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We study numerically a model for active suspensions of self-propelled repulsive particles, for which a
stable phase separation into a dilute and a dense phase is observed. We exploit the fact that for nonsquare
boxes a stable “slab” configuration is reached, in which interfaces align with the shorter box edge.
Evaluating a recent proposal for an intensive active swimming pressure, we demonstrate that the excess
stress within the interface separating both phases is negative. The occurrence of a negative tension together
with stable phase separation is a genuine nonequilibrium effect that is rationalized in terms of a positive
stiffness, the estimate of which agrees excellently with the numerical data. Our results challenge effective
thermodynamic descriptions and mappings of active Brownian particles onto passive pair potentials with
attractions.
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Equilibrium statistical physics [1] rests on two decep-
tively simple premises: The laws of conservation and the
uniform probability of all accessible microstates in isolated
systems. Of course, suitable local equilibria are only a small
part of the Universe and nonequilibrium encompasses so
many diverse processes and phenomena that the quest for a
universal description is one of the great challenges in
statistical physics. While likely futile in full generality,
there are subclasses of driven systems for which a com-
prehensive theory seems to be within reach. One such class
are suspensions of active particles.
Active matter [2–4] has emerged as a paradigm to

describe a broad wealth of nonequilibrium collective
dynamical behavior, including (but not limited to) droplets
[5], bacteria [6], and microtubule networks driven by
molecular motors [7]. Here we focus on active Brownian
particles (ABPs), a model for self-propelled colloidal
spherical particles suspended in a solvent (see Ref. [8]
for a short perspective of these systems and for references)
or a polymer solution [9]. Quite strikingly, particles cluster
into dense and dilute regions for high-enough density and
swimming speeds. Such behavior has been observed both
experimentally [10–12] and in computer simulations of
purely repulsive particles without [13–19] and with [20–22]
hydrodynamic interactions. Microscopically, this has been
understood to arise from the time-scale separation between
the decorrelation time of the directed motion and the
collision rate, which is controlled by speed and density.
The actual time scales depend on many details (pair
potentials, swimming mechanisms, and hydrodynamic
interactions [22]), but the generic effect is robust and only
requires volume exclusion in combination with a persistent
motion of the particles.
Because the formation and growth of dense domains

indeed resembles the phase separation of passive

suspensions with attractive interactions, several theoretical
descriptions following a “thermodynamical” route have
been proposed, including effective mean-field free energies
[23–25], pressure equations of state [19,26–28], and map-
pings to effective isotropic pair potentials [9,29]. However,
microscopic pair correlations of the self-propelled particles
are not isotropic and the crucial physical ingredient is the
persistence of motion over a length lp ¼ v0τr, where v0 is
the swimming speed and τr the time over which orienta-
tions decorrelate.
In this Letter, we numerically test the idea of an intensive

pressure for ABPs. To this end one has to assume an
equation of state exists [30], as supported by simulations
[19,28,31]. We adopt a strategy, proven to be very fruitful in
the study of phase-separated passive systems, of exploiting
finite-size transitions in nonsquare simulation boxes [32].
We follow old ideas by Kirkwood and Buff [33], together
with a generalization of the swimming pressure [19], and
thus obtain access to the interface [34]. We show that the
interfacial tension extracted from the excess mechanical
stress is actually negative. In contrast, the stiffness gov-
erning the interface fluctuations is positive, and we show
how to relate both through the dissipated work.
We simulate a minimal model that has been studied by a

number of groups [13–19]. The model consists of N
particles with diameter a interacting via short-ranged
repulsive forces [here from a Weeks-Chandler-Andersen
potential uðrÞ, for details and parameters see Refs. [8,12]].
The dynamics is overdamped,

_ri ¼ −∇iU þ v0ei þ ξi; ð1Þ
where ξi is the Gaussian translational noise with zero mean
and correlations hξiðtÞξTj ðtÞi ¼ 2δij1δðt − t0Þ, and U ¼P

j<iuðjri − rjjÞ is the total potential energy. We consider
the two-dimensional case with a simulation box of size
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Lx × Ly employing periodic boundary conditions. Every
particle swims with fixed speed v0 along its unity ori-
entation ei, which undergoes free rotational diffusion with
diffusion coefficient 1=τr. We employ dimensionless quan-
tities such that lengths are measured in units of a and time
in units of a2=D0, where D0 is the bare translational
diffusion coefficient. In the following we use τr ¼ 1

