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1.  Introduction

Mesoscopic Brownian particles in colloidal suspensions, with 
typical particle diameters between a few nanometers and a 
few micrometers, exert forces on each other that depend on 
the microscopic position and velocity variables of many mole-
cules in the suspending solvent. On coarse-grained length and 
time scales where the solvent microstructure and dynamics are 
not resolved, the solvent molecule’s degrees of freedom can 
be ‘integrated out’ and one is left with colloidal particles that 
interact via effective forces. These effective forces depend on the 
thermodynamic state of the solvent. The tunability of the effec-
tive interactions between colloidal particles makes colloidal 
suspensions ideal model systems for studying classical many-
body behavior such as crystallization [1–4], melting [5–7],  
phase separation [8–11] as well as glass and gel formation 

[12–15]. In thermodynamic equilibrium, the effective interac-
tions fulfill Newton’s third law actio  =  reactio. That is: the 
effective force generated by a particle and acting on a second 
particle is equal in magnitude and opposite in direction, when 
compared to the force generated by the second particle, acting 
on the first particle [16–18].

However, the actio  =  reactio principle can be broken in 
a nonequilibrium situation. Nonreciprocity occurs in a mul-
titude of systems. Naming a few examples only, nonreci-
procity can arise from nonequilibrium fluctuations [19, 20] 
and also in case of diffusiophoretic forces [21, 22], optical 
forces [23, 24], out-of-equilibrium depletion interactions  
[25–27], hydrodynamic interactions [28], and ‘social forces’ 
in pedestrian dynamics modeling [29, 30]. Nonreciprocal 
effective interactions are typically superimposed by the clas-
sical reciprocal interactions, stemming from electric charges 

Journal of Physics: Condensed Matter

Structural correlations in diffusiophoretic 
colloidal mixtures with nonreciprocal 
interactions

Jörg Bartnick1, Marco Heinen2, Alexei V Ivlev3 and Hartmut Löwen1

1  Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 
Düsseldorf, Germany
2  Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,  
CA 91125, USA
3  Max-Planck-Institut für Extraterrestrische Physik, 85741 Garching, Germany

E-mail: bartnick@thphy.uni-duesseldorf.de

Received 5 October 2015, revised 4 November 2015
Accepted for publication 16 November 2015
Published 11 December 2015

Abstract
Nonreciprocal effective interaction forces can occur between mesoscopic particles in colloidal 
suspensions that are driven out of equilibrium. These forces violate Newton’s third law 
actio  =  reactio on coarse-grained length and time scales. Here we explore the statistical 
mechanics of Brownian particles with nonreciprocal effective interactions. Our model system 
is a binary fluid mixture of spherically symmetric, diffusiophoretic mesoscopic particles, and 
we focus on the time-averaged particle pair- and triplet-correlation functions. Based on the 
many-body Smoluchowski equation we develop a microscopic statistical theory for the particle 
correlations and test it by computer simulations. For model systems in two and three spatial 
dimensions, we show that nonreciprocity induces distinct nonequilibrium pair correlations. 
Our predictions can be tested in experiments with chemotactic colloidal suspensions.

Keywords: nonreciprocal interactions, colloidal suspension, correlation functions, Brownian 
dynamics, Smoluchowski equation

(Some figures may appear in colour only in the online journal)

J Bartnick et al

Structural correlations in diffusiophoretic colloidal mixtures with nonreciprocal interactions

Printed in the UK

025102

JCOMEL

© 2016 IOP Publishing Ltd

2016

28

J. Phys.: Condens. Matter

CM

0953-8984

10.1088/0953-8984/28/2/025102

Paper

2

Journal of Physics: Condensed Matter

IOP

0953-8984/16/025102+8$33.00

doi:10.1088/0953-8984/28/2/025102J. Phys.: Condens. Matter 28 (2016) 025102 (8pp)

mailto:bartnick@thphy.uni-duesseldorf.de
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-8984/28/2/025102&domain=pdf&date_stamp=2015-12-11
publisher-id
doi
http://dx.doi.org/10.1088/0953-8984/28/2/025102


J Bartnick et al

2

or dipole moments on the particles, van der Waals interac-
tions, excluded volume, or other types of direct interactions.

