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1.  Introduction

Ferrogels and magnetic elastomers are fascinating materials, 
born by the union of polymeric networks and ferrofluids. Their 
amazing properties derive from the unique combination of the 
elastic behavior typical for polymers and rubbers [1] on the 
one hand, and magnetic effects characteristic of ferrofluids and 
magnetorheological fluids [2–10] on the other. One of the most 
interesting results is that their shape and mechanical proper-
ties can be externally controlled by applying a magnetic field 
[11–21]. A form of tunability, distinguished by reversibility 
as well as non-invasiveness and based on a magneto-mechan-
ical coupling is one of the most appealing properties of these 
materials. This makes them excellent candidates for use as 

soft actuators [22], magnetic field detectors [23, 24], as well 
as tunable vibration and shock absorbers [14, 25]. Moreover, 
studying their heat dissipation due to hysteretic remagnetiza-
tion in an alternating external magnetic field might be helpful 
to understand better the processes during possible applications 
in hyperthermal cancer treatment [26, 27].

Typically, these materials consist of cross-linked polymer 
networks in which magnetic particles of nano- or micrometer 
size are dispersed [16]. A central role in the coupling of mag-
netic and mechanical properties is played by the specific inter-
actions between the embedded mesoscopic magnetic particles 
and the flexible polymer chains filling the space between 
them. These couplings are responsible for a modified mac-
roscopic elasticity [12, 28, 29], orientational memory effects 
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[30, 31], and reversibility of the magnetically induced defor-
mations [15].

Many theoretical and computational studies have been per-
formed on the topic, using different approaches to incorporate 
the particle-polymer interaction. Some of them rely on a con-
tinuum-mechanical description of both the polymeric matrix 
and the magnetic component [23, 32, 33]. Others explicitly 
take into account the discrete embedded magnetic particles, 
but treat the polymer matrix as an elastic background con-
tinuum [34, 35]. Usually in these studies, an affine deforma-
tion of the whole sample is assumed. The limitations of such 
an approach for the characterization of real materials have 
recently been pointed out [36]. In order to include irregular 
distributions of particles and non-affine sample deformations, 
other works employ, for instance, finite-element methods  
[19, 37–40].

To optimize economical efficiency, a first step is the use 
of simplified dipole-spring models. In this case, steric repul-
sion and other effects like orientational memory terms can be 
included [30, 36, 41–44]. A step beyond the often used har-
monic spring potentials can be found in [42] where non-linear 
springs of finite extensibility are considered.

From all the studies mentioned above it becomes clear 
that microscopic approaches that explicitly resolve polymer 
chains are rare [45, 46], and what is particularly missing is 
a link between such microscopic approaches and the meso-
scopic models that only resolve the magnetic particles, not the 
single polymer chains. In particular, a microscopic founda-
tion of the phenomenological mesoscopic expressions for the 
model energies should be built up.

The present work is a first step to close this gap. We con-
sider an explicit microscopic description in a first simplified 
approach: a single polymer chain, discretized through mul-
tiple beads, each representing a coarse-grained small part of 
the polymer, connects two mesoscopic particles. The ends of 
the polymer chain are rigidly anchored on the surfaces of the 
two mesoscopic particles, which are spherical, can be magnet-
ized, and are free to rotate and change their distance. From 
molecular dynamics simulations on the microscopic level, 
we collect the statistics of the micro-states corresponding to 
different configurations in the mesoscopic model. Based on 
these statistics we derive effective mesoscopic pair poten-
tials, inspired by previous achievements for other polymeric 
systems [47, 48]. The subsequent step in scale-bridging, con-
necting the mesoscopic picture to the macroscopic descrip-
tion, has been recently addressed [49] for a special class of 
magnetic polymeric materials.

In the following, we first define and describe our model 
in section  2. Then, in section  3, we mention the details of 
the microscopic simulation. In section 4, we further charac-
terize the probability distribution of the mesoscopic variables, 
connecting it to a wrapping effect in section  5. After that, 
in section 6, we determine the values of mesoscopic model 
parameters based on the results of our microscopic simula-
tions. In section  7, we derive an approximated expression 
for the mesoscopic effective pair potential characterizing the 
particle configurations. In this way, we build the bridge from 
the explicit microscopic characterization to the mesoscopic 

particle-resolved models by averaging over the microscopic 
details. Last, in section  8, we consider the effect of adding 
magnetic moments to the particles and, in section 9, the effect 
of increasing magnetic interaction on the thermodynamic 
properties, before we draw our final conclusions in section 10. 
Appendix A addresses the trends in the dependences of the 
mesoscopic model parameters on varying microscopic system 
parameters, while appendix B briefly comments on the sepa-
rability of magnetic interactions in the mesoscopic picture and 
microscopic chain configurations.

2. The system

Our simplified system is composed of two mesoscopic and 
spherical particles, both of radius a, and a polymer chain 
explicitly resolved by N   =   60 beads of diameter σ and inter-
connected by harmonic springs. Here we choose the meso-
scopic particle radius a to be σ5 .

We consider steric repulsion between all described par-
ticles through a WCA potential, which represents a purely 
repulsive interaction. It is given by

⎜ ⎟

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

σ

ε
σ σ=

− + ⩽′
′

′
′

′
′

′
− −

V
r

r r
r r4

1

4
for 

0 otherwise

c

WCA

12 6

� (1)

where ′r  is the distance between the particle centers, ε denotes 
the energy scale of the potential, and σ= ′r 2c

1/6  is the cut-off 
distance. For any combination of large and small particles, σ′ 
is chosen as the sum of the radii of the respective particles, 
which is equivalent to the mean of their respective diam-
eters. In our simulations, we set ε = k T10 B , where kB is the 
Boltzmann constant and T is the temperature of the system. 
Neighboring beads within the chain are bound by means of a 
harmonic potential

( ) = ( − )′ ′V r k r r
1

2
,H 0

2� (2)

where we choose the force constant σ=k k T10 /B
2. The equi-

librium distance r0 is set to match the cut-off distance of the 
WCA-potential σ= =r r 2c0

1/6 .
The ends of the chains are bound via the same harmonic 

potential to binding sites placed below the surface of the mes-
oscopic particles, see figure 1. These binding sites are rigidly 
connected to the mesoscopic particles and follow both, their 
translational and rotational motion. Thus, when the magnetic 
particle moves or rotates, the binding site of the polymer chain 
has to follow, and vice versa. The technical details for the vir-
tual sites mechanism can be found in [50]. We identify the 
anchoring points of the polymer chain by the vectors a1 and a2, 
respectively (see figure 1). Furthermore, the distance vector 
between the two mesoscopic particle centers is indicated as r, 
with magnitude r. The angles that the vectors a1 and a2 adopt 
with respect to the connecting vectors r and -r are denoted as 
θ1 and θ2, respectively. θ1 and θ2 are zenithal angles and they 
can span the interval π[ ]0, . Last, ϕ π π∈ [− [,  is the relative 
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azimuthal angle between the projections of a1 and a2 on a 
plane perpendicular to r. It can be used to parametrize the rel-
ative torsion between the two particles around the r axis. Let 
us for brevity introduce the vector γ θ θ ϕ= ( )r, , ,1 2 . Therefore, 
the γ-space, where our mesoscopic vector γ is defined, is given 
by π π π π[ +∞[ × [ ] × [ ] × [− [0, 0, 0, , .