3
, which

follows from the no-slip boundary condition for colloidal
particles. Moreover, energies are measured in units of kBT
for fixed solvent temperature T.
We first scan the system for swimming speed v0 ¼ 180

and vary the global density ρ̄ ¼ N=A. As shown in Fig. 1,
we observe finite-size transitions as we increase the density
from the homogeneous suspension to a droplet of the dense
phase, then to a slab, and then to a “bubble” (or void)
forming within the dense phase. These transitions appear to
be exact counterparts of the transitions observed in sim-
ulations of vapor-liquid coexistence in finite volumes [40].
While the snapshots in Figs. 1, 2(a), and 2(b) show a high
degree of local order in the dense phase, these crystalline
patches have only a short lifetime and constantly reorgan-
ize. Hence, particles do not freeze, and the description as an
active liquid-vapor coexistence is more appropriate.
To make comparisons with passive suspensions easier,

densities will be reported as area fractions ϕ ¼ ρ̄πða�=2Þ2
using an effective hard-sphere diameter a� ≃ 0.986a
obtained via Barker-Henderson theory from the pair poten-
tial [41]. Such a mapping is known to work well for passive
repulsive suspensions, although at high swimming speeds it
will certainly become less reliable. In the following, we
exploit the slab configuration; all simulations are run at
global area fraction ϕ ¼ 0.5, varying the speed v0. In
analogy to simulations of passive fluids, we employ a
nonsquare box of area A ¼ LxLy with edge lengths
Lx > Ly such that the slab of the dense phase is encouraged
to span the shorter length, see Fig. 2(a). At high-enough
swimming speeds v0, such slabs form spontaneously and
remain stable. In order to reach the steady state faster, all N
particles are initially placed in a dense slab in the middle of
the system. After a relaxation time that depends on the
system size N, we start to collect and analyze data.
Looking at the simulations qualitatively, one notes that

fluctuations are much more violent than expected from a

passive suspension. In particular, larger bubbles might form
even in the dense phase, see Fig. 2(b). Still, given sufficient
statistics, the averaged density profiles excellently fit the
functional form

ϕðxÞ ¼ ϕþ þ ϕ−

2
þ ϕþ − ϕ−

2
tanh

�
x − x0
2w

�
; ð2Þ

see Fig. 2(c). Here, x0 marks the midpoint of the profile and
w is related to the width of the interface. Density profiles
are measured from the simulations by dividing the simu-
lation box into slices with area A1 ¼ A=Nb, where x is the
distance of the slice from the center of mass and Nb is the
number of bins employed. Although the two interfaces are
correlated, in a first attempt we treat them independently
and perform separate fits for x < 0 and x > 0. The
interfacial width w and bulk phase densities ϕ� are then
obtained by taking the mean of the results for the left and
right half of the box. We fit Eq. (2) for each profile, from

FIG. 1 (color online). Finite-size transitions of ABPs (in a box
with aspect ratio 1.2) going from low to high density: Droplet
(ϕ≃ 0.30), slab (ϕ≃ 0.54), and bubble (ϕ≃ 0.74). Density
maps are shown, where cells are colored according to their local
structure (the darker the color, the more highly structured the
cell); see [35] for the definition of local structure.

FIG. 2 (color online). Slab geometry. (a),(b) Snapshots of a
phase-separated system with aspect ratio Lx=Ly ¼ 2 for
N ¼ 52386 particles. In the steady state a dense slab is
surrounded by the dilute gas phase (color code as for Fig. 1).
(b) Large fluctuations occur, not only at the interface; the dense
inner region of the slab might also develop “holes.” (c) Measured
density profile for v0 ¼ 100 (symbols) and fit of Eq. (2) (line).
(d) Resulting phase diagram for two system sizes; the symbols
show the coexisting densities ϕ�. The dashed vertical line
indicates the freezing area fraction ϕ≃ 0.7, and the shaded area
indicates the excluded packing fractions for real hard disks.
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which we extract the coexisting densities ϕ� shown in
Fig. 2(d). No systematic finite-size effects for the coexist-
ing densities seem to be present for speeds v0 ≳ 60 for the
system sizes N studied here.
We now study the mechanical stress in more detail. To

this end, we focus on the single swimming speed v0 ¼ 100.
Note that the system is translationally invariant in the y
direction because we have encouraged the slab to align that
way. Clearly, phase separation and the occurrence of
interfaces break the translational invariance in the x
direction so that averaged quantities can depend only on x.
We first consider the pressure tensor

pðiÞðxÞ ¼ 1

2A1

hrijfTijix ð3Þ

due to particle interactions, where rij ¼ ri − rj is the
connecting vector of particles i and j, and fij is the pair
force along this vector due to the repulsive potential. The
brackets h·ix denote the average over particle pairs for which
at least one particle is within the slice at x. The factor 1

