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A simulation study of the electrostriction effects
in dielectric elastomer composites containing
polarizable inclusions with different spatial
distributions

Elshad Allahyarov,*abcd Hartmut Löwena and Lei Zhub

Controlled actuation of electroactive polymers with embedded high dielectric nanoparticles is

theoretically analyzed. If the inclusions are placed randomly in the elastomer body, the composite

always contracts along the direction of the applied field. For a simple cubic distribution of inclusions,

contraction occurs if the applied field is directed along the [001] direction of the lattice. For inclusions

occupying the sites of other lattice structures such as body-centered or face-centered cubic crystals,

the composite elongates along the field direction if it is applied along the [001] direction. The stability of

the elongation against the imperfectness of the lattice site positions and the distortion ratio of the initial

structures are examined. Finite elongation windows show up for the initially distorted body-centered

cubic and face-centered cubic crystals as a function of the distortion ratio of the initial structure.

The existence of these elongation windows are also predicted from the analysis of the electrostatic energy

of the distorted body-centered cubic and face-centered cubic lattice structures. Our results indicate that

the electrostriction effect, which is the main contribution to the actuation of low aspect-ratio composites,

strongly depends on the geometry of the spatial distribution of nanoparticles, and can thereby largely

be tuned.

1 Introduction

Electroactive polymers and composites having tunable actu-
ation properties belong to the fast growing field of smart
materials with promising applications in many directions.1–5

Initially being developed for sensors and shock adsorbers,
these materials are now viewed as perfect building blocks for
artificial muscles,6,7 drug delivery systems,8,9 and nano-cancer
applications.10

These electroactive materials, also called electro- or magneto-
sensitive elastomers, are composites with 3-0 connectivity,11,12

where the index 3 refers to the 3-dimensional self-connectivity
of the primary active phase which is inert to polarization, and
the index 0 refers to the non-connected, i.e. isolated, secondary
passive phase which is highly polarizable. The composites
consist of a flexible host polymer matrix impregnated with

hard-core inclusions. Usually, the host matrix is a dielectric
elastomer with the Young’s modulus in the range of 0.1–
20 MPa, and low dielectric permittivity in the range between
2 and 7. The inclusions are polarizable spheres with high
dielectric permittivity and a diameter ranging between several
hundreds of nm to several mm. Until recently the research on
electroactive composites was mostly focused on enhancing
the Maxwell contraction of the host matrix through modifying
their dielectric and elastic properties.13–25 The increase of the
effective dielectric constant of the composite makes the Maxwell
pressure stronger. Also, the local field effects between neighboring
inclusions induce an additional contraction of the composite
along the applied field direction.

During the last decade considerable theoretical advances
have been made on elucidating the role of the inclusion’s
spatial distribution and the composite’s initial shape on its
actuation.26–32 It was revealed that the composite with a parti-
cular type of inclusion distribution might experience an elonga-
tion strain. Theoretical studies of the composite actuation
distinguish two separate contributions to the composite strain:
a macroscopic electrostatic effect (i.e., atomic or vibrational
polarization with elongated molecular bonds) as obtained
within a continuum mechanics approach, and the effects
based on the explicit accounting for the dipolar interactions
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between the discrete inclusions on the mesoscopic length scale.
The first contribution always results in the elongation of the
composite along the applied field direction, and is a nonlinear
function of the aspect ratio of the composite. The aspect ratio
here is defined as the ratio of the composite dimensions a/b,
where a is the composite thickness along the applied field, and
b is its width across the applied field. At small and high aspect
ratios a/b, corresponding to the prolate and oblate material
geometries, the macroscopic electrostatic elongation effect is
weak, whereas at the intermediate aspect ratios it is strong.
The second contribution to the composite strain, called the
electrostriction effect, however, results in a negative contribu-
tion to the composite strain along the applied field direction.
A sum of these two contributions for some inclusion’s spatial
distributions gives rise to a finite window of elongation28,30–32

as a function of the aspect ratio of the composite. That window,
however, might be completely screened by the Maxwell contrac-
tion term, which acts on the host polymer regardless of the dipole
moment of particles and their distribution factors.

The electrostriction effect has been discussed in many experi-
mental studies.33–42 Under the poling fields up to 20 MV m�1

contracting strains up to 10% were observed whereas the
Maxwell-stress induced strain of the pure polymer was below
1%. In other studies single-walled carbon nanotubes38–41 and
lead zirconate titanate (PZT) ceramics42 were used as fillers in
electrostrictive polymers where a weak electrostriction effect
of few percents was reported. Recent studies report on the
electrostriction properties of carbon black (CB) nanoparticles in
polyurethane (PU) elastomers.36,37 At dilute concentrations of CB
and low fields, ZE 0.01 and E o 4 MV m�1, a twice larger than the
Maxwell strain was reported, though the nature of this enhanced
strain is debated to come from the dielectric permittivity increase
in the CB–polymer mixtures.

In all existing theoretical studies, the magnitude of the
linear response coefficients and the sign of the composite
actuation are predicted for a frozen particle distribution,
meaning that the particle displacement in the course of defor-
mation is not taken into account. However, in reality, the latter,
together with the shape change of the composite during the
deformation, contributes to the depolarization factor, and
through it to the ultimate strain of the composite. These effects
are hard to include in a theoretical analysis, but can readily be
incorporated into a computer simulation of the composite
actuation which resolves the nature of the inclusions explicitly.
Composite simulations use different representations for the
host matrix polymer: it can be modeled as a full atomistic
material, or a coarse grained polymer with several of its atoms
grouped into blobs, or a low level coarse-grained polymer
consisting of elastic springs between the inclusions. In this
paper, we use the latter model which allows for the simulation
of large systems.

The goal of this study is to explicitly evaluate the electro-
striction effect of inclusions and its dependence on the inclusion’s
spatial distribution. For the latter we consider four different
distributions: a simple cubic (SC), a body centered cubic (BCC),
a face centered cubic (FCC) periodic lattice, and a random

distribution. In order to decouple the electrostriction effect
from the macroscopic electrostatic effect we assume that the
full system has a low aspect-ratio (such as a slab). As shown in
ref. 28, in this case, the macroscopic contribution to the strain
becomes negligibly small, and only the electrostriction and
Maxwell strains need to be considered.

We use a mesoscopic spring-bead model for the composite
combining classical phenomenological electrostatics on the
mesoscopic length scale of the inclusions with phenomeno-
logical elasticity theory, but the effective polarization-induced
(dipole–dipole-like) interactions between the inclusions are
taken explicitly into account. Within this model the response
of the composite to external fields is calculated by using the
method of equality of internal pressure components in all three
directions. The pressure components are determined from the
virials of the elastic and electrostatic forces. Our method
presents a new approach to the actuation modeling of bulk
composite. Assuming that the full shape of the sample has a
low aspect ratio, and thus ignoring the electrostatic effects, we
investigate the electrostriction related contributions to the
composite strain. Within our spring-bead model we derive
an analytical expression for the Young’s modulus. We show
that the strain of the composite along the applied field strongly
depends on the distribution of inclusions inside the host
matrix. Whereas the composites with homogeneously (randomly)
distributed inclusions always contract along the applied field,
the actuation of regular lattice composites depends on their
lattice structure: the SC composite shrinks along the applied
field, but the BCC and FCC composites show a net elongation
response along the applied field oriented parallel to the
[001] direction of the lattice. This elongation is shown to
depend on the defects of the inclusion distribution and on
the distortion ratio of the initial structures. For the BCC
and FCC lattices we detect the existence of an elongation
window as a function of the distortion ratio of the initial
structure. We show that a similar elongation window can be
predicted from the analysis of the electrostatic energy of the
distorted crystal.

The remaining part of the paper is organized as follows.
In Section 2 we give the underlying theory of the composite
polarization and discuss the origins of the macroscopic elec-
trostatic and electrostriction contributions to the composite
actuation. In subsection 2.4 we calculate the free energy of the
composite deformation used to tune the elasticity parameter of
our simulation model. Details of our simulation set-up and the
spring-bead model for the composite are given in Section 3.
In Section 4 we give the details of our simulation method for
the calculation of the composite strain as a response to the
applied field. Simulation results for the composite strain in
different fields and for different starting configurations for the
inclusion’s distribution are collected in Section 5. We show that
the composite actuation and the contribution from the electro-
striction strongly depend on the spatial distribution of inclusions.
In Section 6 we give guidelines for experimental realization of
theoretical predictions for the composite actuation. Finally we
conclude in Section 7.
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2 Theoretical model
2.1 General theory of macroscopic electrostatics of
composites

We consider a composite membrane consisting of a host matrix
with dielectric permittivity em impregnated with N polarizable
inclusions with permittivities ep. As a general case we assume
that the dielectrics have arbitrary shapes as shown in Fig. 1,
where only a single inclusion is pictured. The case of spherical
inclusions in a slab-shaped host matrix will be considered in
Section 2.2 as a particular case of the configuration shown in
Fig. 1. When the host matrix is polarized under the external
field

-

EJ
-
z, the projection of the total field inside the inclusion on

the z-axis is

~Ep ¼ ~Em �
~Pp

e0em
azp þ

XN
j

~Ej (1)

where the first term,
-

Em, is the projection of the total field
inside the host matrix on the z-axis,

~Em ¼ ~E �
~Pm

e0
azm (2)

The second terms in eqn (1) and (2) describe the dielectric
depolarization effects along the z axis stemming from the
induced charges at the dielectric boundaries in the direction
of the z-axis. Here

-

Pp and
-

Pm are the projections of the particle
and host matrix polarizations on the z-axis correspondingly.
The third term in eqn (1) is the projection of the electrical
field contribution from the dipolar fields of other inclusions
j (1 r j r N), existing in the host matrix, on the z-axis.