Through molecular dynamics simulations (thoroughly 
described in the next section) we find the probability den-
sity γ( )pc  of a certain configuration γ of the two mesoscopic 

particles. We normalize γ( )pc  such that ∫ γ γ( ) =p d 1c , with 

γ θ θ θ θ ϕ= ( ) ( ) rd sin sin d d d d1 2 1 2  the γ-space volume element. 
Moreover, we are working in the canonical ensemble.

From statistical mechanics [51], we know that the prob-
ability density γ( )pc  to find the system in a certain configu-
ration γ is γ γβ( ) = [− ( )]p V Zexp /c c c, where β = k T1/ B  and Zc 
is the partition function of the system. Shifting γ( )Vc  by an 
appropriate constant, we can still reproduce γ( )pc  but simulta-
neously normalize Zc   =   1. Then, since ( ) =Zln 0c ,

γ γ( ) = − [ ( )]V k T plnc cB� (3)

represents an effective energy of the state γ of our meso-
scopic two-particle system and corresponds to an effective 
pair potential on the mesoscopic level, see also [47]. Through 
the normalization of Zc, we set our reference free energy 

= − ( )F k T Zln cB  equal to zero.

3.  Microscopic simulation

To obtain the probability distribution from which the meso-
scopic pair potential is derived, we performed molecular 
dynamics simulations using the ESPResSo software [50, 52]. 
Because entropic effects are important to capture the behavior 
of the polymer, the canonical ensemble is employed. This is 
achieved using a Langevin thermostat, which adds random 
kicks as well as a velocity-dependent friction force to the par-
ticles. For the translational degrees of freedom of each par-
ticle, the equation of motion is then given by

ζ( ) = − ( ) + +v v F Fm t t˙ ,p r� (4)

where mp is the mass of a particle, F is the force due to the 
interaction with other particles, Fr denotes the random thermal 
noise, and ζ is the friction coefficient.

To maintain a temperature of T, according to the fluctu-
ation-dissipation theorem, each random force component 
must have zero mean and variance ζk T2 B . Furthermore, 
random forces at different times are uncorrelated. In order 
to track the orientation of the magnetic nanoparticles, rota-
tional degrees of freedom also have to be taken into account. 
This is achieved by means of a Langevin equation of motion 
similar to (4) where, however, mass, velocity, and force are 
replaced by inertial moment, angular velocity, and torque, 
respectively [53].

The time step for the integration using the Velocity-Verlet 
method [54] is =td 0.01. To sample the probability distribu-
tion, we record the state of the simulation γ every ten time 
steps. In order to obtain a smooth probability distribution over 
a wide range of parameters, 34 billion states have been sam-
pled in total, by running many parallel instances of the simula-
tion, summing up to about 104 core hours of CPU time.

Finally, we find the probability distribution by sorting 
the results of our simulations into a histogram with 100 bins 
for each variable (r, θ1, θ2, and ϕ). When a 64-bit unsigned 
integer is used as data type, this leads to a memory footprint 
of 800 Mb. Hence, the complete histogram can be held in 
memory on a current computer. If the resulting numerical 
version of the effective pair potential as defined in (3) is to 
be used in a simulation, a smoothing procedure should be 
employed, especially in parts of the configuration space with 
a very low probability density. One approach here might be 
hierarchical basis sets.

In our simulations, we chose the thermal energy k TB  as 
well as the mass mp, the friction coefficient ζ, and the cor-
responding rotational quantities to be unity. We measure all 
lengths in units of σ and the energies in multiples of k TB .

4.  Description of the probability density

We now consider some aspects of the probability density 
resulting from the microscopic simulation described in sec-
tion  3. The entropic role of the microscopic degrees of 
freedom is considered by assigning to every configuration 
γ a certain probability, given by the number of times it was 
encountered in the simulation divided by the total number of 
recorded states. As explained before, γ θ θ ϕ= ( )r, , ,1 2  corre-
sponds to the set of variables that we use to describe the state 
of the system on the mesoscopic level.

In calculating the probability density from the microscopic 
simulations, we must remember the normalizing condition

∫ γ θ θ θ θ ϕ( ) ( ) ( ) =p rsin sin d d d d 1,c 1 2 1 2� (5)

where r is integrated over [ +∞[0, , θ1 and θ2 over π[ ]0, , and ϕ 
over π π[− [, . Therefore, to obtain the probability density, we 
have to properly divide the data acquired from the simulations 
by the factor θ θ( ) ( )sin sin1 2 .

Figure 1.  A simplified sketch of the geometry of the microscopic 
system. r is the vector connecting the centers of the mesoscopic 
particles. a1 and a2 identify the anchoring points of the polymer 
chain on the surfaces of the particles. θ1, θ2, and ϕ are the angles 
that represent the remaining relative rotational degrees of freedom 
of the system.
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It is useful to introduce here the average of a quantity 

over pc, defined as ∫ γ γ⋅ = ⋅ ( )p  dc c . We can therefore cal-
culate the average value of γ, γ γ= c, and the covariance 
matrix α α β βΣ = ( − )( − )αβ

c
c, for α β θ θ ϕ= r, , , ,1 2 . We find 

γ σ π π≃ ( )20.20 , 0.36 , 0.36 , 0 . It is more practical to discuss 
the system in terms of correlation than in terms of covariance. 

Correlation is defined as ϱ = Σ Σ Σαβ αβ αα ββ/c c c c  (no summation 

rule in this expression), is dimensionless, and ϱ ∈ [− ]αβ 1, 1c . 
Here, we obtain

for α θ= i (i   =   1, 2) and α ϕ= rd d , d  for α ϕ= r, . Following 
(3), we also introduce the one-variable effective pair potentials

α α( ) = − [ ( )]∼∼
α αV k T plnB� (7)

that are associated with the corresponding single-variable 
marginal probability density.

In figure  2 most of the probability density ( )∼p rr  for the 
interparticle distance is contained between σ=r 10  and 

σ=r 50 , with a single maximum at σ=r 17 . Moreover, the 

steep increase in ( )∼p rr  at σ=r 11  is to be attributed to the 
WCA steric repulsion, since at that distance the two particles 
are in contact. From figure  2 we find that the maximum of 

θ( )∼
θp ii

 (with i   =   1, 2) is located at θ = 0i . The highest prob-
ability density for θ = 01,2  is obtained from the microscopic 
simulations by taking into account the γ-space normalization 
following from the use of spherical coordinates in (5), see also 
[47]. Moreover, ϕ( )∼

ϕp  shows a maximum for ϕ = 0, indicating 
that, as expected, the system does not tend to spontaneously 
twist around the connecting axis in the absence of further 
interactions. The presence of a maximum at ϕ = 0 confirms 
that ∼ϕp  is an even function of ϕ invariant under the transforma-
tion ϕ ϕ→ − , as expected from the symmetry of the set-up.