2
has to be included to compensate for the fact that every bond
crossing between slices is counted twice. Note that there
are alternative spatial discretization schemes, all of which
lead to the same integrated pressure [42]. The two diagonal
componentspðiÞ

xx andp
ðiÞ
yy are plotted in Fig. 3(a). Both curves

lie on top of each other and qualitatively follow the density;
i.e., the interaction pressure is low in the dilute phase
and high in the dense phase. Clearly, there is something
missing, because such an inhomogeneous pressure would
lead to an unstable system. Generally, the divergence ∇ · p
of the totalmechanical stresspðrÞ is related to the force on an
area element at r. From the absence of a particle current

for ABPs one can thus conclude that ∇ · p ¼ 0, which is
the condition for hydrostatic equilibrium (a more involved
calculation is presented in Ref. [43]). This condition implies
that the tensor pðxÞ is diagonal and, moreover, that the
normal pressure pxx ¼ pN is constant throughout the box.
In contrast, the tangential pressure pyyðxÞ ¼ pTðxÞ can,
and does, vary spatially with x.
The idea has been formalized only very recently that, due

to their directed motion, the particles exert a mechanical
stress [19,31] leading to a scalar active pressure

pðaÞ ¼ v0
2A

XN
i¼1

hei · rii; ð4Þ

where ri is indeed the absolute position. The active
pressure thus stems from the correlations between particle
positions and orientations. Assuming a gas of noninteract-
ing swimmers with _ri ¼ v0ei þ ξi, we obtain the ideal
active pressure [19]

pðaÞ
id ¼ v0

2A

XN
i¼1

Z
t

−∞
dt0heiðtÞ · _riðt0Þi ¼

1

2
ρ̄v20τr ð5Þ

using the correlation function heðtÞ · eðt0Þi ¼ e−jt−t0j=τr .
To consider the spatial dependence of the active pressure

(4), we introduce the generalized tensor

pðaÞðxÞ ¼ v0
A1

heirTi ix ð6Þ

in analogy to Eq. (3). The time average is now taken for the
subset of particles that at time t occupy slice x. However,
there is a subtlety here, since this destroys the correlations
between the x coordinate and the orientations, which, as
Eq. (5) demonstrates, depend not only on the configuration
but on the previous history. Hence, only the component
pðaÞ
yy ðxÞ, which is plotted in Fig. 3(a), is actually meaningful.

This component again qualitatively follows the density, but
is now inverted with respect to the interaction pressure: The
active pressure is high in the dilute region and drops
considerably in the dense region. The physical reason for
this is that particle motion is hindered in the dense phase;
orientation and actual displacement are thus less correlated.
While the fitted coexisting densities seem to have

converged, we found that the active pressure is much more
sensitive to system size. We thus study an even larger
system with N ¼ 52386 particles, the results for which are
shown in Fig. 3. Two conceptual insights into the nature
of ABPs are gained by plotting the total tangential pressure

pTðxÞ ¼ ρðxÞ þ pðiÞ
yy ðxÞ þ pðaÞ

yy ðxÞ [there is also the ideal
gas contribution ρðxÞ, which, however, is negligibly small].
As demonstrated in Fig. 3(b), the bulk pressures of the
dense and dilute phases are equal. To corroborate that
normal and tangential bulk pressures coincide, we also
studied walls, which allowed us to directly measure
pN ≃ p as the mechanical pressure exerted onto the walls

FIG. 3 (color online). Pressure profiles for v0 ¼ 100 and
N ¼ 52386. (a) The diagonal components pðiÞ

xx (filled circle)
and pðiÞ

yy (dot) of the interaction pressure (which lie on top of each
other) and the tangential active pressure pðaÞ

yy (open circle).
(b) The total tangential pressure pT ¼ ρþ pðiÞ

yy þ pðaÞ
yy . The

dashed horizontal line is the estimate for the bulk pressure
p≃ 276. The error bars show the root-mean-square errors of
local fits within the shaded areas corresponding to the dilute
(outer) and dense (inner) phase. In the inset the symmetrized
integral of the pressure difference p − pT is plotted, where the
vertical line shows the estimated value γ ≃ −475 for the
interfacial tension.
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[35]. The first insight is, thus, that the swimming pressure
of Refs. [19] and [31] is indeed the missing link to define
and measure a pressure that is intensive. Looking closer at
the interfaces, we see that the pressure difference within the
interfaces is unbalanced and, moreover, that pT is larger
than the bulk pressure p. Identifying the interfacial tension
with the excess stress (the factor 1

2
again accounts for the

two interfaces) leads to [33]