The depolarization factors 0 o az
k o 1, (k = m, p) in eqn (1)

and (2) depend on the dielectric geometries measured in terms
of their aspect ratios xk = ak/bk along the field

-

E, where ak and bk

are the averaged dielectric sizes in the field and lateral direc-
tions correspondingly.43 For simple geometries such as a slab

with x = 0 (an infinite slab placed perpendicular to the applied
field

-

E), or a cylinder with x - N (an infinite cylinder placed
along the applied field

-

E), or a sphere with x = 1, the depolar-
ization factor az

k takes values 1, 0, and 1/3 respectively. As has
been shown in ref. 28, in the case of regular lattice sites used for
particle distributions, the depolarization factors az

k can be modi-
fied to include also the electrostriction effects. The resulting
depolarization field then can take both positive and negative
values. Because our aim is to consider only the behavior of the
electrostriction effects in low aspect-ratio membranes, for which
the electrostatic effects are believed to be weak, there is no need
to modify the depolarization terms in eqn (1) and (2).

The setup in Fig. 1 corresponds to a constant surface charge
condition on the electrode surface which implies an open
circuit case. This boundary condition differs from short circuit
conditions, which are used in most experimental studies.
For low inclusion volume fractions Z not exceeding several
percents, when the contribution of the inclusion polarization
to the host matrix polarization is small and thus can be
neglected,

-

Pm is defined as
-

Pm = e0(em � 1)
-

Em (3)

Combining eqn (2) with eqn (3), for the field
-

Em and the
polarization

-

Pm we get

~Em ¼
~E

1þ em � 1ð Þazm
(4)

~Pm ¼
e0 em � 1ð Þ~E

1þ em � 1ð Þazm
(5)

The polarization of the inclusion
-

Pp has two parts: the first
part

-

P1 = e0(ep � 1)
-

Ep corresponds to the polarization of
inclusion placed into the vacuum, and the second part

-

P2
0 is

the polarization created by the host matrix inside an empty
cavity of the inclusion shape,

-

Pp =
-

P1 +
-

P2
0 (6)

The term
-

P2
0 can be replaced by the polarization of the inclusion

with permittivity em placed into the vacuum,
-

P2
0 = �-

P2 =
�e0(em � 1)

-

Ep. Therefore, eqn (6) becomes
-

Pp = e0(ep � em)
-

Ep (7)

From eqn (1) and (7) for the polarization
-

Pp we get,

~Pp ¼
ep � em

em þ ep � em
� �

azp
e0em

1

1þ em � 1ð Þazm
~E þ

X
j

~Ej

 !
(8)

This simple expression for Pp defines its dependence on the
inclusion and host polymer geometries along the z-axis through
the coefficients az

k, k = m, p for the matrix and the particle,
respectively.

The induced dipole moment of the inclusion along the z-axis
has two parts,

~mp = Vp
-

Pp = ~m0
p(E) + ~m j

p(Ej) (9)

Fig. 1 Schematic representation explaining the polarization of a dielectric
inclusion in a host dielectric polymer under the field E

-
oriented parallel to

the z-axis. Along the field direction the dielectrics have dielectric permit-
tivities ek, depolarization factors az

k, and induced polarizations Pk, where
k = p for inclusions, and k = m for the host polymer.

PCCP Paper

Pu
bl

is
he

d 
on

 1
3 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 H
ei

nr
ic

h 
H

ei
ne

 U
ni

ve
rs

ity
 o

f 
D

ue
ss

el
do

rf
 o

n 
25

/1
1/

20
15

 1
0:

01
:4

6.
 

View Article Online

http://dx.doi.org/10.1039/C5CP05522A


Phys. Chem. Chem. Phys. This journal is© the Owner Societies 2015

where the first part ~m0
p is the pure dipole moment stemming

from the external field
-

E,

~m0p ¼ Vp
ep � em

em þ ep � em
� �

azp

1

1þ em � 1ð Þazm
e0em~E (10)

and the second part ~mp(Ej) is the excess dipole moment corre-
sponding to the cumulative sum of the fields created by other
inclusions j (1 r j r N) at the position of the inclusion i,

~mjp ¼ Vp
ep � em

em þ ep � em
� �

azp
e0em

XN
j

~Ej (11)

Here Vp is the inclusion volume (for spherical inclusions Vp =
4pR3/3, R = s/2, where s is the inclusion diameter). The free
energy Fd of a single dipole ~m0

p in the external field
-

E, which is
the energy needed to polarize a single inclusion along the
z-axis, is defined as

Fd ¼ �
ðE
0

m0pdE
0 ¼ �1

2
Vp

ep � em
em þ ep � em

� �
azp

e0emE2

1þ em � 1ð Þazm
(12)

From this expression we see that low Fd values, which are
necessary for achieving equilibrium polarized states, correspond
to smaller depolarization factors az

p and az
m. In other words, the

macroscopic electrostatics effect indicates the feasibility of the
composite elongation along the applied field

-

E. This effect
depends on the initial shape aspect ratio a/b of the host matrix
and has been analyzed for ferrogels and magnetosensitive
elastomers in ref. 28, 31 and 32.

For the field Ep inside the inclusion, combining eqn (1) and
(7) we get

Ep ¼ E
3

ep þ 2em
¼ Em

3em
ep þ 2em

(13)

This field is smaller than Em for ep 4 em. The partial expulsion
of Em from the interior of the high dielectric constant particle
increases the macroscopic field in the vicinity of the inclusion.
As a result, at high inclusion volume fractions, the average
macroscopic field Em in the host matrix should be modified to
account for such local field effects, Ẽm = Em(1 + gZ) with some
scaling coefficient g. In the current setup with Z { 1, local field
effects are considered negligible.

2.2 Electrostriction effects in slab-shaped composites with
spherical inclusions

Electrostriction effects in composite materials are defined by
the dipole–dipole interaction forces

-

Fji and by the torques ~ti of
the electrostatic fields. For a slab-shaped host matrix and
spherical inclusions, putting az

m = 1, and az
p = 1/3, into

eqn (9)–(11), for the dipole moment of inclusions we get

~mip ¼ 4pe0R3 ep � em
ep þ 2em

~E þ
XN
j

em~Ej mj
� � !

(14)

Consequently, the polarization of the inclusion is

ap ¼ 4pe0R3 ep � em
ep þ 2em

(15)

Obviously, eqn (14) cannot be used for other host polymer
matrix shapes considered in ref. 30, 32 and 44. For the host
polymer having a spherical geometry the dipole moment ~m i

p

will be

~mip ¼ 4pe0R3 ep � em
ep þ 2em

3em
em þ 2

~E þ
XN
j

em~Ej mj
� � !

(16)

with an additional prefactor 3em/(em + 2) for the applied field E.
Consequently, the polarization of the inclusion will also
change to

ap ¼ 4pe0R3 ep � em
ep þ 2em

3em
em þ 2

(17)

In other words, the polarization of inclusions depends on the
geometry of the host matrix.

The induced electric field
-

Ei(m
i
p) of the inclusion i,

~Ei mip
� �

¼ 1

4pe0em

1

rij3
3

rij2
~mip �~rij
� �

~rij �~mip
� �� �

(18)

defines the electrostatic force
-

Fij between a pair of interacting
inclusions

~Fji ¼
1

4pe0e
3

rji5

� ~mj �~mi
� �

~rji� 5
~mi �~rji
� �

~mj �~rji
� �

rji2
~rjiþ ~mj �~rji

� �
~miþ ~mi �~rji

� �
~mj

 !

(19)

where -
rji = -

ri �
-
rj.

The orientation of dipoles is controlled by the torque created

by the fields
-

E and
-

Ej,

~ti ¼~mi � ~E þ~mi �
XN
j

~Ej (20)

For the case of induced dipoles, the second term in eqn (20) is

weak compared to the first term,
PN
j

Ej

.
E � 8emr3

� ��1
, where r

denotes the distance between the inclusions scaled to their
diameter s.

It should be noted that whereas the electrostatic effects
described by eqn (12) always result in the composite elongation
along the field direction, there is no clear understanding
on how the electrostriction effects described by eqn (19) and
(20) contribute to the composite deformation. Obviously the
reorientation and rearrangement of induced dipoles depend on
the morphology of their spatial distribution in the host matrix.