5.  Wrapping effect

Before developing an approximate analytical expression for 
the effective pair potential between the mesoscopic particles, 
it is helpful to examine in detail the results of the molecular 
dynamics simulations. In a magnetic gel in which mesoscopic 
magnetic particles act as cross-linkers [31, 55], two driving 
mechanisms for a deformation in an external magnetic field are 
possible. First, in any magnetic gel, the magnetic interactions 
between the mesoscopic particles lead to attractions and repul-
sions between them, which directly implies deformations of 
the intermediate polymer chains. As we would like to examine 
this mechanism separately, the magnetic interaction was not 
included explicitly in the simulations described in section  3. 
Rather, it will be considered later in section 8. Second, due to 
the anchoring of the polymer chains on the surfaces, rotations of 
the mesoscopic particles are transmitted to chain deformations.

It has been shown in model II of [45] that the second mech-
anism on its own can lead to a deformation of such a gel in an 
external magnetic field: if mesoscopic magnetic particles are 
forced to rotate to align with the field, the polymers attached 
to their surfaces have to follow. The resulting wrapping of the 
polymer chains around the particles leads to a shrinking of 

where lines and columns refer to θ θ ϕr, , ,1 2  in this order. The 
diagonal elements are unity by definition, because each vari-
able is perfectly correlated with itself. The errors follow from 
the unavoidable discretization during the statistical sampling 
procedure in the simulations, where the results have to be 
recorded in discretized histograms of finite bin size.

We find a strong anticorrelation between r and θ1,2, 
meaning that when the distance between the mesoscopic par-
ticles changes they tend to rotate. We will address in detail 
the background of this behavior in section 5 in the form of the 
wrapping of the polymer chain around the mesoscopic par-
ticles. For angles θ1 and θ2 different from 0 and π it is clear 
that such a wrapping and corresponding distance changes are 
likewise induced by modifying the relative torsion of angle ϕ. 
These coupling effects are partly reflected by the remaining 
non-vanishing correlations which, however, are weaker than 
the correlations between r and θ1, θ2 by at least a factor 4. The 
correlations between θ1 and θ2 are very weak and, within the 
statistical errors, may in fact even vanish. Within the statis-
tical errors, the magnitudes of the correlations ϱ θr

c
, 1

 and ϱ θr
c
, 2

 as 
well as ϱθ ϕ

c
,1

 and ϱθ ϕ
c

,2
 agree well with each other, respectively, 

which reflects the symmetry of the system. Finally, we per-
formed additional microscopic simulations for different sizes 
of mesoscopic particles and different chain lengths of the con-
necting polymer. As a general trend, we found that the corre-
lations tend to decrease in magnitude for smaller mesoscopic 
particles and for longer polymer chains (see appendix A).

As a further step in the analysis of pc, we can determine the 
marginal probability density α( )∼

αp  for one of the four meso-
scopic parameters α θ θ ϕ= r, , ,1 2  integrating out the other 

three, for instance, ∫ γθ θ θ ϕ( ) = ( ) ( )∼
θp p rsin d d dc1 2 21

. This 
is the total probability density for the variable θ1 to assume 
a certain value, regardless of the others. Calculations for 

( )∼p rr , θ( )∼
θp 22

, and ϕ( )∼
ϕp  are analogously performed by inte-

grating out all respective other variables (see figure  2). Of 
course, α( )∼

αp  is still a normalized probability density since 

∫ ∫ γ γα α( ) = ( ) =∼
αp pd d 1c , where we indicate α θ θ= ( )d sin di i 

ϱ ≃

− ± − ± ±

− ± − ± − ±

− ± − ± − ±

± − ± − ±

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 0.341 0.028 0.356 0.029 0.083 0.022

0.341 0.028 1 0.006 0.006 0.083 0.010

0.356 0.029 0.006 0.006 1 0.083 0.011

0.083 0.022 0.083 0.010 0.083 0.011 1

,c

�

(6)
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the gel. Transferring this to our model system, it could imply 
an external magnetic field rotating the particles to a state in 
which the angles θ1 and θ2 are non-zero. The effect of induced 
particle rotations on the interparticle distance is illustrated 
in figure 3, where the effective pair potential Vc(r) is plotted 
for the case of ϕ = 0 and various values of θ θ θ= =1 2 . I.e. 
both particles are rotated by the same angle θ with respect to 
the connecting vector ±r, respectively. It can be seen that the 
more the particles are rotated, the more the minimum of the 
effective pair potential is shifted towards closer interparticle 
distances corresponding to smaller separation distances r.

To get a more detailed picture, we also consider inde-
pendent rotations of the two mesoscopic particles. In figure 4, 
the average distance between the particles is depicted in a 
contour plot as a function of the angles θ1 and θ2. Images are 
shown for torsion angles of ϕ = 0 and ϕ π= . It can be seen 
that quite a decrease in the average distance can already be 
achieved by rotating only one particle. However, very strong 
reduction in interparticle distance can only occur when both 
particles are rotated. The torsion angle ϕ does not alter the 
general trend of reduction of the average distance when the 
particles are rotated. However, the resulting numbers vary to 
a certain degree.

6.  One-variable effective pair potentials

We now introduce some mesoscopic analytical expressions to 
model the effective pair potentials α( )∼

αV  introduced in (7). We 
will determine functional forms and parameters that can be 

Figure 2.  Marginal probability densities for the single variables. 
The abscissa has been rescaled: r ranges from 0 to 100σ, whereas 
the angles range from 0 to π. θ( )∼

θp 11
 and θ( )∼

θp 22
 are practically 

indistinguishable due to the symmetry of the set-up. Due to the 
symmetry of the system under the transformation ϕ ϕ→ − , here 
we only plot ϕ( )∼

ϕp  from 0 to π. The maxima of the single-variable 
densities are located at σ=r 17  and θ ϕ= = 01,2 , respectively. 
The maxima of θ( )∼

θp 11
 and θ( )∼

θp 22
 at θ = 01,2  are found from the 

microscopic simulations after the γ-space normalization contained 
in (5) has been taken into account.

Figure 3.  Plot of the effective mesoscopic pair potential Vc(r) for 
a situation in which both particles are rotated by the same amount 
to the angles θ θ θ= =1 2  at a torsional angle of ϕ = 0. It can be 
seen that the more the particles are rotated out of their equilibrium 
position, the closer they will approach each other because the 
minimum of the effective pair potential shifts to smaller separation 
distances r. The irregularities in the effective pair potential for high 
values of r are attributed to the naturally low sampling of those low-
probability configurations.