γ ¼ 1

2

Z
Lx

0

dx½pN − pTðxÞ�≃ −475; ð7Þ

see the inset of Fig. 3(b). The second, quite surprising,
insight is that this quantity becomes negative. Our intuition
tells us that a system with a negative tension cannot be
stable; this is because in systems for which classical
thermodynamics is applicable, the interfacial tension deter-
mines the excess free energy due to the presence of
interfaces. A negative tension implies that the suspension
could lower its free energy by creating more interfaces,
leading again to a homogeneous state. Quite in contrast, for
ABPs one observes a stable, phase-separated state. Another
puzzling observation is the magnitude of jγj, which is huge
compared to typical values ∼1 in passive liquids (e.g.,
γLJ ≃ 0.42 has been reported for vapor-liquid coexistence
in the Lennard-Jones fluid in two dimensions [44]).
To rationalize a negative tension, we now study the

interfacial width w in more detail. Figure 4 shows w
obtained from several simulation runs at speed v0 ¼ 100
through fitting Eq. (2). We systematically study different
system sizes by holding one box length fixed and varying
the other. The total number of particles varies such that the
global density is kept constant for all data points. While
changing Lx does not influence the width, we observe an
increase of w when increasing Ly. This behavior demon-
strates two things: First, the system sizes considered here
are large enough to have reached a constant width as we
vary Lx. Second, the dependance on Ly is compatible with

standard capillary wave theory (CWT) assuming equipar-
tition. Hence, it is instructive to recall the arguments
leading to CWT [34]: One assumes an ideal instantaneous
interface, in our case a line of total length l, that separates
the two phases. To change this length, work has to be spent
against the positive line tension. Assuming no overhangs,
one can decompose the profile hðyÞ ¼ P

qhqe
iqy into

Fourier modes hq. Because the energy for every mode
stems from the thermal environment, equipartition implies
hjhqj2i ¼ ðLyκq2Þ−1, where κ is the interfacial stiffness
governing the fluctuations [45]. For passive liquid-vapor
coexistence, this stiffness is related to the tension through
γ ¼ kBTκ (for the sake of clarity we spell out the thermal
energy kBT, which is unity in the employed units).
To estimate the interfacial width w, we calculate the

fluctuations of the instantaneous interface [35],

w2 ≈
X
q

hjhqj2i ¼ w2
0 þ

Ly

12κ
; ð8Þ

which predict a linear divergence due to the capillary
waves. The unknown offset w2

0 corresponds to fluctuations
of the q ¼ 0 mode, which are bounded due to the periodic
boundary conditions. Moreover, we have assumed that
equipartition holds even in the driven active suspension,
which can be motivated by the fact that orientational
degrees of freedom do not develop long-ranged correlations
(even in the phase-separated case). While the use of
equipartition is of course not rigorous, the predicted leading
linear dependence on Ly agrees quite well with the
simulation data in Fig. 4(b).
Finally, we argue that stiffness and tension are not

independent even in nonequilibrium. The defining para-
digm of active matter is the conversion of energy into
directed motion. The system (the particles swimming with
speed v0) spends a “housekeeping” work on its environ-
ment (typically the solvent) to maintain the steady state far
from thermal equilibrium. Within stochastic thermodynam-
ics [46], assuming a hydrodynamic drag v0ei on the solvent
leads to an expression for the work that is consistent with
the pressure used here, see [35] for a detailed discussion
and derivation. Hence, the work spent by one particle
moving a distance lp is −v0lp (in Ref. [27] this expression
appears as a positive energy scale). This is the typical
energy per particle that is available to the system, in
analogy to kBT being the typical energy that an equilibrium
system can “borrow” from the environment. Because this
energy determines the magnitude of fluctuations, it sug-
gests the generalization γ ¼ ð−v0lpÞκ for the interfacial
tension of ABPs. With the measured tension γ [Eq. (7)], we
find for the stiffness κ ≈ γ=ð−v0lpÞ≃ 0.14 for v0 ¼ 100,
which is consistent with the measured interfacial widths
shown in Fig. 4(b).
In summary, we have demonstrated that the mechanical

interfacial tension for phase-separated active Brownian
particles is negative. This implies that work is released

FIG. 4 (color online). Interfacial width w for v0 ¼ 100. (a) As a
function of box length Lx for constant Ly ¼ 90, where the dashed
line indicates w ¼ 5.6. (b) As a function of Ly for constant
Lx ¼ 200. Error bars show the standard deviation of ten inde-
pendent runs. The dashed line shows the theoretical prediction
Eq. (8) with κ ≃ 0.14. The offset has been adjusted so that
w ¼ 5.6 for Ly ¼ 90 agrees with (a), while the shaded area
indicates a conservative error of �20% in determining γ.
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when the interfacial length l is increased. However, this
work is not “available” to the system, but is part of the
work that is spent by the particles to drive the surrounding
fluid. We expect that a negative tension is not specific to
the model studied here, but holds more generally in active
matter. In principle, it can be observed in particle-resolved
experiments [10–12] with a stabilized interface. The incor-
poration of both a negative tension and correct interfacial
fluctuations into thermodynamic descriptions based on an
effective free energy, a concept that seems to work well for
the bulk phases [25,47], is certainly challenging. The reason
is that in thermal equilibrium, the same free energy deter-
mines the probability of fluctuations away from typical
configurations; this connection no longer holds for systems
driven away from thermal equilibrium.
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