Despite their importance, the many-body statistics of parti-
cles with nonreciprocal interactions have not been studied so 
far in the context of colloidal suspensions. This stands in stark 
contrast to the topic of complex (dusty) plasmas [15], where 
nonreciprocal interactions are a familiar feature of anisotropic 
trailing space-charges in the downstream direction behind 
charged mesoscopic particles in a flowing plasma. The phe-
nomenon is known as the plasma wake. Consequences of non-
reciprocity have been explored in various studies concerning 
complex plasmas [31–38]. The most prominent difference 
between colloidal suspensions and complex plasmas is that the 
dynamics of colloidal particles in high-density viscous solvent 
is completely overdamped while the dust-grain dynamics in 
complex plasmas typically contain a large inertial contribution.

The binary colloidal model system that we study in this 
paper is governed by pairwise additive nonreciprocal forces 
and erratic Brownian forces. Like in [38], we characterize the 
strength of nonreciprocity by a scalar parameter ∆ which is 
the ratio of the nonreciprocal to reciprocal forces. We focus 
on the time-averaged pair- and triplet-correlation functions 
for particle positions, developing a microscopic statistical 
theory based on the many-body-Smoluchowski equation and 
the Kirkwood superposition approximation as a closure (see 
equation (13)). The theory is successfully tested against our 
Brownian dynamics computer simulations. As a result, we 
find that nonreciprocity induces distinct nonequilibrium pair 
correlations, and we also analyze the triplet correlations and 
the impact of the Kirkwood superposition approximation.

2. The model

Our model system is a generalized variant of a diffusiopho-
retic particle suspension that has been studied by Soto and 
Golestanian [21]. Consider an equimolar Brownian suspen-
sion containing two different types, A and B, of spherically 
symmetric, catalytic mesoscopic particles. We denote the 
time-depended position of particle i of type α by the row 
vector r ti ( )α . The suspension contains 2N particles, and we 
define the super vector

t t t t tR r r r r, , , , ,A
N
A B

N
B

1 1( ) ( ( ) ( ) ( ) ( ))= … …

as short-hand notation for the positions of all particles. 
Throughout this paper, upper indices containing Greek or 
capital Roman letters are species indices that should not be 
confused with exponents.

Let each particle of type A act as a source of strength 
sA, for a chemical substance A that consists of small mol-
ecules. Likewise, let each particle of type B be a source of 
strength sB for a low molecular weight chemical substance 
B. The molecules of substances A and B undergo diffusive 
motion in the solvent phase, characterized by the Stokes–
Einstein–Sutherland translational diffusion coefficients DA 
and DB, respectively. Evaporation or chemical decomposition 
into inert products causes molecules of types A and B to dis-
appear at constant rates νA and νB, respectively [39, 40]. The 

explicitly position- and time-dependent concentration fields 
of the two chemical substances, c tr,( )A  and c tr,( )B , depend in 
general also on R( )τ  at all times tτ< . However, we assume 
that the diffusion coefficients DA and DB are large enough to 
allow for a separation of time scales: At a coarse-grained time 
scale, each individual particle traverses a distance that is much 
smaller than the average distance to the nearest neighboring 
particle and the particle configuration R is therefore practi-
cally unchanged. At the same time scale, the fast diffusion of 
A- and B-type molecules has already led to steady-state con-
centration fields c tr,( )A  and c tr,( )B  that depend only on the 
instantaneous particle positions tR( ), but not on the history 
R( )τ  [41]. Restricting our study to time scales that are longer 
than the mentioned coarse-grained time scale, and neglecting 
all direct correlations between the two chemical substances’ 
molecules, the concentration fields are governed by the instan-
taneous diffusion equations