Figure 4.  Average distance between the two mesoscopic particles 
versus the angles θ1 and θ2 shown as a color and contour map for 
the two cases ϕ = 0 (top) and ϕ π=  (bottom). It can be seen that 
even by rotating only one of the two particles, the average distance 
can be reduced considerably. However, the maximum reduction 
is observed when both particles are rotated. The variation of the 
torsion angle ϕ does not change the main trend but has a moderate 
influence for intermediate rotations.

2

1

2

1
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used to model strain and torsion energies. Here, we use the 
term ‘strain’ to denote variations of r, whereas the term ‘tor-
sion’ is used to describe changes in the angles θ1 and θ2 or ϕ, 
depending on the initial orientation of the spheres and relative 
rotations. The quality of the analytical model expressions will 
be analyzed by fitting to the corresponding results from the 
microscopic simulations.

First, we turn to the energetic contributions arising from 
changes in the interparticle distance r. The corresponding 
effective energy ( )∼

V rr  obtained from the microscopic data is 
plotted in figure 5. It can be seen that there are essentially two 
regimes: up to σ≃r 11  the WCA repulsion between the two 
mesoscopic particles dominates, whereas, for σ>r 11 , ( )∼

V rr  
shows a smooth behavior and a single minimum arising from 
the entropic contribution of the polymer chain. Moreover, at 

σ≳r 55 , ( )∼
V rr  shows an irregular, non-smooth behavior. This is 

attributed to the low sampling rate of this extremely stretched 
configuration, which has a very low probability to occur in the 
microscopic simulations (see figure 2). As a first approxima-
tion, it is natural to reproduce ( )∼

V rr  by a harmonic expansion 
for σ>r 11 ,

( ) = + ( − )V r V
k

r r
2

.h
h

hharm
0

0,
2� (8)

We derive the mesoscopic parameters V k r, ,h h h
0

0,  by fit-
ting ( )V rharm  in a neighborhood of the minimum to the data 

( )∼
V rr  obtained from microscopic simulations. In figure 5 the 
resulting parameters and the two curves are shown.

Moreover, we have compared ( )∼
V rr  with the following 

expression for a finitely extensible non-linear elastic potential 
(FENE) [42, 56],

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥

( ) = − − −
V r V

K r r r

r

 

2
ln 1 .

f
FENE F

0 max
2

0

max

2

� (9)

It takes into account that the chain cannot extend beyond 
a maximal length, since ( )V rFENE  diverges when → +r r r0 max. 

We see that ( ) =V r r Kd /d f
2

FENE
2  for r   =   r0 and therefore K f  

represents the elastic constant in a harmonic expansion of this 
non-linear potential. As for the harmonic expression, we fit 

( )V rFENE  to our microscopic data and thus derive the meso-
scopic model parameters K f , r0, rmax, and VF

0 as displayed in 
figure 6. The agreement between the resulting expression for 

( )V rFENE  and ( )∼
V rr  in the regime σ≳r 11  is excellent, especially 

for the branch of the curve right to the minimum. According 
to the fit, the maximum extension of the chain occurs for 

σ= + ≃r r r 750 max . In fact, since the radius of the mesoscopic 
particles is σ5  and each of the 60 beads making up the pol-
ymer chain has diameter σ, at σ=r 70  the polymer chain is 
completely stretched. A further elongation is of course pos-
sible due to the harmonic inter-bead interaction and this justi-
fies the result of ∼75σ for the maximal extension.

Last, we compare the elastic constants kh and K f  obtained 
from the harmonic and FENE approximation, respectively, as 
listed in figures 5 and 6. The resulting values of σk T0.011 /B

2 
and σk T0.015 /B

2 are in good agreement with each other.
To find a mesoscopic model expansion for the effective 

pair potential θ( )∼
θV 11  [ θ( )∼

θV 22  has a very similar behavior], we 
compare it with the phenomenological expression,

θ θ θ( ) = + [ ( ) − ( )]V V D cos cosD D1
0

1 0
2� (10)

introduced in (3) of [30]. As before, we can derive the meso-
scopic parameters VD

0, D, and θ0 by fitting θ( )VD 1  to the micro-
scopic data represented by θ( )∼

θV 11 . The resulting parameters 
and the comparison between the two curves are shown in 
figure  7. Although (10) does not perfectly reproduce the 
one-variable pair potential θ( )∼

θV 11 , it appears as a reasonable 
approximation in the neighborhood of the minimum energy. 
Moreover, the rather flat behavior of θ( )∼

θV 11  for small θ1 is well 
represented by θ( )VD 1 , which is at leading order proportional 
to θ1

4 .
Finally, we want to find a mesoscopic expression to repro-

duce the effective pair potential ϕ( )∼
ϕV  obtained from the 

Figure 5.  Effective pair potential ( )∼
V rr  obtained from the 

microscopic simulation data and fit using a simple expression 
( )V rharm  as in (8). The fit was made in the interval σ σ[ ]11 , 27 . In this 

way, the values for the mesoscopic model parameters r k V, ,h h h0,
0 are 

determined.

Figure 6.  Effective pair potential ( )∼
V rr  obtained from the 

microscopic simulation data and fit using ( )V rFENE  from (9) leading 
to the parameter values as listed in the plot. The fit was made in the 
interval σ σ[ ]11 , 52 . In this way, the values for the mesoscopic model 
parameters r r K V, , ,f F

0
max

0 are determined.
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microscopic data due to relative torsional rotations between 
the two particles around the connecting vector r. We fit 
the microscopic data ϕ( )∼

ϕV  around the minimum with the 
expression

ϕ τ ϕ ϕ( ) = + [ ( ) − ( )]τ τV V cos cos .0
0� (11)

It leads to the parameters and fit depicted in figure 8 and is 
quadratic at lowest order in ϕ, ϕ τϕ( ) ≃ +τ τV V 0 2. The param-
eter ϕ0 is redundant and can be absorbed into τV 0, but we leave 
it for reasons of comparison to the following (12).

It is interesting to compare ϕ( )∼
ϕV  with the expression taken 

from (4) of [30],

ϕ τ ϕ ϕ( ) = + [ ( ) − ( )]′ ′ ′ ′τ τV V cos cos .0
0

2� (12)

The discrepancy between the two curves shown in figure 9 
is obvious. The reason becomes clear when we expand (12) 
to lowest order in ϕ, ′ϕ τ ϕ( ) ≃ +′ ′τ τV V 0 4. This expression is 
quartic in the torsion angle ϕ, leading to the comparatively 
flat behavior in the region around the minimum. The last two 
comparisons suggest that the analytical form of the meso-
scopic model pair potential as a function of the azimuthal 
angle, which acts as a torsion, can be optimized by using a 
quadratic form as in (11) instead of the quartic one implied by 
(12) at leading order around the minimum.

Finally, we performed additional microscopic simulations 
to estimate how the microscopic system parameters affect the 
mesoscopic model parameters. In particular, the influence of 
the mesoscopic particle radius a and the number of beads N of 
the connecting polymer chain was investigated. As a trend, we 
found that the single-variable potentials tend to become stiffer 
for shorter chains and for bigger mesoscopic particles (see 
appendix A). Moreover, we observe that the fit of the func-
tional forms in expressions (9)–(11) with the simulation data 
further improves for increasing chain length and decreasing 
size of the mesoscopic particles3.

