards against the confining potential barrier. In
this sense, the potential blocks the swimmer motion in the
final steady state.''? It takes a typical rotational diffusion time
scale until a swimmer can reorient and leave the trapping
location, before it propels towards another location on the
high-density ring.!'0-!!!

The typical radius 7 of the density ring in Fig. 3(a), where
different swimmers do not interact with each other, can readily
be estimated. In this case, the n-swimmer densities for n > 2
do not play a role. Consequently, in Eqs. (32)-(37) we find
J>=94=9e=0. The remaining orientational part in J 5
decouples from the translational contributions and leads to
free rotational diffusion. Finally, the remaining translational
contributions in J; and 43 must balance each other to
allow for a steady state. This implies that the sum of the
contributions from translational diffusion, confinement, and
active forces must cancel. Assuming that at » = 7 the density
becomes maximum and exploiting the radial symmetry, we
find

|3s@]" 1]
~ = , 58
F 2 3 (58)
where we have introduced the function
1-2a l-—a+a?
= 1- , 59
8@ (a(l—a))( 3a2(1—a)2) o

for our special case of a = L. For harmonic confinement,
this radius has been calculated in Refs. 81 and 111. It is
conceivable that switching on an effective repulsion between
the swimmers in the form of our soft steric interactions,

(a) ¢

z/o z/o
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€0 = 2, adds to the spreading. This can be observed by the
slightly larger diameter of the final density ring in Fig. 3(b)
when compared to the diameter in Fig. 3(a).

In addition to the steric interactions between the
microswimmers, we now also include the hydrodynamic
interactions between them. At low to moderate magnitudes
of the active forces, here 0 < Pe=|f| <10, we still
observe qualitatively the same scenario as described above
in the absence of hydrodynamic interactions between the
swimmers. At the end of our numerical simulation, see
Fig. 3(c), we again observe a density ring and a radial
orientation of the swimmer axes. Due to the hydrodynamic
interactions, however, the diameter of this density ring
increases when compared to the case without hydrodynamic
interactions between the swimmers, see the final states
in Figs. 3(b) and 3(c). Apparently, via the hydrodynamic
interactions, the swimmers support each other in their
collective propulsion against the confining potential. The
presented snapshots were obtained for pushers (f > 0),
yet the results are qualitatively the same for pullers
(f <0).

From now on, we include both steric and hydrodynamic
interactions between the microswimmers. We next consider
increased values of the Péclet number of 10 < Pe = |f] < 50.
When switching on this active force, the swimmers initially
propel outwards from the center of the confinement as before.
Although the system still appears to reach a steady state,
the latter is not rotationally symmetric any more. We depict
corresponding time evolutions in Fig. 4 for f = +50, i.e., for
pushers and for pullers, respectively.

Pushers propel into the direction of the axis vector fi,
while pullers propel into the opposite direction, see Fig. 1.
That is why the white arrows point outward in Fig. 4(a) and
inward in Fig. 4(b). Since the rotational symmetry in the
trapping plane is broken, a net fluid flow results in this plane.
Therefore, the system can be viewed as a self-assembled

/o

FIG. 4. Time evolution of the density profiles (color maps) and orientation profiles (white arrows) of our microswimmer systems at (a) f = 50 for pushers and
(b) f =-50 for pullers. Both steric and hydrodynamic interactions between the swimmers are included. We observe rotational symmetry breaking within the
plane. It corresponds to the formation of a “hydrodynamic fluid pump” consisting of self-assembled microswimmers. The snapshots were obtained at times

t=0.05,t=0.1,t=0.2,and r =0.8.
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“hydrodynamic fluid pump,” which has been observed and
interpreted before using particle-based lattice Boltzmann and
Brownian dynamics simulations. 58!