rc t D c t s tr r r, , A
i

N

i
A2

1

( )   ( )   ( ( ))∑ν δ− ∇ = −
=

A A A A� (1)

and

rc t D c t s tr r r, , ,B
i

N

i
B2

1

( )   ( )   ( ( ))∑ν δ− ∇ = −
=

B B B B� (2)

where 2∇  is the Laplace operator with respect to the field point 
r and r( )δ  is the Dirac delta function. For the sake of simplicity 
we approximate the particles as point-like objects, as reflected 
by the point sources on the right-hand sides of equations (1) 
and (2). This point-particle approximation is justified if the 
typical distances between particles are much larger than the 
particle diameters, which is the case for the systems that we 
have studied (see figure 1 and the relating text in section 3).

Solving the linear screened Poisson equations (1) and (2) 
by standard Green’s function methods gives the result

c t
s

D
G

D
tr r r, ,A

j

N

j
A

1

( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∑ ν

= | − |
=

A
A

A

A
� (3)

and an analogous expression for c tr,( )B  which is obtained 
after the interchange of indices →A B and A B→ . In equa-
tion  (3), G r r r, exp / / 4( ) ( ) ( )λ λ π= −  is the isotropic Green’s 
function in terms of the norm r r= | | of vector r, satisfying 
the equation  G r r,2 2( ) ( ) ( )λ λ δ∇ − = −−  with an exponen-
tial screening length λ. Nonzero values of νA and νB corre-
spond to finite values for λ, which sets our model apart from 
unscreened chemotatic models with zero evaporation rate and 

→λ ∞ [42].
We continue by picking an arbitrary tagged particle i of 

species A, and splitting the sum in equation (3) into a self-part 
(i  =  j) and a complementary distinct part i j( )≠ . The self-part 
gives the concentration field

c t
s

D
G

D
tr r r, ,i

s A
i
A

, ( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟

ν
= | − |A

A

A

A
� (4)

of chemical A, which is created by the tagged particle around 
itself, and which is isotropic around r ri

A= . The anisotropic 
distinct part
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c t
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D
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j
A

,
1

( ) ( )
� (5)

is created by the remaining particles of species A and, obvi-

ously, c t c t c tr r r, , ,i
s

i
d

, ,( ) ( ) ( )= +A A A . Once again, equa-
tions (4) and (5) can be repeated analogously for the chemical 
species B and a tagged particle of species B, by interchange of 
indices →A B and A B→ .

Diffusiophoretic particles tend to drift in the direction 
parallel or opposite to a chemical substance’s concentration 
gradient [43–46]. Assuming concentration- and configuration-
independent mobility coefficients Aµ A, Aµ B, Bµ A and Bµ B, with 
dimension Force Length4× , we define the total diffusiopho-
retic forces

c cF R r ri
A

A i
d

Ar r r r,
i
A i

A( ) ( ) ( )µ µ= − ∇ − ∇
= =A A B B� (6)

and

c cF R r rj
B

B B j
d

r r r r,j
B

j
B

( ) ( ) ( )µ µ= − ∇ − ∇= =A A B B� (7)

acting on particle i of species A, and on particle j of species 
B, respectively. In equations (6) and (7) we drop the instan-
taneous time-dependence for clarity. Note that the diffusio-
phoretic force on a particle is not affected by the isotropic 

self-part of the concentration field around the respective par-
ticle, but only by the distinct part of the concentration fields, 
created by all other particles. This is analogous to the forces 
among a set of point-like electric charges, e.g. electrons: The 
Lorentz force on a single electron depends on the positions 
and velocities of all other electric charges, but it is not affected 
by the field that the tagged particle creates itself.