So far, we have discussed mesoscopic analytical expres-
sions to approximate the one-variable effective pair potentials 

α( )∼
αV . In the following section, using a numerical fitting pro-

cedure, we will determine harmonic coupling terms that take 
account of the correlations between the mesoscopic variables. 
In this way, we will further develop and improve our approxi-
mation of the probability density γ( )pc  from the microscopic 
simulations.

7.  Building a coupled effective pair potential

Our goal is to describe the effective interaction between the 
two mesoscopic particles, coarse-graining the role of the 
connecting polymer chain. The entropic nature of the poly-
meric interactions provides a direct route to average out the 
microscopic degrees of freedom and thus build an effective 
scale-bridged model. A natural way to proceed would be to 
find an analytical approximation for γ( )pc  and thus derive an 

Figure 7.  Effective pair potential θ( )∼
θV 11  calculated from the 

microscopic simulation data and fit using the phenomenological 
mesoscopic expression θ( )VD 1  from (10). Resulting values for the 
mesoscopic model parameters are listed in the plot. The fit was 
made on the interval π[ ]0, .

Figure 8.  Effective pair potential ϕ( )∼
ϕV  calculated from the 

microscopic simulation data and fit using ϕ( )τV  from (11). Resulting 
values for the mesoscopic model parameters are listed in the plot. 
The fit was made in the interval π[ ]0, 0.8 .

3 Corresponding data curves from the additional microscopic simulations 
and fitted mesoscopic model curves are summarized in the supplemental 
material (stacks.iop.org/JPhysCM/27/325105/mmedia). 

Figure 9.  Effective pair potential ϕ( )∼
ϕV  calculated from the 

microscopic simulation data and fit using ϕ( )′τV  from (12). 
Resulting values for the mesoscopic model parameters are listed in 
the plot. The fit was made in the interval π[ ]0, 0.8 .
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analytical expression for the mesoscopic pair potentials in the 
spirit of (3).

As a first approximation we may describe pc as the simple 
product of the one-variable probability densities, α∏ ( )∼

α αp . 
We obtain

γ β

θ θ ϕ

( ) = {− [ ( ) + ( )

+ ( ) + ( ) + ( )]}

′

τ

p V r a V r

V V V

exp /2

,D D

app WCA FENE

1 2
�

(13)

when we use (7). Analytical approximations for the pair 
potentials α( )∼

αV  were derived in (9)–(11) in section 6 together 
with the fitting parameters listed in figures  6–8. Care must 
be taken for the term ( )∼

V rr , which has to be substituted by 
( ) + ( )V r a V r/2WCA FENE  to take account of the steric repul-

sion between the mesoscopic particles, see (1). (13) correctly 
describes some aspects of the system behavior. For instance, 
the steep variation due to the WCA potential between the 
mesoscopic particles is well represented in this approxima-
tion. However, this description would lead to a distribution 
with vanishing correlations between the mesoscopic vari-
ables. That corresponds to assuming them independent of 
each other, which omits some important physical aspects, see 
the wrapping effect in section 5.

To make a step forward and take account of correlations we 
multiply correction terms to the previous factorized approxi-
mation in (13), obtaining the expression

γ γ γ ξ γ ξΞ( ) ∝ ( ) × [−( − ) ⋅ ⋅ ( − )]′p p exp ,app app� (14)

where the elements of ξ, a 4-components vector, and Ξ, a ×4 4 
symmetric matrix, are free parameters chosen to match the orig-
inal data. There are at least two possible numerical approaches 
to find the best ξ and Ξ values. On the one hand, we can simply 
fit the original probability density (e.g. minimize the squared 
difference between pc and papp). On the other hand, we can 
follow a moment-matching approach, looking for a papp that has 
a correlation matrix as close as possible to the original one. We 
performed a mixed strategy by fitting the expression in (14) to 
the simulation data γ( )pc , using as a criterion for best initializa-
tion of the fit an outcome that as closely as possible matches the 
correlations directly calculated from the simulation data γ( )pc . 
This fit was performed by minimizing the squared difference 
between γ( )pc  and γ( )papp , using the Nelder–Mead algorithm 
[57] provided by the SciPy library [58]. In this procedure, nor-
malization of the approximated probability density as in (5) is 
enforced. The best set of parameters ξ and Ξ found is

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

ξ

σ
π
π

≃

23.54

0.321

0.321

0

,� (15)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

σ σπ σπ σπ

σπ π π π

σπ π π π

σπ π π π

Ξ ≃

−

− −

− −

−

4.8 10 / 0.19/ 0.19/ 1.8 10 /

0.19/ 1.21/ 1.54/ 1.25/

0.19/ 1.54/ 1.21/ 1.25/

1.8 10 / 1.25/ 1.25/ 0.32/

,

3 2 3

2 2 2

2 2 2

3 2 2 2

� (16)

resulting in the correlation matrix

ϱ ≃

− −
− −
− −

− −

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 0.306 0.306 0.045

0.306 1 0.027 0.071

0.306 0.027 1 0.071

0.045 0.071 0.071 1

.app� (17)

It would be unrealistic to try to exactly reproduce all 
properties of γ( )pc  through an analytical approximation. 
Nevertheless, using the resulting expressions from (14)–(16), 
we can take account of the strong anticorrelation ϱ θr 1,2

 between 
r and θ1,2, which is the strongest and most important one in 
the system; compare (6) and (17). For the other elements ϱ ϕr , 
ϱθ ϕ1,2

, and ϱθ θ1 2
 we then obtain stronger deviations. However, 

those correlations are smaller than ϱ θr 1,2
 at least by a factor 4 

and therefore carry a smaller amount of information about the 
overall system behavior.

As a total result and in analogy to (3), we obtain from (14) 
the optimized analytical expression Vapp to model the effective 
interaction between the mesoscopic particles:

∑
γ θ

θ ϕ α ξ β ξ

( ) = ( ) + ( ) + ( )

+ ( ) + ( ) + Ξ ( − )( − )τ
αβ

αβ α β

V V r a V r V

V V k T

/2

.

D

D

app WCA FENE 1

2 B
�

(18)

The corresponding expressions and values for the fitting 
parameters are given by (1), (9)–(11), (15) and (16) as well 
as figures  6–8. Thus, the effective pair potential is divided 
into two parts: one-variable and two-variable potentials. The 
former are the analytical single-variable pair potentials derived 
in section 6, see (1) and (9)–(11), together with the diagonal 
α β=  terms in the double summation of (18). The latter are 
the off-diagonal α β≠  terms and take account, to lowest order, 
of the correlations between different mesoscopic degrees of 
freedom. Correlations between r and θ1,2 are the dominating 
ones, leading to such physical effects as the wrapping effect 
introduced in section 5.