For the case of induced dipoles ~miJ~mjJ
-

E the pair interaction
potential between dipoles reduces to

Vij ¼
mimj

4pe0emrij3
1� 3 cos 2ðyÞ
� �

(21)
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The strength of the electrostriction is measured by the coupling
parameter G,

G ¼
Vij rp
� ��� ��

kBT
(22)

where rp is the nearest neighbor distance between the dipoles,
rp = (3/(4prp))1/3, with rp = Z/Vp being the density of inclusions.
For the case of induced dipoles homogeneously distributed in
the host matrix, a modified coupling parameter is introduced,

G ¼
mimj

4pe0emrp3
1� 3 cos 2ðyÞ

kBT

����
����

	 

y
¼

mimj
8pe0emkBTrp3

(23)

where the angular brackets are for the averaging over all mutual
dipolar configurations. In the strong electrostriction regime
G 4 1 the dipoles ‘‘connect’’ to each other through their
chaining along the field direction (this is the case for electro-
rheological fluids). In the extreme regime G c 1 the chains
form a secondary structure by forming 2D lattices in the lateral
direction. A formation of such connected dipolar structures
results in the host polymer matrix deformation.

2.3 Maxwell pressure and mixing rules

The actuation of the composite elastomer, together with the
electrostatic and electrostriction forces described above, has
also a contribution from the Maxwell pressure

p = PmE (24)

which always contracts the composite in the field direction.
Using eqn (3) and (4), the pressure p is rewritten as

p ¼ e0E2 1� 1

em

� �
(25)

and the resulting Maxwell strain SM of the composite under the
open circuit conditions is

SM ¼ �
p

Y
¼ �e0E

2

Y
1� 1

em

� �
(26)

where Y is Young’s elastic modulus of the host matrix. It should
be noted that eqn (26) is derived from linear elasticity theory for
host matrix deformations, hence it is applicable only to the
cases of small strains Sz o 0.1 (in percentages this corresponds
to the strain values less than 10%). For moderate strains, 0.1 r
Sz r 0.2, a modified expression for the strain, instead of
eqn (26), should be used, see ref. 16. Under the constant voltage
boundary (or short circuit) conditions with a reduced applied
field E/em (in order to keep the total field in the inclusion the
same as in the open circuit case), eqn (25) and (26) take forms

p(V) = DmEm = e0emEm
2 (27)

and

SðVÞM ¼ �p
ðVÞ

Y
¼ e0E2

emY
(28)

The ratio of these two strains is

SM

SðVÞM

¼ em � 1 (29)

If the host matrix permittivity is em = 1, its Maxwell strain
vanishes, SM = 0, because no polarization appears on the host
matrix surface facing the vacuum. However, under constant
voltage conditions, the attraction between oppositely charged
electrodes will squeeze the composite resulting in a nonzero
strain S(V)

M . For the particular case em = 2 the two strains are
equal to each other.

When the host matrix contains inclusions, the parameters
Y and em in eqn (26), and also in eqn (28) should be treated
as effective constants Ỹ and ~em derived from the mixing rules.
By using the Maxwell-Garnett equation for the spherical inclusions
at the volume fraction Z = NVp/Vm, for the ~em we get45–48

~em ¼ em
2em þ ep � 2Z ~em � ep

� �
2em þ ep þ Z ~em � ep

� � (30)

The effective Young’s modulus of the composite can be
approximated by the Einstein’s mixing rule24,49–51

Ỹ = Y + Yk1Z + Yk2Z
2 (31)

with k1 = 2.5 and k2 = 14.1.

2.4 Free energy of elastic deformations of the host polymer
matrix

The strength of the composite deformation as a reaction to the
electrostatic, electrostriction and Maxwell forces is defined
primarily by the Young’s modulus Y of the host matrix. Under
the incompressibility conditions the composite with initial
dimensions L0

x, L0
y, and L0

z, attains new dimensions Lx, Ly, and
Lz with Vm = LxLyLz = L0

xL0
yL0

z. In the limit of small strains the free
energy of the deformation is

Fd ¼
1

2

GxAyz

L0
x

DLx
2 þ GyAxz

L0
y

DLy
2 þ GzAxy

L0
z

DLz
2

 !
(32)

Here Gk for k = x, y, z are the shear moduli of the matrix,
Aij = L0

i L0
j for i, j = x, y, z and i a j a k is the surface area of the

non-deformed composite perpendicular to the deformation
direction k, and DLi = Li � L0

i is the deformation along the axis
i. We note that eqn (32) is valid for a network of randomly
jointed chains in the limit of small chain extensions d { nd0,
where d is the chain end-to-end distance, n is the number of
joints for each chain in the host matrix, d0 is the bond length
between neighboring joints, and nd0 is the maximum extensi-
bility of the chain. The probability of d for randomly jointed
chains with rigid bonds d0 is given by the Gaussian distribution
function.52,53 Within the Gaussian statistics the force-extension
f (d) relation for a single chain follows the Hookian-like linear
relation f *(d*) = 3d*, where f * is a rescaled elastic force
f * = f (d)d0/(kBT), and d* = d/(nd0) is a rescaled chain extension.
For a more realistic representation of the elastic properties of
the host matrix for the whole range of chain extensions, the
Langevin chain statistics52–54 should be used. Within this
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approximation the entanglement of polymer chains are taken
into account by various network models, which are generally
based on the non-linear force-extension dependence f *(d*) =
L�1(d*). Here L�1(x) denotes the inverse Langevin function.52

The Gaussian chain statistics can be derived from the Langevin
chain statistics if the first linear term of the Taylor expansion
for d* is retained. The addition of higher order terms of d/d0 in
the Langevin statistics results in higher elastic forces for the
same chain extension d*. These elastic forces are usually
approximated by the finitely extensible nonlinear elastic (FENE)
model.55–57 In this paper we will use the Gaussian chain
statistics for its simplicity for the calculation of the host matrix
free energy. A calculation of the host matrix’s strain energy for
different network entanglement models can be found in ref. 53
and 54.

Assuming an isotropy for the shear modulus components,
Gx = Gy = Gz = G, and rewriting DLi

2/(L0
i )2 = li

2 + 2(1 � li) � 1
where li = Li/L

0
i , eqn (32) for the free energy of elastic deforma-

tions per unit volume becomes

fd ¼
Fd

V0
¼ G

2

Xx;y;z
j

li
2 � 3þ 2

Xx;y;z
j

Si

 !
(33)

Here the strain of the matrix is defined as Si = li � 1. Eqn (33)
can be further simplified taking into account lz = 1/(lxly),

or 1þ Sz ¼
1

1þ Sxð Þ2
� 1� 2Sx, and thus Sx = Sy = � Sz/2.

Therefore we have

fd ¼
G

2

Xx;y;z
j

li
2 � 3� Sz � Sz þ 2Sz

 !
¼ G

2

Xx;y;z
j

li
2 � 3

 !
(34)

The shear modulus G and the Young’s modulus Y of the
composite are related as

Y = 2G(1 + n) (35)

where n is Poisson’s ratio. Assuming a rubber-like elasticity for
the host polymer, and putting n E 0.5 into eqn (35), we get
Y = 3G. For the free energy of the elastic deformation per unit
volume we have

fd ¼
Y

6

X
i

li
2 � 3

 !
(36)

This elastic energy will be used to predict the elastic constant w
of the spring-bead based simulation model.

3 Simulation model for composites

The elasticity of the host polymer matrix can be modeled at
different coarse-grained levels. At the highest level of coarse-
graining a full-atomistic model with a well-defined force-field
for the host polymer can be used. At the medium level of
coarse-graining several host polymer atoms are grouped into
blobs for which the partial charges and modified force field
parameters are necessary to develop. Finally, within the lowest
level coarse-graining the host matrix is replaced by effective

elastic springs connecting some selective nodes of the polymer.
In this case the elastic constant of springs needs to be tuned for
matching the Young’s modulus of the coarse-grained model to
the Young’s modulus of the full atomistic model, or to the real
material. The lowest level of coarse-graining allows us to
simulate the actuation of larger systems consisting many
inclusions with diameters in the range between s = 100 nm
and s = 100 mm.

In the following we consider N hard sphere inclusions
spatially distributed in the bulk of the host matrix of volume
Vm. The homogeneous distribution of inclusions is created by
their random insertion into the host polymer matrix. For the
non-homogeneous distribution of inclusions they are placed at
the regular lattice sites. Such regular composites, depending on
the type of the lattice structure, are referred as the SC, BCC, and
FCC composites. Each inclusion is connected by elastic springs
to its nb nearest neighbors, as shown in Fig. 2. The resulting
dipole-spring model was also recently used in the context of
ferrogels.58–60 For the regular lattice composites the nearest
neighbors are chosen from the closest coordination shells. For
the random composite the nearest neighbors are taken from
the list of the first nb closest particles.

All springs are assumed to have the same elasticity constant w.
The lattice structure of the inclusion distribution is periodically
extended in all three directions. It should be noted that our
simulation model in the limit of w - 0 decouples the elastic and
electrostatic interactions allowing to go to the regime of electro-
rheological liquids.