Upon further increase of Pe = |f|, the system does not
enter a state of a steady hydrodynamic fluid pump any longer.
Instead, the system becomes very dynamic. High density areas
of localized orientational order of the swimmer axes form and

J. Chem. Phys. 144, 024115 (2016)

FIG. 5. Time evolution of the density
profiles (color maps) and orientation
profiles (white arrows) of pushers at
f =100. Both steric and hydrodynamic
interactions between the swimmers are
included. This system does not reach a
steady state any more within our numer-
ically observed time window. The snap-
shots are obtained at times 7 =0.02,
t=0.1, t=0.25, t=0.3, t=1.25, ¢
=2.5,t=2.7,t=3.0,and r =3.5.

continuously swap around within the spherical confinement.
Examples for the time evolution are shown in Figs. 5 and 6
for pushers and pullers, respectively. As far as we could test
numerically, the system for these strong active forces does not
reach a steady state any more.

We briefly comment on the factors that lead to the
observed destabilization effects. The first one breaks the

) j

FIG. 6. Time evolution of the density
profiles (color maps) and orientation
profiles (white arrows) of pullers at
f=-100. Both steric and hydrody-
namic interactions between the swim-
mers are included. Again, this system
does not reach a steady state any more
within our numerically observed time
window. The snapshots are obtained
at times r=0.02, t=0.1, t=0.25, ¢
=0.3,t=1.251t=2.5,t=2.7,t=3.0,
andt =3.5.
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initial rotational symmetry of Fig. 3. It induces the formation
of the hydrodynamic fluid pump, see Fig. 4. In Refs. 80
and 81, it was explained that rotational diffusion stabilizes
the rotationally symmetric states of Fig. 3. However,
hydrodynamic interactions can lead to a destabilizing feedback
mechanism that supports the rotational symmetry breaking.
In brief, one has to realize that swimmers in the blocked
state within the density ring transmit the confining forces
to the surrounding fluid. As a consequence, fluid flows are
induced. If a density fluctuation along the ring occurs, with
a higher density at a certain spot, its induced fluid flow
can reorient neighboring swimmers. The mechanism leads
to positive feedback, i.e., the neighboring swimmers are
reoriented such that they propel towards the high density
region. In our formalism, a corresponding rotation—translation
coupling to the influence of the confinement, introduced via
Uy, 18 contained in the current J 4 in Eq. (51).

The second destabilization occurs when at very high
Pe = |f| a persistent hydrodynamic fluid pump as in Fig. 4
cannot be observed any more and the system becomes truly
dynamic, see Figs. 5 and 6. This effect can be traced back to
the rotation—translation coupling between swimmer rotations
and the active point forces. Aligned and concentrated active
forces can induce rotations of neighboring swimmer bodies,
which in turn can lead to rotational instabilities. This effect
is proportional to the strength of the active forces |f|. At
high Pe = | f], it apparently cannot be stabilized any longer. In
our formalism, this contribution is represented by the current
J 6 in Eq. (53). We have numerically tested our assertion by
deactivating this current.

V. CONCLUSIONS

In this work, we have derived a statistical characterization
of dilute to semi-dilute suspensions of identical self-propelled
microswimmers in the form of a DDFT. Our simple
model microswimmers consist of a body that experiences
hydrodynamic drag from the surrounding fluid, plus two
separated active point-like force centers. Two antiparallel
active point forces of equal magnitude are exerted by these
force centers onto the surrounding fluid and set it into motion.
Pushing and pulling swimming mechanisms can easily be
distinguished. We include both hydrodynamic and steric
interactions between the swimmers, as well as the effect
of an external trapping potential. Hydrodynamic interactions
result both from the active forces as well as from steric and
external forces acting on the swimmer bodies. At this time,
axially symmetric model microswimmers are considered, thus
active torques do not arise. Moreover, only isotropic steric
interactions are taken into account.

Our DDFT describes the overdamped time evolution of
the microswimmer density, both concerning positions and
orientations of the swimmers. As a first application and test of
the theory, we consider a crowd of microswimmers restricted
to planar motion within a three-dimensional bulk fluid. Such
an arrangement could be achieved, for instance, using external
trapping laser potentials, or by confining the swimmers to an
interface between two immiscible fluids of equal viscosity.
Moreover, an additional radially symmetric trapping potential
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was taken into account. Within this framework, the theory was
evaluated numerically.