Our model shares many properties with a system of elec-
tric point charges that interact via pairwise additive screened 
Coulomb forces, like charged particles moving in an elec-
trolyte, with electric fields calculated in the Debye–Hückel 
approximation. Combining equations (3) and (5)–(7), we can 
interpret the individual summands that contribute to F Ri

A( ) 
and F Rj

B( ) as pairwise additive forces F r rj i( )−αβ β α , exerted 
by particle i of species α on particle j of species β. However, 
a peculiarity of the binary diffusiophoretic particle mixture 
that sets it qualitatively apart from the ensemble of electric 
point charges is the action-reaction symmetry breaking: An 
inequality

F r r F r rAB
j
B

i
A BA

i
A

j
B( ) ( )− ≠− −� (8)

occurs in the general case and, as in [38], we introduce a 
scalar nonreciprocity parameter r( )∆  by the defining equation

r r r r rF F F F .AB BA BA AB( ) [ ( ) ( )] ( ) ( )∆ + = −� (9)

In the reciprocal case, where r rF FAB BA( ) ( )= , this parameter 
vanishes and we have 0∆ = .

In the following we neglect hydrodynamic interactions, 
which can be justified if the suspension is highly dilute but still 
strongly interacting. For our analysis to be valid, the hydro-
dynamic diameters of the particles have to be much smaller 
than the shortest typical particle distances in the suspension. 
Particles with sufficiently strong, repulsive Yukawa-like inter-
actions virtually never come into close contact, and the char-
acteristic length scale that dominates the correlation functions 
of such particles in d-dimensional space is d1/ρ− , where ρ is 
the particle number density [47, 48]. Suspensions of such par-
ticles can exhibit strong structural correlations, even if they 
are highly dilute from a hydrodynamic point of view.

The Brownian particle dynamics, on time scales that 
exceed the momentum relaxation time, are described by the 
overdamped Langevin equation [49]

ft tr F R˙ ,i i i  ( ) ( )ξ = +α α α α
� (10)

with a friction coefficient ξα and a random force 
f ti ( )α  with zero mean, f t 0i〈 ( )〉 =α , and variance 
〈 ( ) ( )〉 ( )τ ξ δ δ δ τ= −α β α

αβf ft k T t2i j ijB 1. Here, ijδ  is the 
Kronecker symbol, 1 is the unit matrix, the brackets f i〈 〉…α  
represent an average with respect to the time t, and kB and 
T denote Boltzmann’s constant and absolute temperature, 
respectively.

Note here that our model system makes minimal assump-
tions about the nature of the diffusiophoretic particles only: 
Particles are fully characterized by their monopolar source 
terms sA and sB, their diffusiophoretic mobilities Aµ A, Aµ B, Bµ A 
and Bµ B, and their friction coefficients Aξ  and Bξ . The particle 
environment is fully described by the chemical substance 

Figure 1.  Pair distribution functions ( )αβg r  from computer 
simulation (solid) and theory (dotted). Panels on the left ((a), (c)) 
are for d  =  2 spatial dimensions, and panels on the right ((b), 
(d)) are for d  =  3. The upper panels ((a), (b)) correspond to the 
reciprocal case ∆ = 0.0. A nonreciprocal case with ∆ = 0.5 is 
shown in the bottom panels ((c), (d)). The remaining parameters of 
the simulation are λρ = 1/4d1/  and (a) Γ = 100/3, δ τ = ⋅ −t / 3 10B