Figure 10.  A simplified sketch of the mesoscopic configuration 
in which the magnetic moments are assigned to the particles. The 
depicted orientations a1 and a2, which identify the anchoring points 
of the polymer chain, correspond to the θ θ= = 01 2  and ϕ = 0 
configuration. The distance between the centers of the mesoscopic 
particles here corresponds to σ=r 26 . In this configuration, the 
magnetic moments m1 and m2 are introduced parallel to each other 
and pointing along the connecting vector r.
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8.  Impact of magnetic dipole moments

We will now consider how magnetic interactions between 
the mesoscopic particles modify the physics of the system, 
in particular the probability densities and other mesoscopic 
quantities. For this purpose, we assign to each particle a per-
manent magnetic dipole moment mi (i   =   1, 2), in the present 
work not going into the details of how these could be gener-
ated. We introduce these magnetic moments in the state of 
highest probability density. At vanishing magnetic moments, 
this is the state of minimal effective energy of the meso-
scopic system, i.e. following (3), the one that has maximum 

γ( )pc  over all the configurations γ. The maximum occurs for 
θ θ ϕ σ( ) ≃ ( )r , , , 26 , 0.0, 0.0, 0.0M M M M

1 2 , and is displayed in 
figure 10. When the mesoscopic particles are in this configu-
ration, we assign to them the two magnetic moments m1 and 
m2 that are parallel to each other and point along the con-
necting vector r, i.e. in their orientation of minimal magnetic 
energy, as depicted in figure 10. To first order, this configu-
ration should leave the angular orientations unchanged when 
increasing the magnetic interaction, but see also the discus-
sion in section 5. This is just one of the possible orientations 
that the moments could assume. However, such a configura-
tion could be achieved with a certain probability, for instance, 
when the sample is cross-linked in the presence of an external 
magnetic field that aligns the magnetic moments [59–62]. 
The dipole moments m1 and m2 are assumed to have equal 
magnitude = =m m m1 2  and are rigidly fixed with respect 
to each particle frame. We measure the magnetic moments in 

multiples of π μ= ( )m k T a4 2 /0 B
3

0 , where μ0 is the vacuum 
magnetic permeability. Then, for each γ, we can calculate the 
magnetic dipole interaction energy between the two moments

γ
μ
π

μ
π

θ θ θ θ ϕ

( ) = ⋅ − ( ⋅ )( ⋅ )

=
− ( ) ( ) + ( ) ( ) ( )

m m m r m r
V

r

r

m

r

4

3

4

2 cos cos sin sin cos
.

m

m m m m m

0 1 2
2

1 2
5

0
2

1 2 1 2
3

� (19)

θi
m indicates the angle between mi and r, while ϕm is the 

angle between the projections of m1 and m2 on a plane per-
pendicular to r. These quantities can be expressed in the γ 
variables once the orientations of m1 and m2 with respect to 
the particle frames are set by the protocol we described above.

For non-magnetic polymer chains, the potential acting on 
the mesoscopic level γ( )V  is separable into a sum of mag-
netic and non-magnetic interactions γ γ γ( ) = ( ) + ( )V V Vc m . 
Consequently, magnetic effects do not modify the contribu-
tions of the polymer chain to γ( )Vc , as is further explained in 
appendix B.

This corresponds to a factorization of the probability 
densities γ( )pc  and γ( )pm , where the latter is defined via the 
Boltzmann factor

γ γβ( ) = [− ( )]p Vexpm m� (20)

in analogy to (3). Therefore the total probability density 
becomes

γ
γ γ

( ) =
( )

=
( ) ( )

( )

γ γβ− [ ( )+ ( )]
p

Z m

p p

Z m

e
,

V V
c m

c m

� (21)

where ∫ γ γ γ( ) = ( ) ( )Z m p p dc m  is the partition function 
describing the system for non-vanishing magnetic moments. 
We can calculate averages on the system with magnetic inter-
actions by

∫ ∫
γ γ

γ γ γ
⟨⋅⟩ = ⋅ ( ) =

⋅ ( ) ( )
( )

p
p p

Z m
    d

      d
.

c m� (22)

The single-variable marginal probability density α( )αp , 
α θ θ ϕ= r, , ,1 2 , is again defined as γ( )p  integrated over all the γ 
variables except for α. This is the same procedure as described 
in section 4 but substituting γ( )pc  with γ( )p . As can be seen 
from figure 11, pr(r) shows an increase of the probability to 
find the particles close together when m is increased. A peak 
builds up at small r because the magnetic energy tends to 

( → ) → −∞V r 0m . Although the magnetic spheres attract each 
other, a collapse is prevented by the WCA-potential, which 
becomes effective at σ≲r 11  and for →r 0 diverges faster to 
+∞ than the magnetic energy to −∞. For m   =   m0, the presence 
of a double peak in pr(r) could be connected to a hardening 
transition of the kind described in [30]. Due to the mutual 
magnetic attraction between the parallel dipoles we expect the 
average distance ⟨ ⟩r  to decrease with increasing m, and indeed 
it does so, as can be seen from the inset in figure 11.

The changes in the angular distributions for θ1 and θ2 due 
to the magnetic interaction are illustrated in figure 12. For the 
two angles θ1 and θ2 the distributions θ( )θp 11

 and θ( )θp 22
 are 

similar, and the behavior for varying m is approximately the 
same. Therefore, we only display the results for θ( )θp 11

. The 
magnetic moments tend to align in parallel along the con-
necting axis r, corresponding to their absolute energy min-
imum. Since we introduced the magnetic moments in that 
configuration for θ θ= = 01 2 , for any fixed θ1 the minimum of 

Figure 11.  Nonvanishing permanent magnetic dipole moments of 
the mesoscopic particles and their impact on the system. We plot 
the marginal probability density pr for the distance r between the 
particles for different values of the reduced magnetic moment m/m0. 
Inset: average particle distance ⟨ ⟩r  as a function of the reduced 
magnetic moment m/m0.
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Vm, and therefore the maximum of pm, is located at θ θ=2 1 and 
vice versa. As a consequence, the θ θ= = 01 2  configuration 
leads to the same magnetic interaction energy as θ θ π= =1 2 . 
Concerning only magnetic interactions, both configurations 
show the same probability pm. Integrating out r, θ2, and ϕ from 

γ( )pm , the shape of the resulting magnetic probability density 
for θ1 is symmetric around θ π= /21  with one peak at θ = 01  
and one at θ π=1 . Therefore, coupling magnetic (pm) and non-
magnetic (pc) contributions, we find that some probability 
shifts to higher values of θ1 due to the magnetic interactions. 
However, we find the standard deviation of θ( )θp 11

 to decrease 
with increasing m (see the inset of figure 12), meaning that the 
particles become less likely to rotate along the θ1 (or likewise 
θ2) direction.

The same calculation for ϕ( )ϕp  shows that the particles also 
become less likely to rotate around the connecting vector r. 
The probability density of ϕ ≃ 0 rises and sharpens, as we can 
see in figure 13, and the standard deviation (see the inset of 

figure 13) decreases, confirming quantitatively the sharpening 
of ϕ( )ϕp .