The numerical calculations started from an initial state in
which a crowd of microswimmers is concentrated in the center
of the spherical trap. At low Péclet numbers, which means
low magnitude of the active forces, the microswimmers propel
outwards, where in a final stationary state they form a ring-
like density profile. This effect remains when hydrodynamic
interactions are switched off in the numerical calculations
as reported in different frameworks previously.!!!!1:113
Increasing the Péclet number and including hydrodynamic
interactions, the numerical evaluation of the DDFT shows
a breaking of rotational symmetry. The ring-like density
profile observed for lower Péclet numbers now is replaced by
concentrated density spots. Likewise, this effect has been
observed before by different approaches, both for lattice
Boltzmann as well as for Brownian dynamics simulations.’%8!
Due to the polar order of the swimmers within the concentrated
spots and the resulting fluid flows, this state was identified as a
hydrodynamic fluid pump. Obviously, our DDFT reproduces
these previously identified effects, which stresses its potential.
Finally, upon further increase of the Péclet number, the
numerical evaluation shows a persistently dynamic state of
migrating density clouds.

As common for DDFT approaches, our description
partially leans on equilibrium concepts. However, the situation
under consideration is an intrinsically non-equilibrium one.
For instance, we used a temperature variable to measure
energies and to define the Péclet number. We identified this
variable with a constant temperature of the background fluid.
It might be stabilized by coupling to an external heat bath.
Strictly speaking, the energy input due to self-propulsion can
lead to local changes in the temperature. On one hand, this
issue may become relevant for thermally driven artificial
microswimmers in the form of externally heated Janus
particles.¢19-198 Op the other hand, temperature changes only
due to induced motion of the surrounding fluid are considered
negligible. Effective temperatures were introduced to correctly
describe deviations from equilibrium temperatures in driven
systems.'!*!!5 The issue may be investigated in a profound
analysis, but is not addressed here. As noted before, we only
remark that the translational and rotational diffusion behaviors
[represented by the terms containing In P in Eqs. (20) and
(24)] may need to be modified if local deviations from the
heat bath temperature become perceptible. Our framework of
hydrodynamic interactions remains basically unaffected, as
long as local deviations of the viscosity or density remain
approximately unaltered.

In the derivation of the statistical theory, conservation
of the probability to find the particles somewhere in phase
space [Eq. (25)] remains, of course, unaltered by the non-
equilibrium nature of our system. Therefore, apart from the
points mentioned above, no equilibrium approximations are
involved in our initial statistical equations [Egs. (25)-(37)].
The situation changes when formulae that were derived
exactly in the context of equilibrium DFT are adapted
[(38)-(53)] to close our hierarchy of non-equilibrium
statistical equations. This crucial step is generic for DDFTs but
needs to be tested by numerical evaluation of the full statistical
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equations or by particle-based simulations. In our case, we
do reproduce corresponding results of previous particle-based
simulations. This stresses the power of our newly derived
DDFT in describing the complex behavior of microswimmer
suspensions. As a side remark, we note that mainly the steric
inter-particle interactions are directly concerned by the DFT
approximation [see the presence of the u(r,r’) terms on the
left-hand sides of Eqs. (46) and (47)]. Further analysis may
be necessary when such interactions form the central focus of
a quantitative DDFT approach.

Naturally, future applications and extensions of our theory
are manifold. It should be further compared to particle-based
simulations and possible experiments to learn more about the
range of its predictive power. As indicated above, an obvious
next step is to extend the theory to include active torques
and anisotropic steric interactions. Moreover, the influence
of different effective steric interactions, for instance, hard-
body interactions, may be investigated.''® Other variations
include, for example, the hydrodynamic effect of confining
boundaries” or external magnetic alignment fields acting onto
magnetic microswimmers.!!” In the longer term, an extension
of the investigations to denser crystallized systems as well as
three-dimensional numerical implementations are desirable.
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