5, 
(b) Γ = 200/3, δ τ = ⋅ −t / 1.5 10B

5, (c) Γ = 25, δ τ = ⋅ −t / 4 10B
5 and 

(d) Γ = 50, δ τ = ⋅ −t / 2 10B
5. The plot does not show the region 

g(r)  <  0.5, where we observe a very good agreement between 
theory and simulation.
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diffusion coefficients DA and DB, the evaporation rates νA and 
νB, and the temperature. No assumptions are made about the 
internal structure of the diffusiophoretic particles, which could 
be of various types [50]: The particles could be biological 
microbes sensing chemoattractants or repellents [51–53], or 
synthetic particles like, for instance, colloidal Janus-particles 
[54, 55]. However, the particles do not need to have a compli-
cated internal structure in order to satisfy the minimal require-
ments of our model. Action-reaction symmetry breaking of 
the diffusiophoretic forces can emerge from various possible 
asymmetries of transport coefficients related to the diffusio-
phoretic particles of type A and B or the chemical species of 
type A and B: As easily seen from equations (5), (6) and (7), 
it is sufficient to have non-reciprocal diffusiophoretic mobili-
ties, such that A Bµ µ≠B A, or unequal source terms s sA B≠ , dif-
fusion coefficients D D≠A B, or evaporation rates ν ν≠A B.

3.  Many-body theory for the pair correlation 
functions

On the coarse-grained time scale at which the Langevin equa-
tion is valid, an overdamped complex liquid is fully described 
by the many-body distribution function tR,( )Ψ . Often times 
one is interested in more accessible quantities like the pair 
distribution functions g r r,( )′αβ , which, for the equimolar sus-
pensions studied here, can be defined in the limit N →∞ in 
terms of the following (2N  −  2)-fold integrals over tR,( )Ψ :

g

N N
t

g

N
t

g

N N
t

r r
r r r r R

r r
r r r r R

r r
r r r r R

,

1
d d d d , ,

,
d d d d , ,

,

1
d d d d , ,

AA
A

N
A B

N
B

AB
A

N
A B

N
B

BB
A

N
A B

N
B

2

3 1

2

2 2 2

2

1 3

( )
( )

( )

( ) ( )

( )
( )

( )

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

ρ

ρ

ρ

−
= Ψ

= Ψ

−
= Ψ

′

′

′

� �

� �

� �

with N V2 /ρ =  where V is the suspension volume in case of 
three-dimensional (3D) systems, or the suspension area in 
case of two-dimensional (2D) systems. Alternatively, g r( )αβ  
can be written as

∑ ∑ δ= − +αβ

α β

α β

= =
≠ ∨ ≠

g
V

N
t tr r r r .

i

N

j
j i

N

i j2
1 1

( ) ( ( ) ( ))
� (11)

For an isotropic and homogeneous system g r( )αβ  is a func-
tion of particle distance only. The triplet distribution function 

g r r r, ,3 ( )″′αβγ , which is a (2N  −  3)-fold integral over tR,( )Ψ , 
is analogously defined [56].

We start our analysis of particle correlations with the 
Smoluchowski equation

t
k T F

1
,

A B i

N

i i i
, 1

B(     )∑ ∑ξ
∂Ψ
∂
= ∇ ⋅ ∇ Ψ− Ψ
α

α
α α α

= =
� (12)

which is stochastically equivalent to equation (10), and where 

i∇
α is the Nabla operator that differentiates with respect to the 

particle position ri
α and the time- and configuration depen-

dence of Ψ has been dropped for clarity. Using a (2N  −  2)-fold 
integration, we transform equation (12) into an equation for 
the pair distribution function [57]. This equation, however, 
does not only depend on the pair correlations, but also on the 
triplet correlations which, in turn, depend on the quadruplet 
correlations and so on. We truncate this Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) hierarchy [15] using the 
Kirkwood-superposition approximation [58]

g g g gr r r r r r r r r, , , , , .3 ( ) ( )  ( )  ( )″ ″ ″≈′ ′ ′αβγ αβ αγ βγ� (13)

In our derivation we use the fact that g r g rAB BA( ) ( )= , which is 
apparent from equation (11). The final set of coupled integro-
differential equations for gAA(r), gAB(r) and gBB(r) reads