When an external field
-

E is applied along the z-axis, which
coincides with the [001] direction of the lattice structures, the

Fig. 2 Schematic representation explaining our simulation model. For
clarity a 2D simulation cell is shown. The inclusions of diameter s are
shown in red in the main cell, and in green in the periodic images of the
main cell, which are shown as a hatched area. Each inclusion is connected
to nb nearest neighbors by springs: for clarity this is shown just for one
inclusion i in the center of a circle (blue in online) which encloses nb = 7
neighbors. The inclusions have induced dipole moments ~m shown as red
arrows. Each inclusion electrostaticly interacts with all inclusions in the
main cell, and with all their images in neighboring cells (note that only a
part of periodic images are shown).
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long-range interaction between the induced dipoles is handled
using Ewald’s summation technique61–63 with a correction for
the rectangular shape of the simulation cell.64 Test simulations
with direct summations over the 100 neighboring image cells
produced results similar to Ewald’s summation with a difference
between these two methods less than 0.01%. Direct summation
of the dipolar interactions can also be speeded up using the
dipole–(infinite)chain and (infinite)chain–(infinite)chain inter-
action potentials.65

Our set-up corresponds to simulating the bulk volume of the
host matrix, assuming that the system boundaries in the [001]
direction are far away. Omitting the boundaries is necessary for
getting a true long-range electrostatic contribution to the
dipole–dipole interactions between the inclusions. Therefore,
considering a bulk system with periodically repeated images in
all three directions makes it possible to get reliable actuation
results with a modest number (up to 10 000) of inclusions in the
system. The option of taking the system boundaries explicitly
into account demands excessive simulation efforts. For example,
a composite elastomer of volume 1 mm3, with particles of
diameter s = 200 nm distributed in its volume at very low volume
fraction Z = 0.005, hosts almost 1010 inclusions. Simulation of
such huge amounts of dipoles even on parallelized clusters is an
utterly time consuming process.

It should be noted that in the 3–0 composite materials initially
poled under sufficiently strong fields, heterocharges and homo-
charges can be trapped at the interface between the dielectric
inclusions and the elastomer matrix. Such trapping basically
results in the enhancement of the piezoelectric coefficient of
composite materials.66–72 In our set-up the role of trapped
charges, as a first approximation, can be comprehended
through the calculation of the remnant dipole moment ~mt of
the particle-charges complex under a zero field E = 0. In the
following, ~mt should be added to the induced dipole moments
~mi

p(E) of inclusions given by eqn (14). This will result in the
shifting of Sz(E),70–72 and in the hysteresis of the polarization-
field curve.73 For realizing the precise role of the trapped
charges, a more sophisticated model should be used, which
is not the scope of this work.

Another issue is the altered characteristics of the polymer
matrix in the vicinity of particles because of the particle-polymer
bonding. Within the particle-polymer interphase both the
dielectric permittivity em and the Young’s modulus Ym of the
polymer have enhanced values compared to their bulk values.74

Therefore, a more appropriate core–shell particle model is
required for the correct calculation of the 3-0 composite
actuation.75 However, the difference between the core–shell
and bare–core (used in the current work) models is expected
to be negligible when the surface-to-surface distance between
neighboring inclusions is much larger than the doubled shell
thickness. If this condition is met, and also provided that the
volume fraction of the shell is much smaller than Z, the shell
region effectively can be considered as a part of the inclusion
volume. Otherwise, the core–shell model should be strictly
implemented.76 For Z E 0.01 used in the current set-up, and
for particles of radius R = 100 nm, the average surface-to-surface

distance between neighboring particles is about 600–1000 nm,
which is at least two orders of magnitude larger than the typical
shell thickness of a few (2–5) nanometers. Therefore, for the
current set-up the bare–core particle model can be assumed as a
reliable approximation. Additionally, the non-polar nature of
the host matrix blocks the polarization gradient from the
inclusions into the host matrix,74 which makes the changes to
the computed electrostriction effects negligible.

3.1 Evaluation of the Young’s modulus of the host polymer
matrix from simulations

The elasticity parameter w of the spring-bead model invoked in
our simulations defines the Young’s modulus of the simulated
system. To get a good matching between the simulation predicted
Young’s modulus and the Young’s modulus of the real composite
material, we run a few test simulations with different fitting
prefactors w. The simulated energy of elastic deformations per
unit volume is

K ¼ 1

2V

Xx;y;z
i

wDrij2 (37)

Here Drij = |-rij �
-r0

ij| is the bond length deformation between the
inclusions i and j. Then, equating the energy K to the energy of
elastic deformations given in eqn (36), we identify the correct w
for which the simulation predicted Young’s modulus

YMD ¼
3w
V

Px;y;z
i

Drij2

Px;y;z
i

li2 � 3

(38)

is equal to the composite modulus Y, YMD = Y.
A guess value for the parameter w can be roughly estimated

using the following analytical procedure. At small strains,
assuming that all free energy components in eqn (32) are the
same, and accepting G = 3Y, for the free energy of elastic
deformations we get

Fd ¼
YV

2
Szð Þ2 (39)

Thus, the energy per inclusion is

f zN ¼
Fd

N
¼ Y

2rp
Szð Þ2 (40)

This energy is equal to the spring energy between a pair of
dipoles i and j,

Eelastic ¼
1

2
w rij � r0ij

� �2
¼ 1

2
w Szð Þ2 r0ij

� �2
(41)

Hence, from eqn (40) and (41), and using the nearest-neighbor

distance r0ij ¼
3

4prp

 !1=3

, for the effective spring constant

we have

w ¼ Y

rp r0ij

� �2 ¼ 4p
3
Yr0ij (42)
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Test simulations with w predicted by eqn (42) produced YMD E Y
within an accuracy of 3%. Hence, the knowledge of r0

ij is enough
for getting a fairly good guess for the spring constant of our
spring-bead model. We also note that for the case of regular
lattice composites the parameter r0

ij in eqn (42) can be replaced by
the lattice constant rp.

It should be noted that the current simulation model for the
composite, besides having elastic properties discussed in this
section, also maintains a bulk viscosity n. If the applied field is
cyclic, Ez(t) = E0eiot, then the viscosity n of the composite can be
defined from the rate of the composite response along the
applied field, n = Pm

z Lz/(dLz/dt).77–79 Here Pm
z is a stress created by

the electrostatic forces Fji defined in eqn (19). Because the
forces Fji are induced by the field Ez(t), the viscosity n also
depends on Ez(t). For the calculation of n(Ez) a different set-up
with a free surface is needed in order to measure dLz/dt directly
from the displacement of the boundary layer. Then, depending
on the value of otc, where the composite relaxation time tc and
the bulk viscosity n is connected through the Debye–Stokes–
Einstein relationship,80 it is possible to estimate the energy
dissipation and actuation hysteresis effects in the composite.
For a zero field Ez = 0, the deformation rate dLz/dt of the
composite can be evaluated by applying an external mechanical
perturbation Pz directly to the composite boundary (or to the
opposite boundaries of the slab polymer). In the current set-up
we are interested only in the response Sz of the bulk composite
to static loads Pz(Ez) for Ez = const, therefore the issue of
viscosity is out of scope of current consideration.

4 Simulation details

The calculation of the composite actuation relies on the resolv-
ing of the field-induced pressure components from the elastic
deformations of springs and from the dipolar interactions
between the inclusions. The pressure components can be
directly determined from the corresponding force virials.
For the latter the best suited method is Molecular Dynamics
simulation. We used NVT ensemble Molecular dynamics simula-
tions with a Verlet algorithm and a Nose thermostat to access the
actuation strain of the composite with polarizable inclusions.
N nanosized particles of diameter s = 200 nm at the volume
fraction Z = 0.0083 were distributed in the bulk of the host

elastomer matrix. For the case of regular lattice composites, the
lattice constants of the particle distributions are rp = (gVp/Z)1/3,
where the parameter g takes values 1, 2, and 4 for the SC, BCC,
and FCC composites correspondingly. For the case of random
(homogeneous) particle distribution, the nearest-neighbor
length scale is defined as rp = 0.554(Vp/Z)1/3 according to
ref. 81. Each inclusion is attached by springs with spring
constants w to its nb nearest neighbors. For the SC composite
nb = 14 and includes 6 nearest neighbors from the first coordi-
nation shell of radius rp, and 8 neighbors from the second

coordination shell of radius rp
ffiffiffi
2
p

. In the BCC composite each
particle is connected to its 8 neighbors from the first coordina-

tion shell of radius rp
ffiffiffiffiffiffiffiffi
3=2

p
, and 6 neighbors from the second

coordination shell of radius rp, thus making the total nb = 14
again. For the FCC composite we used nb = 12 nearest neighbors

in the first coordination shell of radius rp
ffiffiffi
2
p

. Schematically the
spring-bead model for these composites is shown in Fig. 3,
where blue-colored springs attach the chosen bead (colored
blue) to its neighbours in the first coordination shell, and
pink-colored springs attach it to its neighbours in the second
coordination shell.

Finally, for the random distribution we chose the first
nearest nb = 14 neighbors for each inclusion. A 3D view of the
simulation setup for the case of BCC composite with N = 1024
particles is shown in Fig. 4a.