9. Thermodynamic properties

Finally, we provide the connection to the thermodynamics 
of our canonical system and demonstrate the influence 
of the magnetic interactions. With the partition function 
Z(m) as in (21), we can calculate the overall free energy as 

( ) = − [ ( )]F m k T Z mlnB , the internal energy of the system as

∫ γ γ γ γ
( ) = ⟨ ⟩( ) =

( ) ( ) ( )
( )

U m V m
V p p

Z m

dc m� (23)

with γ( )V  defined before (20), and the entropy as S(m)   =    
[U(m)  −  F(m)]/T.

Figure 12.  Marginal probability density θp
1
 for the angle θ1 (very 

similar for θ2) for increasing reduced magnetic moment m/m0. Inset: 

standard deviation of θ1, σ θ θ= ⟨( − ⟨ ⟩) ⟩θ 1 1
2

1  (very similar for θ2) 
as a function of m/m0.

0.0
0.707
1.0
1.224

Figure 13.  Marginal probability density ϕp  for the angle ϕ 
describing the relative torsion between the particles, for increasing 
reduced magnetic moment m/m0. Inset: standard deviation of ϕ, 

σ ϕ ϕ= ⟨( − ⟨ ⟩) ⟩ϕ
2  as a function of m/m0.

Figure 14.  Free energy ( ) = − [ ( )]F m k T Z mlnB  as a function of the 
reduced magnetic moment m/m0. The partition function Z(m) is 
calculated once using γ( )pc  and once using γ( )papp . The result from 
the microscopic simulation is labeled with ‘Fc’ and the one from the 
analytical approximation with ‘Fapp’. Note that for m   =   0 the free 
energies are equal.

Figure 15.  Internal energy U (m) as a function of the reduced 
magnetic moment m/m0, calculated according to (23). The curve 
labeled with ‘Uc’ shows the result from the microscopic data using 
(23), whereas in the one labeled with ‘Uapp’ γ( )pc  has been replaced 
by γ( )papp .

J. Phys.: Condens. Matter 27 (2015) 325105



G Pessot et al

11

To test the validity of our effective potential scheme using 
the coupling approximation described in section  7, we cal-
culate the thermodynamic quantities using both probability 
densities γ( )pc  and γ( )papp  and compare the results. At van-
ishing magnetic moment, the free energy of the system is 
the same for both probability densities. This is expected, 
because it is a direct consequence of the normalization con-

dition: ∫ ∫γ γ γ γ( = ) = = ( ) = ( ) =Z m Z p p0 d d 1c c app  by con-
struction of γ( )papp . For non-vanishing magnetic moments, 
the partition functions obtained from the two probability 
densities (and thus the corresponding free energies) start to 

deviate from each other because the integral ∫ γ γ γ( ) ( )p p dc m  
is, in general, different from ∫ γ γ γ( ) ( )p p dmapp . With increasing 
magnetic interaction, the difference between γ( )pc  and γ( )papp  
becomes more important and, as shown in figure 14, leads to 
a slightly increasing deviation in the free energies F(m) cal-
culated in both ways: at ≃m m1.224 0 they already differ by 
∼5.6%. Analogously, we can compare the internal energies 
of the system, shown in figure 15: at m   =   0 the error due to 
the probability density approximation is ∼0.12% of the exact 
value, rising up to ∼0.32% at ≃m m1.224 0. A similar devia-
tion follows for the entropy, see figure 16, where, however, the 
error at ≃m m1.224 0 increases to ∼0.26% of the exact value. 
Overall, however, the relative errors remain small, which con-
firms the validity and viability of our coarse-grained effective 
model potential in (18).

To summarize the effect of the magnetic dipoles on the 
system, we may conclude that the particles are driven towards 
each other. In other words, the average distance between 
them decreases (see figure  11) and the distributions for the 
particle separation and for the angular degrees of freedom 
sharpen (see figures  11–13). This reflects a decrease in 
entropy, which becomes possible due to the gain in magnetic 
interaction energy. Indeed, the calculated entropy decreases 
with increasing magnetic interactions (see figure 16), which 
is achieved by the decreasing free energy and internal energy 
(see figures 14 and 15, respectively).

10.  Conclusions

Most of the previous studies on ferrogels describe the polymer 
matrix as a continuous material [23, 32, 34, 35] or represent it 
by springs connecting the particles [30, 36, 41–44], but only 
a few resolve explicitly the polymeric chains [45, 46]. In par-
ticular, a link between such microscopic chain-resolved cal-
culations and the expressions for the investigated mesoscopic 
model energies has so far been missing. We have outlined in 
the present work a way to connect detailed microscopic simu-
lations to a coarse-grained mesoscopic model.

This manifests a step into the direction of bridging the 
scales in material modeling. Starting from microscopic sim-
ulations considering explicitly an individual polymer chain 
connecting two mesoscopic particles, we specified effective 
mesoscopic pair potentials by fitting analytical model expres-
sions. In this way, we were able to optimize a coarse-grained 
mesoscopic model description on the basis of the input from 
the explicit microscopic simulation details. Furthermore, we 
have shown that correlations between the mesoscopic degrees 
of freedom must be taken into account to provide a complete 
picture of the physics of the system. Moreover, we have exam-
ined the effect of a magnetic interaction, finding a tightening 
of the system by reducing the average distance between the 
magnetic particles and by reducing the rotational fluctuations 
around the configuration of highest probability density.

Our system consisted of only two mesoscopic particles, 
for which we derived the corresponding effective pair inter-
action potential. However, using this pair potential in a first 
approximation, two- and three-dimensional structures can 
be built up, similarly to elastic network structures generated 
using pairwise harmonic spring interactions between the par-
ticles [36, 43]. Including as a first approach magnetic interac-
tions between neighboring particles only, the different angles 
between the magnetic moment of a particle and the anchoring 
points of the polymer chain to its different neighbors must be 
taken into account. Yet, using the reduced picture of pairwise 
mesoscopic interactions, it should be possible to reproduce 
for example previously observed deformational behavior in 
external magnetic fields for two- and three-dimensional sys-
tems [45, 46].