∑

∑

ξ ξ ξ

ρ




 +





∇ = − ∇ ⋅

+ ∗








α β
αβ

α β
α β β α

α
α β αβ

αβ

γ

α γ α γ β γ

=

=

′ ′ ′
′ ′

′ ′ ′

k T k T
g g

g g g

F

F

1

2
,

A B

B B 2

,
, , ,

,

    [  

  ( )

( )
( )  ( )

�

(14)

where g g r( )≡αβ αβ  and F F r( )≡αβ αβ . In equation  (14), 
f g r( )( )∗  denotes the d-dimensional convolution of two iso-

tropic functions f(r) and g(r), defined as

rf g r f r g r rd .d( )( ) ( ) ( )∫∗ ≡ | − |′ ′ ′

Equation (14) cannot be solved analytically for nonzero den-
sity or non-vanishing force. We therefore solve it numerically, 
using fixpoint iteration algorithms [48]. With a double inte-
gration, we eliminate the Laplace operator and the divergence. 
We solve the convolutions in Fourier space, making use of the 
FFTLog algorithm for the d-dimensional Hankel transform 
[59, 60].

To test the accuracy of the approximate theory, we perform 
Brownian dynamics simulations for two and three dimensions. 
We use the forces derived in equations (6) and (7), for both the 
2D and the 3D case. The former corresponds to particles that 
are confined to move in a 2D plane, while the surrounding 
solvent is fully three-dimensional. In our model system, the 
chemical substances A and B are free to diffuse throughout 
the 3D solvent, irrespective of whether or not the diffusio-
phoretic, mesoscopic particles are confined to a 2D plane. For 
the sake of symmetry and in order to better isolate the effects 
of nonreciprocity, we consider a system where F FAA BB=  
and A Bξ ξ ξ= ≡ . We express our simulation parameters in 
terms of the thermal energy k TB , the number density ρ and 
the friction coefficient ξ, choosing the Brownian time scale 

k T/B
d2/

Bτ ρ ξ= −  as a unit of time.
We limit our study to the case of a r-independent parameter 

∆, which is the case in our model system if D D/ /ν ν=A A B B. 
As in our discussion of the Green’s function method in sec-
tion 2, we have D /λ ν= A A , which is now a unique expo-
nential screening length for the concentration profiles of both 
chemical species A and B. We quantify the strength of the 
interactions by a constant Γ, satisfying the equations
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B
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A potential energy in the usual sense cannot be defined 
in the general case 0∆≠ . However, for the special case 
of reciprocal interactions ( 0∆ = ), the interactions above 
can be described by a pairwise additive potential energy 
V r k T r rexp / /d

B
1/( ) ( )ρ λ= Γ −− . Using a simple forward time-

step algorithm [61], with a time-step tδ  and 2 106⋅  iterations, 
we solve the Langevin equation (10) for 2 20 000×  particles 
in a 2D quadratic or 3D cubic simulation box with periodic 
boundary conditions. The forces are set equal to zero, when 
the distance between two particles exceeds 5/ d1/ρ . The parti-
cles are initialized at random positions throughout the system, 
and the setup is given time to relax. We monitor the average 
forces tF R,i⟨ ( ) ⟩| |α  and measure that for all of our simulations 
this value first reduces, and eventually reaches a time-inde-
pendent steady state. Then, we calculate the pair and triplet 
correlations by averaging over multiple snapshots at different 
times. Figure 1 shows a comparison of the pair distribution 
functions obtained from the theory and the BD simulations for 
2D and 3D in the reciprocal and the nonreciprocal case. For 
the reciprocal case, 0∆ = , where g r g r g rAA AB BB( ) ( ) ( )= = , 
the theory predicts the simulation results for g r( )αβ  with high 
precision. In case of nonreciprocal forces, 0.5∆ = , the 
deviations between theory and simulation results are larger, 
but the theory maintains a rather good accuracy level and it 
continues to capture all qualitative features of the simulation. 
Note also, that all functions g r( )αβ  exhibit a pronounced ‘cor-
relation hole’ at small values of r, because the repulsive par-
ticles almost never come into close contact. This provides an 
a posteriori justification of our point-particle assumption in 
section 2: Particles that are significantly smaller in diameter 

than the correlation hole have a negligible likelihood of direct 
contact, and can therefore be approximated as point-like.