Nearly all experimental studies33–42 were done for high k
inclusions randomly distributed in electrostrictive polymers,
for which an enhancement of the contracting deformation is
observed at fields up to 20 MV m�1. In our current model we
omit the electrostriction of the host matrix, assuming that it
has a non-polar molecular structure. In other words, for a pure
host matrix, assuming that the inclusions are part of the host
polymer, putting ep = em in eqn (10) and (11) will result in mi = 0
and Fij = 0. The actuated performance of the pure polymer is
defined by the Maxwell strain SM in eqn (26). Our aim is to
investigate composite deformations generated by the electro-
striction effect of the dipolar inclusions. To get larger strains we
apply stronger fields, 250 MV m�1 rather than the 20 MV m�1 in
experiments, and consider a more elastic host polymer, the
Young’s modulus 0.1 MPa as compared to 0.5–3000 MPa
in experiments. Because our own experiments with similar
simulated composite parameters are in the preparation stage,

Fig. 3 Schematic drawing showing details of the spring-bead model used for the SC, BCC, and FCC composite structures. Blue-colored springs attach
the chosen blue-colored bead to its neighbours in the first coordination shell, and pink-colored springs attach it to its neighbours in the second
coordination shell. Note that for the SC composite in the left picture and for the FCC composite in the right picture only the attachment to the
neighbours belonging to the single cell are shown. For the BCC composite in the central picture the pink springs to the second coordination shell
particles are shown partially in the single cell. The green spheres in the FCC composite represent the inclusions in the middle points of the cell faces.
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it is not yet possible to compare our simulation results with the
experimental data.

The amplitude of the applied field E has an upper limit
because of the clamping instability in dipolar systems at high
fields. The value of the critical field Ec is analyzed in
Appendix A.

The evolution of the stress-free initial system with E = 0 to a
new state with balanced electrostatic and elastic forces was
controlled by the equivalence of the pressure components in all
three directions. The pressure was calculated using the force
virials

P ¼ 1

3V

XN
j4 i

~rji �~Xji ¼ Px þ Py þ Pz (43)

where the forces ~Xij between the particles i and j (the force acts
on the particle i from the particle j) include both the electro-

static forces
-

Fji given by eqn (19) and the elastic forces

~Felastic
ji ¼ w rp � rij

� �~rji
rji

(44)

Here -
rji = -

ri �
-
rj, and for the elastic forces the summation

in eqn (43) goes over the nb neighbors of the inclusion i.
The pressure components in eqn (43) are defined as

Pk ¼
1

3V

X
j4 i

~kji �~XðkÞji (45)

for k = x, y, z. The equivalence of the pressure components Pk

implies Px = Py = Pz, or

Pz ¼ Pxy ¼
Px þ Py

2
(46)

During simulations this equivalency condition was implemented
according to the protocol given in Appendix B.

5 Simulation results

All simulations were carried out using a time step h = 380 ps
and an equilibration time Dt = 380 ns. The time for gathering
the statistics was Dt = 38 ns. The following parameters for the
host matrix and inclusions were considered: ep = 100, em = 2,
Y = 0.1 MPa, and Z = 0.083. Putting these values into eqn (30)
and (31) we get for the composite ~em = 2.06 and Ỹ = 0.103 MPa.
Then, according to eqn (26) the Maxwell strain will be

SM ¼ 4:42� 10�17 mV�1
� �2�E2 (47)

where E is the amplitude of the applied field given in [V m�1]
units. Whereas our setup does not explicitly include the Maxwell
pressure acting on the surface of the whole composite membrane,
we assume that the strain calculated for the simulation box will be
the same for the whole membrane, and therefore, its strength
should be compared with the Maxwell strain.

The lattice constants rp for the regular particle distributions
are: SC-4s, BCC-5s, and FCC-6.3s. The critical field Ec, defined
in Appendix A, for the system setup from eqn (60) is about
Ec E 500 MV m�1. We used twice weaker fields E = 250 MV m�1

for the maximal applied field.
In Fig. 5 we show the evolution of the pressure components

Pz and Pxy during the simulation time for the FCC composite at
E = 200 MV m�1. At the initial time t = 0, when a stress-free
composite is put under external field E, the dipole–dipole inter-
action between the inclusions attempts to elongate the composite
along the z-axis direction making Pz 4 Pxy. For balancing these
two components, the system size is increased along the z direction
with simultaneous decreasing of its lateral dimensions. This leads
to the drop of the pressure component Pz and to the rise of
the pressure component Pxy. When the two pressure compo-
nents reach the same value, the composite enters into a stable

Fig. 4 Snapshots of the bead-spring model used for the BCC composite under the applied field E = 250 MV m�1. Left picture – the initial configuration
at the simulation time t = 380 ps, right picture – the final configuration at the simulation time t = 100 ms. Pink arrows represent the dipole moments of
inclusions. Different bead colors correspond to the altitudes of the beads from the bottom plate x = 0. Springs are colored in green.
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polarized state. The time resolved evolution of the composite strain
is shown in Fig. 5. Following the drop of the pressure component
Pz the strain linearly increases and reaches its equilibrium value
Sz = 12% at which the difference between the pressure components
becomes zero. The small fluctuations of the strain Sz around its
equilibrium value are related to the amplitude of the size increment
d of the simulation box size Lz. Even at the equilibrium state, the
balance between the pressure components in the composite is
tested by random attempts to change the composite thickness
by d. Decreasing the value of d will decrease the amplitude of
fluctuations in Sz, however it will increase the simulation time
needed for the composite to reach the equilibrium state.

5.1 Actuation of the SC, BCC, FCC, and random composites

Calculated strains for composites with different particle distribu-
tions as a function of the applied field E are collected in Fig. 6.

Negative strains in this figure mean a contraction, and positive
strain means an elongation of the composite. The homogeneous
(random) distribution of inclusions provides the strongest
contraction with Sz reaching almost �50% at E = 250 MV m�1.
The SC distributed inclusions also generate sufficiently strong
negative strain. At the same time other regular lattice compo-
sites reveal an elongation, with the BCC composite having a
stronger response than the FCC composite. Note that in the
regular lattice composites with non-zero strains the following
transitions take place: SC to a simple tetragonal lattice, BCC
to a body-centered tetragonal (BCT) lattice, and FCC to face-
centered tetragonal (FCT).

The contraction of the random composite can be understood
using the following analytical approach. Let us assume that an
inclusion i is wrapped by a fictitious shell of radius rp and
thickness dr. There are Ns = 4prp

2drrp dipoles homogeneously
distributed in this shell. The force between the central dipole i
and the dipole j from the shell, which is given by eqn (19), can be
rewritten as

~FjiðrÞ ¼
1

4pe0em

3m2

~rji4
1� 5 cos 2y
� �

~e~rij þ 2 cos y~e~m
h i

(48)

for the case of aligned dipoles ~miJ~mjJ
-
z. Here y is the angle

between the -
rji (directed from j to i) and the axis -

z, m is the

amplitude of ~mi = ~mj, and -
er-ji

and -
em- are unit vectors along the

separation distance and dipole moments correspondingly.

We calculate spherically averaged force components
-

Fji
-
ez

~Fji~ez

D E
y
¼ A

ðp=2
0

1� 5 cos 2 y
� �

cos yþ 2 cos y cos y

" #
rðyÞ sin ydy

(49)

Fig. 5 Upper figure: the Pxy and Pz components of the total pressure
calculated from the virials of the electrostatic (eqn (19)) and elastic
(eqn (44)) forces, as a function of the simulation time. Red solid line is
for Pxy, and dashed blue line is for Pz. Bottom figure: The evolution of the
composite strain. Other system parameters are: E = 200 MV m�1, a FCC
composite, Z = 0.0083.

Fig. 6 Deformation of the composite under the applied field E oriented
in the [001] direction for parameters Y = 0.1 MPa, ep = 100, em = 2.
Four different spatial distributions for the inclusions are used: BCC – red line
with squares, FCC – blue line with circles, SC – black line with triangles, and
random distribution – pink line with stars. Whereas the BCC and FCC
composites elongate, the SC and random composites contract. Green
dashed line represents the Maxwell strain SM given by eqn (47).
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and
-

Fji
-
exy,

~Fji~exy

D E
y
¼ �A

ðp=2
0

1� 5 cos 2 y
� �

sin y

" #
rðyÞ sin y dy (50)

in the upper hemisphere 0 o y o p/2. Here -ez is a unit vector
along the z-axis, and -

exy is a unit vector perpendicular to the
applied field and directed from the central dipole i outwards to
the shell particles. Note that the averaging over 0 o y o p in
eqn (49) and (50) might lead to the mutual cancellation of
the force components in the upper and bottom hemispheres.
The function r(y) in eqn (49) and (50) is the angular depen-

dence of the dipole distribution, and the prefactor A ¼ 3

2

m2

e0em
~rji

4

has no y dependence. By putting r(y) = 1 for the uniform
distribution of dipoles valid for the random composite, we have

~Fji~ez

D E
y
¼ A �1

2
cos 2yþ 5

4
cos 4y

� p=2
0

¼ �3
4

(51)

~Fji~exy

D E
y
¼ �A �y

8
� sinð2yÞ

4
þ 5

32
sinð4yÞ

� p=2
0

¼ p
16

(52)

The negativity of h-Fji
-
ziy means shell contraction along the

z-axis. A positive value of h-Fji
-
exyiy corresponds to the repulsion

of the shell particles from the central dipole i in the lateral
direction. Thus, a combined result of these two terms is a net
contraction of the random composite along the applied field E.
This pure dipolar argument defines the electrostriction effect
in the random composite. For finding the total composite
actuation the contribution from elastic springs should also be
calculated.

Using similar arguments it is possible to comprehend the
contraction of the SC composite. In this case the angular
averaging in eqn (49) and (50) should be done over angles
f and y, and the dipolar distribution in the shell r(f,y) a sum of

the Dirac functions rðy;fÞ ¼ dðyÞdðfÞ þ
P3
i¼0

d y� p
2

� �
d f� i

p
2

� �
should be used. However, the simplest way to evaluate the
composite actuation is to use the expression for the interaction
between a pair of parallel dipolar chains per particle65 (we show
here the leading term of the interaction)

Uccðr; zÞ ¼
2pm2

e0emrp3

ffiffiffiffi
rp

r

r
e
�2pr

rp cos
2pz
rp

(53)

Here r is the chain–chain separation distance, z is the vertical
shifting parameter, and the energy is scaled per particle. In the
SC composite with its [001] orientation being parallel to the
applied field, each chain of dipoles has four nearest chains of
the same orientation with r = rp and z = 0. For this case the
interaction potential Ucc 4 0 and the neighboring chains are
repelled from the central chain. Such lateral repulsion in the SC
composite results in its contraction in the -

z direction.
For the BCC and FCC composites, each dipolar chain is also

surrounded with its four nearest chains at separation distances

r ¼ rp
� ffiffiffi

2
p

and r = rp/2 correspondingly, with z = rp/2 for both

composites. Putting these values into eqn (53) we get Ucc o 0
for the BCC and FCC composites. Such lateral attraction in the
composite is equivalent to the elongation in the longitudinal
direction.

In Fig. 6 we also show the contribution from the Maxwell
strain in eqn (26). This strain appears to be more than twice
stronger than the electrostrictive strain of the composites for the
current system parameters. As it has been discussed in Section
2.3, at large strains the linear approximation should be replaced
by the modified theory given in ref. 16 which predicts smaller
strain values. Therefore, the Maxwell data at the applied field
E 4 50 MV m�1 overestimates the true strain of the material. At
the same time, at low fields E o 50 MV m�1, the Maxwell data
can be assumed reliable. It is stronger than other strains in that
area. Obviously, for larger inclusions with a higher dielectric
constant, which will result in a much stronger dipolar interaction
between the inclusions, the positive strain of the BCC and FCC
composites will be stronger than the Maxwell strain. The latter
very weakly depends on the size and dielectric constant of
particles, mainly through the mixing rules eqn (30) and (31).
Note also that for em = 2 considered for the host matrix, the
Maxwell strain for the constant voltage condition given by
eqn (28) coincides with the strain shown in Fig. 6.

The effect of the inclusion packing fraction Z on the composite
actuation is analyzed in Fig. 7 on the example of the BCC
composite. The increase of Z enhances the composite actuation
because of the stronger dipole–dipole interaction at smaller
separation distances. However, it should be noted that at high Z
the effective composite elasticity constant Ỹ given by eqn (31)
might become big enough resulting in a weakened composite
actuation.

5.2 Lattice randomness effects on the composite actuation

We now investigate how the deviation of the inclusion position
from the true lattice sites might alter the composite actuation.

Fig. 7 Deformation of the BCC composite under the applied field E.
Other system parameters are: Y = 0.1 MPa, ep = 100, e = 2, Z = 0.0083
(red line with squares) and Z = 0.064 (blue line with circles).
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Such spatial distribution defects always exist in experimental
studies. The imperfectness of the spatial distribution of inclusions
{-rj} can be estimated by the randomness parameter

d ¼ 1

Ns

XN
j

~rj �~r0
�� �� (54)

where -
r0 denotes the positions of the lattice sites. For each

randomness parameter d we generate a sphere of radius d around
each lattice site and assign a random point from its surface to the
inclusion position. Simulation results for the actuation of the SC,
BCC, and FCC composites are shown in Fig. 8. We see that, as the
parameter d increases, the strength of elongation of the BCC and
FCC composites gradually fades away and at about d E 0.8
reverses to a complete contraction.

The behavior of the SC composite in Fig. 8 stands separate
from the monotonic behavior of the BCC and FCC composites.
The contraction of the SC composites first weakens by going up
to smaller �Sz values, and then enhances going back to the
higher �Sz. Such nonlinear behavior is a consequence of the fact
that in the SC composite the dipolar chains have maximal mutual
repulsion because of the zero shifting along their -

z positions.
Therefore, any non-zero shifting z brought by the randomness
parameter d into the chain positions will definitely decrease the
chain–chain repulsion in eqn (53), or equivalently, weaken the
composite contraction. For larger d the simulated systems behave
like a random composite, and thus the actuation of all regular
lattice composites approaches the random composite strain value
of about 50% (see the pink line in Fig. 8).

5.3 Actuation of distorted lattice composites

We now examine how the initial distortion of the lattice
structure of the inclusion distribution alters the composite
actuation. For this purpose we fix the packing fraction of
inclusions to Z = 0.0083, and change the ratio of the lattice
constants l = c/a, where c is the lattice constant of the regular

lattice in the -
z axis direction, and a is the lattice constant in

the x and y directions. In all cases we limit ourselves to the
consideration of symmetric distortions of the initial structure
in the xy plane. In other words, instead of starting with SC, or
BCC, or FCC lattice composites with l = 1, we chose different
simple tetragonal, BCT and FCT lattice composites with 0.4 o
l o 2.5 as the starting configuration for the composite.

The calculated electrostatic energies Vij per particle, given by
eqn (21), for the distorted SC, BCC, and FCC composites are
plotted in Fig. 9 for an applied field of E = 1 MV m�1. At low
distortion ratio l of the initial structure, which corresponds to a
configuration of dipolar chains separated by a distance larger
than the separation between the intra-chain dipoles, the main
contribution to the electrostatic energy comes from the intra-
chain dipole–dipole attractions. That is why all the energy curves
in Fig. 9 have negative values at low l. At high l values, which
correspond to the configuration of dipolar sheets (2D plates)
separated by a distance larger than the inter-sheet separation
between the dipoles, the main contribution to the electrostatic
energy stems from the intra-sheet dipole–dipole repulsion. This
is seen as the upward increase of energy curves in Fig. 9 at large l.
Between these two extreme cases for l the electrostatic energy
for the BCC and FCC composites has nonmonotonic dependence
on l. The energy curve for the BCC composite has a maximum
at lmax = 0.7664 and a minimum at lmin = 1.6565. For the FCC
composite these values are lmax = 0.5637 and lmin = 1.241
correspondingly. The position of lmax corresponds to a metastable
state, and any small deviation, either elongation or contraction of
the initial system, from this position will be energetically favorable.
An opposite behavior is expected for the system with a distortion
ratio of the initial structure lmin. In this case the composite
stays forever at this position, because all other states in its
vicinity are unfavorable and thus will try to elongate, or contract,

Fig. 8 Dependence of the composite strain Sz on the randomness
parameter d for the SC, BCC, and FCC composites. Other parameters
are: E = 250 MV m�1, Y = 0.1 MPa, ep = 100, em = 2, and Z = 0.0083.

Fig. 9 The calculated total electrostatic energy per particle Uel ¼
1

N

PN
ij¼1

Vij

for the distorted SC, BCC, and FCC composites with Z = 0.0083 as a
function of the distortion ratio of the initial structure l = c/a. Applied field
is E = 1 MV m�1.
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depending on which side of lmin they are standing, for reaching
the lmin state.

To further analyze the meaning of lmax and lmin in Fig. 9, we
compare their values with the stability points of hard sphere
dipolar systems and electrorheological fluids.63–65,82–84 For
systems with permanent dipoles, it is known that as the dipole
moment of spheres increases, the ground state of the system
changes from the apolar BCC lattice structure to a polarized
BCT lattice structure. The lowest energy for the BCT structure

happens at the size ratio
c

a
¼

ffiffiffi
2

3

r
¼ 0:817, with c = s corres-

ponding to the case of touching dipoles along the -
z axis.