Without showing all results here, we have observed both in 
our simulations and our theory results, and for 2D as well as 
for 3D systems, that the principal peak value, g rAA AA

max( ), of the 
function gAA(r) can assume a smaller or larger value than the 
principal peak g rAB AB

max( ). The peak-height ordering depends on 
the parameters , ,( )λΓ ∆  of the nonreciprocal interactions and 
on the density ρ. In our simulation and theory results we observe 
that the principal peak height of function gBB(r) is always 
less than the peak heights of both functions gAB(r) and gAA(r). 
For an intuitive understanding of the less pronounced peak in 
gBB(r), let us introduce effective radii reff

αβ via the condition that 
r k TF /eff B( ) λ| | =αβ αβ . In figure 2 we show a snapshot from a 2D 

system with nonreciprocal interactions twice, using different 
effective radii for the plotted disks that are centered around the 
particle positions ri

A (blue) and ri
B (red): In the top panel of the 

figure, the effective radius of the red, B-type disks is rBA
eff, and 

in the bottom panel, the effective radius of the blue, A-type 
disks is rAB

eff , which is less than rBA
eff. The same effective radius, 

r rAA BB
eff eff= , is used for the blue disks in the upper panel and for 

the red disks in the lower panel. Clearly, the system is effectively 
more crowded for the A-type particles than for the B-type parti-
cles, which explains the weaker principal peak in gBB(r).

4.  Kirkwood approximation for nonreciprocal 
interactions

The approximation that allows us to solve the many-body 
Smoluchowski equation numerically is the Kirkwood superpo-
sition in equation (13). In case of thermodynamic equilibrium, 
it is known how this approximation breaks down at high density 

Figure 2.  Typical snapshot for a 2D-simulation with ∆ = 0.5 and 
Γ = 25. The system exhibits different effective densities for A and 
B particles. The radii of the plotted disks are proportional to the 
effective radii αβreff .

Perspective of the A particles (blue)

Perspective of the B particles (red)

Figure 3.  The bond angle distribution function ( )θg r r, ,3 1 2  
characterizes triplets of particles with the inter-particle distances 
<r rij 1 and <r rik 2 by the bond angle theta θ.
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[62–64]. In the following, we test the Kirkwood superposition 
approximation in case of the nonequilibrium steady state of 
Brownian suspensions with nonreciprocal interactions, by com-
parison to our highly accurate computer simulation data.

One way to visualize a projection of the triplet correlation 

function g r r r, ,3 ( )″′αβγ  is via the bond angle distribution func-
tion g r r, ,3 1 2( )θ  [64]. This function characterizes triplets that 
have one inter-particle distance smaller than r1 and another 
inter-particle distance smaller than r2, by the bond angle θ 
between the two straight lines that connect the particle centers 
(see figure 3). The function g r r, ,3 1 2( )θ  is normalized such that 
the integral over all bond angles yields unity. Often, r1 and r2 
are chosen as the first minimum of the pair distribution func-
tion. However, this is not uniquely defined for a binary mix-
ture. To avoid this ambiguity, we choose the parameters as the 
first minimum of a corresponding gAA(r) for a simulation with 

0∆ = , which we call R, and which should not be confused 
with the norm of the super vector R. For 2D and strong par-
ticle interactions, pronounced peaks around values of θ that 
are integer multiples of 60° indicate triangular short-range 
order of the liquid [64].