The [110] plane of this BCT has a triangular lattice with the
lattice constant c, and the cell is polarized in the perpendicular
to this plane direction. A similar BCC–BCT behavior is also
observed in electrorheological colloidal suspensions.65,83,85

Here the BCT structure is also composed of touching dipoles
along z direction with c = s, and the size ratio is c/a = 0.817.
This value is larger than our result lmax = c/a = 0.7664 because
of the following reasons. First, the implemented constant cell
volume condition rp

3 = ca2 implies that for the BCT with c = s

the size ratio is ‘ ¼ s
rp

� �3
2

and depends on the initial lattice

constant rp. For rp = 5s used for the BCC composite, the size
ratio for which a stable BCT with touching dipoles exists is
l = 0.09. This value is much smaller the value l = 0.817 which
corresponds to the BCT deformation of the BCC lattice with
rp = 1.1547s. Second, whereas the BCT of hard sphere dipolar
system and electrorheological colloids is stable at l = 0.817, our
BCT with l = 0.7664 is unstable as discussed above.

A detailed analysis of the curves shown in Fig. 9 reveals
several other interesting observations:

(i) for a given distortion ratio of the initial structure l = c/a
the BCC structure is always more stable than the FCC structure.

(ii) the random distribution of inclusions is not always the
structure with minimal energy per particle. The polarized BCC
phase is more favorable in the region 1.5 o l o 2, and the SC
composite is favorable for l o 0.85.

(iii) all regular lattice structures have very small negative

values at l = 1. The rescaled energy per particle Uelð‘Þ ¼

4pe0emsN�1
PN
ij¼1

Vijð‘Þ
�
e2 is �3.16 � 10�3 for the FCC lattice,

�1.52 � 10�2 for the BCC lattices, and �3.05 � 10�2 for the SC
lattice.

It is evident that electrostatic energy curves are useful for
predicting the response of the composite to external fields.
We introduce the so-called Polarization Driven strain SPD,
defined as the derivative of the electrostatic energy over the
distortion ratio of the initial structure,

SPD ¼ �
dUelð‘Þ

d‘
(55)

This quantity is plotted in Fig. 10, together with the calculated
strain of the distorted structures.

There is a good qualitative agreement between the simulated
Sz and polarization-driven SPD strains for the regular lattice
composites. For the BCC and FCC composites both strains,
Sz and SPD, have a window of elongation and both strains cross
the zero-strain line at the same distortion points. These cross-
ing points correspond to the extremes of the electrostatic
potential shown in Fig. 9, and thus have different natures.
The crossing points on the left of the maximum in Fig. 10a
and b are metastable points, and the crossing point at the right
side of the maximum Sz is the stability point. The nature of the
crossing points can also be recognized from the slope of lines
tangent to the strain curves at these points. A steeper slope
usually indicates metastability of the corresponding point.

The strain results reported in ref. 28 for the distorted BCC
composite only covers the metastable area around lmax where a
negative-to-positive strain transition is observed similar to our
finding. In that sense our results cover a wider range of the
distortion ratio of the initial structure and predict the existence
of the second crossing point. The position of the maximum of
Sz for the BCC composites is around lBCC E 1, and for the FCC
composite it is around lFCC E 0.75. The ratio of these two

positions, ‘FCC=‘BCC � 1
� ffiffiffi

2
p

corresponds to the martensitic
transition FCC–BCC, when the shrinking of FCC lattice along

its [001] direction
ffiffiffi
2
p

times transfers it to a BCC lattice.
The SC composite experiences a contraction for all distortion

ratios l of the initial structure. However, there is a noticeable
local maximum at lE 1.4. We believe that the non-monotonicity
of the strain stems from two different contributions to the
electrostatic energy: the intra-chain attraction along the -

z axis,
and the chain–chain repulsion in the lateral direction. These
contributions have different dependence on the distortion ratio
of the initial structures l: the intra-chain attraction decreases

as 1/l3, whereas the chain–chain repulsion decreases as
ffiffi
‘
p

at large l.

6 Guidelines for experimental
realization of theoretical predictions
for the composite actuation

We anticipate that the realization of ordered inclusion distribu-
tions is not an easy task in experimental studies. For achieving
ordered lattice structures or uniform particle distributions in
experiments, the concept of polymer-grafted nanoparticles can
be implemented.5 The nanoparticles can be also charged to
facilitate their aggregation into ordered morphologies at
elevated temperatures before freezing their positions at room
temperature.

The chosen dielectric permittivity and elasticity parameters
for the host matrix are close to the corresponding parameters of
the Very High Bond acrylic elastomer (3 M VHB), which has
em = 4.7, Y = 0.5 MPa, and of the styrene–(ethylene-co-butylene)–
styrene triblock copolymer (SEBS), which has em = 2, Y = 1 MPa.
Smaller Y in simulations provides larger actuation strains and
thus a better resolution between different types of composite
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actuations. Whereas the molecular weight and the internal
structure of the polymer are not directly accounted for in our
simulation model, the following two assumptions are made on
them: (i) the polymer molecule has no molecular dipoles, and
(ii) the molecules form a mesh network with homogeneous
structure in all directions. The first assumption guarantees that
the applied fields does not infer any structural changes to the
polymer molecules and thus no internal electrostriction effect
takes place. The second assumption is necessary for using
the same spring-constant w for all connecting springs in our
spring-bead model.

According to our simulation results, a better choice for
the host matrix is an elastomer with low Young’s modulus Y.
The choice for em and for the dielectric contrast parameter ep/em

depends on the actuation purpose of the composite. If the
composite is intended to have enhanced Maxwell-type contrac-
tions, then both em and ep/em should be large, and the particles

have to be randomly distributed, or to follow the SC spatial
distribution. In the opposite case, if the composite is designed
for having large elongations along the field, then em should
be small for getting low Maxwell stress values, whereas the
contrast parameter ep/em should be large. Additionally, for this
case the spatial distribution of particles should strictly follow
either the BCC or the FCC structures. For further optimization
of the composite parameters, current research should be
expanded to elaborate the role of the particle size R and its
volume fraction Z.

7 Concluding remarks

We have shown that the electrostriction effect, which is a
significant contribution to the actuation of low aspect-ratio
composites, strongly depends on the spatial distribution of

Fig. 10 Deformation of the BCC (a), FCC (b), and SC (c) composites as a function of the distortion ratio l = c/a of the initial structure. Line with symbols:
simulation results, full line: the prediction of the Polarization Driven strain in eqn (55). Other parameters are: E = 250 MV m�1, Y = 0.1 MPa, ep = 100, e = 2,
Z = 0.0083. (a) BCC, (b) FCC, (c) SC.
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inclusions. Whereas the composites with homogeneously
(randomly) distributed inclusions always contract along the
applied field, the actuation of regular lattice composites
depends on their lattice structure: the SC composite always
shrinks, but the BCC and FCC composites show a net elon-
gation response along the applied field oriented parallel to the
[001] direction of the lattice.

The elongation of the BCC and FCC composites was addi-
tionally examined against the defects in the lattice structure of
the spatial distribution of inclusions. We show that at large
defects, measured by the randomness parameter, the elon-
gation of the BCC and FCC diminishes and switches to a net
contraction. Similar effects are observed for initially distorted
lattices with the distortion ratio parameter l a 1. Here we
detect the existence of an elongation window, inside which the
BCC and FCC composites experience an elongation, and
beyond which the composites contract. It should be noted that
the elongation window reported by Zubarev et al.30,31 and
Morozov et al.32 are different from our findings. Both groups
explicitly considered the dependence of the macroscopic
electrostatic effect on the shape aspect ratio, whereas we detect
the elongation window considering only the electrostriction
effect as a function of the distortion ratio of the initial
structure.

We finally comment on the possible extension of the
research reported here. First, the monodisperse dipolar system
considered here can be extended to a more realistic polydis-
perse dipolar system. In this case, a specific treatment of
the bonding springs between the particles should be taken for
two following reasons: (i) larger/smaller particles have larger/
smaller surfaces and thus the elastic forces from the polymer
matrix should be properly graded to account for this problem.
(ii) The ground states of the polydisperse system under an
applied field will depend on the polydispersity parameter.

Second, the macroscopic polarization theory used in this
paper corresponds to the far field solution of the Poisson’s
equation of polarization. At high volume fractions of the
inclusions this approximation should be replaced by the near
field solutions which contain higher order multipoles of the
dipolar field.

Third, the strain elastic energy in Section 2.4 is calculated
using the Gaussian chain statistics and Hookian springs applic-
able to low strain amplitudes |Sz| r 30–40%. This statistics
should be replaced by the Langevin chain statistics briefly
discussed at the end of Section 2.4. Under the Langevin
statistics, which corresponds to the FENE nonlinear springs
between the inclusions, we expect that the actuation of the
composite will be smaller than the reported here simulation
results in the high strain regions.

Fourth, in the current study the vertical change DLz of the
simulation box was coupled with the symmetrical changes in
the lateral box dimensions DLx = DLy. As a result of this we
observed the BCC to BCT and FCC to FCT transitions under
applied fields. The other possible transitions are the BCC to
BCO (body centered orthorhombic) and FCC to FCO (face
centered orthorhombic) transitions for which the three box

dimensions should be changed separately.82 In order to test
the occurrence of stable BCO or FCO transitions we will
accompany each shape-changing simulation step by the addi-
tional variation of the Lx/Ly ratio.