Assuming Kirkwood superposition we can approximate the 
bond angle distribution function trough a combination of pair 
distribution functions. We define the unnormalized Kirkwood-
approximation G r r, ,K3, 1 2( )θαβγ  for the bond angle distribution 
function in 2D as

( )     ( ) ( )∫ ∫θ

θ

≡

× + −

′ ′ ′

′ ′

αβγ αβ αγ

βγ⎜ ⎟
⎛
⎝

⎞
⎠

G r r r r r r g r g r

g r r rr

, , d d

2 cos

K

r r

3, 1 2 0 0

2 2

1 2

and similarly in 3D as

⎜ ⎟
⎛
⎝

⎞
⎠

G r r r r r r g r g r

g r r rr

, , sin d d

2 cos .

K

r r

3, 1 2 0 0
2 2

2 2

1 2

( )     ( ) ( )∫ ∫θ θ

θ

≡

× + −

′ ′ ′

′ ′

αβγ αβ αγ

βγ

Applying normalization we arrive at the Kirkwood approxi-
mation of the bond angle distribution function,

g r r
G r r

G r r
, ,

, ,

d , ,
.K

K

K
3, 1 2

3, 1 2

0 3, 1 2

( )
( )

  ( )∫
θ

θ

θ θ
=αβγ

αβγ

π αβγ� (15)

In figure  4 we plot the functions g R R, ,3 ( )θαβγ  and 
g R R, ,K3, ( )θαβγ , both extracted from our simulations. As in 
figure 1, we show data for the 2D and 3D case, both for recip-
rocal and nonreciprocal interactions. All simulated systems 
are clearly in the liquid state, as signaled by the very gentle 
principal peak at a bond angle θ just below /3π . Low values 
of the bond angle distribution functions at small values of θ 
correspond once again to a correlation hole: It is very unlikely 
for a pair of repulsive particles to occupy the same space.  
In the 3D case, large bond angles are also untypical. The prob-
ability of finding a particle at a given angle scales with the 
solid angle in 3D, which is proportional to sin θ. For 2D sys-
tems, the bond angle distribution functions at angles larger 
than /2π  are almost constant.

We find that the Kirkwood approximation is very accurate 
for the studied systems with reciprocal interactions, and some-
what less accurate in case of systems with nonreciprocal inter-

actions. As expected, the discrepancies between g R R, ,K3, ( )θαβγ  
and g R R, ,3 ( )θαβγ  are strongest for those systems where the pair 
distribution functions from the many-body Smoluchowski 

Figure 4.  Bond angle distribution function ( )θαβγg R R, ,3  computed directly from our computer simulation (solid curves) and Kirkwood 
approximations, ( )θαβγg R R, ,K3, , of the bond angle distribution functions (dashed curves). The functions ( )θαβγg R R, ,K3,  are computed on basis of 
equation (15), using the pair correlation functions ( )αβg r  from the simulations as input. Simulation parameters are the same as for figure 1.
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theory with Kirkwood closure exhibit the lowest level of accu-
racy (see, figures 1 and 4).

5.  Conclusions

We have studied 2D and 3D systems of Brownian particles 
with reciprocal and nonreciprocal particle interactions.  
A microscopic theory based on the many-body Smoluchowski 
equation with the Kirkwood superposition approximation as 
a closure predicts the particle pair-correlation functions with 
good accuracy. Nonreciprocal interactions have distinct influ-
ence on the pair-correlations, as revealed by the differences 
between the correlation functions for systems with reciprocal 
and nonreciprocal forces. Our predictions for the pair- and 
triplet-correlation functions can be tested experimentally with 
binary mixtures of diffusiophoretic particles.

Future theory could improve the closure beyond the 
Kirkwood superposition principle. Possible candidates for 
future development are dynamical density functional theory 
[65–69] or mode coupling theory [70] for nonequilibrium 
systems, which still need to be generalized to systems with 
nonreciprocal interactions. Furthermore, the effect of dif-
ferent non-reciprocity classes (constant versus r-dependent 
∆) on the structural correlations should be carefully 
explored.
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