Fifth, in the current simulation model the pressure components
were calculated for all nodes, and averaged over all inclusions. As a
result, the change of the simulation box shape was implemented
for all nodes at the same ratio. For the case of polydisperse
inclusions this approach needs to be modified by allowing local
shape changes inside the simulation box.

Sixth, the actuation of the composite can be further enhanced
by replacing the high-dielectric inclusions with either charged
multilayers,86 or layered ferromagnetic elastomers72 for the
magnetic actuation purposes. Our recent works72,86 showed that
by varying the internal parameters of these materials, such as the
number of layers, the dielectric and elastic constants and the
thicknesses of the layers, the actuation of these layered materi-
als can be effectively controlled. For example, for a charged
multilayer elastomer we detected a window of elongation with
Sz E 150% for the interface charge density 0.01 C m�2. Putting
these layered elastomers into the host matrix can tremendously
reinforce the composite actuation. Such a double-actuation
concept has a potential to develop into a new field of the
electroactive composite research.

Appendix
A Stability region for composite actuation

Composites with polarizable inclusions are supposed to sustain
their original elastic properties during the repeated actuation
cycles under the applied fields. In other words, elastic forces
of the host polymer should restore the initial state of the
composite when the load is removed. This is only possible if
the amplitude of the applied field does not exceed a critical
field Ec above which the dipolar attraction triggers a clamping
of dipoles into a touching configuration. When such clamping
happens, with no host matrix material between the touching
dipoles, there will be no restoring force to separate the dipoles
at lower fields. As a result, the composite will lose its actuation
capability forever. In this appendix we analyze the properties of
the clamping instability.

For the head-to-tail oriented dipoles we introduce a dimen-
sionless stability parameter

cðrÞ ¼ EelasticðrÞ
VijðrÞ

����
���� (A1)

which measures the balance between the dipole–dipole attraction
potential Vij(r) given by eqn (21), and the elastic energy of the host
matrix deformation,

EelasticðrÞ ¼
1

2
w rp � r
� �2¼ 2pY

3
rp � r
� �2

rp (A2)

where w is given by eqn (42). Putting y = 0 in eqn (21) for the
stability parameter c we get

c
r

s

� �
¼ A

rp

s
� r

s

� �2 r

s

� �3
(A3)
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where the distance independent coefficient A is

A ¼ ep þ 2em
ep � em

� �2
2

3

em
e0

Y

E2

rp

s
(A4)

Several representative curves for c(r) are plotted in Fig. 11.
At small A = 0.015, see the thin dot-dashed (blue in color
version) line, c(r) o 1 for all separation distances s o
r o rp. For this case the composite is completely vulnerable
to the dipole clamping, i.e. when the field is switched on, the
dipoles along the field will decrease their separation until a
touching configuration r = s is achieved. When the prefactor is
A = 0.15, see the thick solid line (black in color version) in
Fig. 11, c(r) 41 for all separation distances, meaning that the
composite is completely robust against any clamping. In this
case the dipoles along the field direction will decrease their
separation from rp to rc, where rc is the crossing point position
shown as a filled black circle in Fig. 11. For intermediate values
of A, we have a single-point stability state for A = 0.028,
a partially stable state for A = 0.06, and a fully stable state for
A = 0.11. For all these cases the composite actuation is defined
by the distance between the point rp = 4 and the position of
the right hand crossing point shown as filled circles in Fig. 11.
The barrier between the latter and the left-hand crossing
points, shown as open circles, keeps the composite safe from
possible dipolar clampings. When the left crossing coincides
with r = s, which corresponds to the line A = 0.11 in Fig. 11,
the system becomes completely safe against any clampings.
Thus the condition, c(r = s) = 1, can be used to define the
critical electric field,

Ec �
ep þ 2em
ep � em

� �
rp
� � 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yemrp�

p
� 0:19 MV m�1 (A5)

below which the actuation will be reversible. Here rp* = rp/s,
and Y is given in N m�2 units. The typical values for Ec are
discussed in the section of simulation results.

B Simulation stages for the composite actuation

The equivalence of the pressure components in eqn (46) was
implemented using the following consecutive simulation
stages.

Stage (1) the system is equilibrated under the applied field
-

E during the simulation time t = Dt.
Stage (2) the statistics for the pressure components are

gathered during the simulation time Dt o t o Dt + Dt, and

at t = Dt + Dt the average pressure �Pi ¼
1

Dt

P
PiðtÞ for i = x, y, z is

calculated.
Stage (3) the difference between the pressure components

%Pz and %Pxy is calculated, DP = %Pz � %Pxy.
Stage (4) at the simulation time Dt + Dt + h the cell size Lz is

changed to Lz
0 = Lz + d, where the value of the size increment d is

chosen to be a tiny fraction s of L0
z, s { 1, and the sign of d

is defined according to the relation d = sLzsign(DP). The lateral
cell sizes Lx and Ly are changed according to the constant

volume condition, Lx
0 ¼ Lx

� ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

and Ly
0 ¼ Ly

� ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

.
Stage (5) the system is equilibrated again until the pressure

components are stabilized during the simulation time Dt + Dt +
h o t o 2Dt + Dt + h.

Stage (6) once a new stable state is reached, then during the
2Dt + Dt + h o t o 2Dt + 2Dt + h simulation time new statistics
for %Pi are collected and the averages %Pi are calculated.

Stage (7) steps (3–6) are repeated over and over again until the
resulting system size Lz stabilizes following the zero difference
between the pressure components D %P.

Stages (1–7) are schematically drawn in Fig. 12 and explained
in the figure caption. The schematic picture illustrates the case of

Fig. 11 The stability function c(r) from eqn (A3) against the separation
distance between the dipoles for the nearest neighbor distance rp = 4 and
different prefactors A given by eqn (A4). From bottom to top: A = 0.015,
0.028, 0.06, 0.11, and 0.15. Critical field Ec in eqn (A5) is defined for the line
A = 0.11.

Fig. 12 Schematic representation explaining the simulation stages
for getting stabilized composite under the applied field E. The stages
are explained in the text. The squares/rectangles correspond to the
un-deformed/deformed composites. The long-dashed arrows (stages 1
and 5) correspond to the system equilibration stages. The full arrows
correspond to the stage of gathering necessary statistics for the pressure
components. Finally, the short-dashed arrows are for the stage of composite
deformation. Above each arrow the number of the corresponding stage is
given. Below the arrows the time span of the stage is indicated.
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a composite contraction from its initial cubic (a square in 2D
drawing) shape to a rectangular prism (a rectangle in 2D
drawing) shape.
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tion properties of charged multilayer films, J. Appl. Phys.,
2015, 117, 034504.

73 S. T. Lau, K. W. Kwok, F. G. Shin and S. Kopf, A poling study
of lead zirconate titanate/polyurethane 0-3 composites,
J. Appl. Phys., 2007, 102, 044104.

74 J. Y. Li, Exchange Coupling in P(VDF-TrFE) Copolymer
Based All-Organic Composites with Giant Electrostriction,
Phys. Rev. Lett., 2003, 90, 217601.

75 J. Y. Li, L. Zhang and S. Ducharme, Electric energy density of
dielectric nanocomposites, Appl. Phys. Lett., 2007, 90, 132901.

76 E. F. Kneller and R. Hawig, The Exchange-Spring Magnet: A
New Material Principle for Permanent Magnets, IEEE Trans.
Magn., 1991, 27, 3588–3600.

77 M. Doi and S. F. Edwards, The Theory of Polymer Dynamics,
Clarendon Press, Oxford, U.K., 1986.

78 M. Yamamoto, The visco-elastic roperties of network struc-
ture. II Structural vuscosity, J. Phys. Soc. Jpn., 1957, 12,
1148–1158.

79 A. A. Gurtovenko and Y. Ya. Gotlib, Viscoelastic Dynamic
Properties of Meshlike Polymer Networks: Contributions of
Intra- and Interchain Relaxation Processes, Macromolecules,
2000, 33, 6578–6587.

80 J. L. Dote, D. Kivelson and R. N. Schwartz, A molecular quasi-
hydrodynamic free-space model for molecular rotational
relaxation in liquids, J. Phys. Chem., 1981, 85, 2169–2180.

81 P. P. Bansal and A. J. Ardell, Average nearest-neighbor
distances between uniformly distributed finite particles,
Metallography, 1972, 5, 97–111.

82 D. Levesque and J. J. Weis, Stability of solid phases in the
dipolar hard sphere system, Mol. Phys., 2012, 109, 2747–2756.

83 U. Dassanayake, S. Fraden and A. van Blaaderen, Structure of
electrorheological fluids, J. Chem. Phys., 2000, 112, 3851–3858.

84 A. P. Hynninen and M. Dijkstra, Phase diagram of dipolar hard
and soft spheres: manipulation of colloidal crystal structures
by an external field, Phys. Rev. Lett., 2005, 94, 138303.

85 A. Yethiraj and A. van Blaaderen, A colloidal model system
with an interaction tunable from hard sphere to soft and
dipolar, Nature, 2003, 421, 513–517.

86 E. Allahyarov, A. M. Menzel, L. Zhu and H. Löwen, Magne-
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