The scope of our approach is a first attempt of scale-
bridging in modeling ferrogels and magnetic elastomers. 
Naturally, the procedure can be improved in many different 
ways. For example, we would like to study a system with mul-
tiple chains connecting the magnetic particles, with anchoring 
points randomly distributed over the surfaces of the particles. 
Such a development would eliminate artificial symmetries in 
the model and be another step towards the description of real 
systems. Furthermore, to study more realistic systems, inter-
actions between more than two mesoscopic particles would 
need to be considered. Likewise, also the effect of interac-
tions between next-nearest neighbors connected by polymer 
chains could be included. The last two points imply a step 
beyond the reduced picture of considering only effective pair-
wise interactions between the mesoscopic particles. Finally, 
via subsequent procedures of scale-bridging from the meso-
scopic to the macroscopic level [49], a connection between 

Figure 16.  Entropy S (m)   =   [U(m)  −  F(m)]/T as a function of the 
reduced magnetic moment m/m0 calculated once using γ( )pc  from 
the microscopic simulation (labeled with ‘Sc’), and once replacing 

γ( )pc  by γ( )papp  (labeled with ‘Sapp’).
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microscopic details and macroscopic material behavior may 
become attainable for magnetic gels.
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Appendix A.  Dependence on microscopic system 
parameters

In sections 6 and 7 we derived an analytical approximation 
for the effective mesoscopic model potential describing our 
system. Here, we test how the mesoscopic model parameters 
depend on the microscopic system parameters. In particular, 
we performed additional microscopic simulations with varied 
radius a of the mesoscopic particles and varied number N of 
beads forming the connecting polymer chain.

In each case, we repeated the analysis of sections 4, 6 and 7 
by fitting the mesoscopic single-variable model potentials (9)–
(11) to the microscopic simulation data. This reveals the trends 

in the dependences of the coefficients in the mesoscopic model 
potentials on the parameters a and N, as depicted in figure A1. 
From the trend of the resulting model parameters K f , D, and 
τ in figures A1(c), (e) and (g) we conclude that the potentials 
tend to become stiffer as the chain becomes shorter or—at least 
for the rotational degrees of freedom—the mesoscopic parti-
cles become larger (see4 for corresponding fitting curves).

Moreover, we have calculated the trend in the correla-
tions between the mesoscopic degrees of freedom for varying 
values of a and N, see figure A2. We find that the magnitude 
of the correlations decreases with increasing N or decreasing 
a. Thus, quite intuitively, the coupling between the γ variables 
tends to decrease with longer chains or smaller mesoscopic 
particle sizes.

Appendix B.  Separability of the Hamiltonian and 
consequences for coarse-graining

In section 8 we have included the magnetic interactions ana-
lytically on the mesoscopic level. They had not been included 
in the microscopic simulations. This procedure is possible due 
to a separability of the magnetic and non-magnetic effects, 
which as a consequence implies a factorization of the corre-
sponding probability. Thus the contribution of the polymer 
chain needs to be simulated explicitly. The contribution of any 
interaction acting solely on the mesoscopic particles can be 
exactly taken into account separately afterwards.

This argument relies on the separability of the Hamiltonian 
into a sum of mesoscopic and microscopic parts, as well as on 
the fact that magnetic interactions affect the mesoscopic part 
only. We write down the Hamiltonian of the system as

H Tγ γ γ γΓ( ) = ( ) + ( ) + ( )V V, m
A B A B

meso
,

WCA
,� (B.1)

T ∑ ∑γ γΓ Γ Γ Γ+ ( ) + [ ( ) + ( )] + ( )
= < ′

′V V V, ,
n

N
A n n B

n n

N
n n

micro

1
WCA

,
WCA

,
WCA

,

� (B.2)
4 Corresponding data curves from the additional microscopic simulations 
and fitted mesoscopic model curves are summarized in the supplemental 
material (stacks.iop.org/JPhysCM/27/325105/mmedia).

Figure A1.  Effect of varying microscopic system parameters on 
the resulting mesoscopic model parameters. In the microscopic 
simulations, we varied the mesoscopic particle radius a and the 
number of beads N forming the connecting polymer chain. Fits 
of the single-variable mesoscopic model potentials (9)–(11) to 
the microscopic simulation data lead to the presented mesoscopic 
parameter values. ((a)–(d),    ⃝ ) Model parameters for the FENE 
potential (9); ((e), (f),     ⃤   ) model parameters for the angular θ1- and 
θ2-potential (10); ((g), (h), ◻) model parameters for the torsional 
ϕ-potential (11). Values for θ0 and ϕ0 vanished in all cases and are 
not shown. The data points for σ =a/5 1 and N/60   =   1 correspond 
to the results presented in figures 6–8.

Figure A2.  Elements of the correlation matrix ϱ for different values 
of a and N. The data points for σ =a/5 1 and =N /60 1 correspond 
to the results presented in (6).
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∑γ γΓ Γ Γ+ ( ) + ( ) + ( )
=

−
( + )V V V, , .A N B

n

N
n n

H
,1

H
,

1

1

H
, 1� (B.3)

Similarly to the main text, let us here indicate with γ the 
degrees of freedom (now velocities included) of the meso-
scopic particles and with Γ the ones of the microscopic par-
ticles that build up the chain. For brevity we here label the 
mesoscopic particles by A and B and the microscopic ones 
by the discrete indices = …′n n N, 1, , . Moreover, we denote 
by γ Γ( )( )V ,p q

 
,  the corresponding interaction between particles 

p and q, where the explicit expressions of VWCA, VH, and Vm 
are as described in (1), (2) and (19). T γ( )meso  and T Γ( )micro  
indicate, respectively, the kinetic energies of the mesoscopic 
and microscopic particles. Therefore, H γ Γ( ),  is separable into

H H Hγ γ γΓ Γ( ) = ( ) + ( ), , ,meso micro� (B.4)

where H γ( )meso  contains the terms in line (B.1) and H γ( )micro  
is composed of the terms in lines (B.2) and (B.3).

Since we work in the canonical ensemble, the physics of 
the system derives from the partition function

Z H

H H

∫
∫

γ

γ

Γ

Γ

( ) =

=

γ

γ γ

β

β β

Γ

Γ

− ( )

− ( ) − ( )

m e d d

e e d d ,

,

,meso micro

�
(B.5)

with β = k T1/ B . Coarse-graining means to integrate out the 
microscopic degrees of freedom Γ, so we rearrange

Z

Z

Z

H H

H

T

∫ ∫
∫

∫

γ

γ γ

γ γ

Γ( ) =

= ( )

= ( )

γ γ

γ

γ γ γ

β β

β

β β

Γ− ( ) − ( )

− ( )

− ( ) − [ ( )+ ( )]

⎡
⎣⎢

⎤
⎦⎥m e e d d

   e d

e e d .V V

,

micro

microm
A B A B

meso micro

meso

,
meso WCA

,

�

(B.6)

The connection to the probability density γ( )pc  is given by

Z

Z

T

γ γ( ) = ( )
( = )

γ γβ− [ ( )+ ( )]
p

m

e

0
.c

V
micro

A B
meso WCA

,

� (B.7)

Since the magnetic interactions only affect the mesoscopic 
particles, see line (B.1), it is solely contained in H γ( )meso . 
Therefore, the microscopic Hamiltonian H γ Γ( ),micro  for a spe-
cific fixed configuration γ of the mesoscopic particles does 
not explicitly depend on the magnetic moments. The magnetic 
effects do not modify the physics of the polymer chain for a 
given configuration of the mesoscopic particles. The under-
lying physical reason is that the polymer chain does not con-
tain magnetic components.

As we can see, the magnetic interactions only appear on 
the mesoscopic level of the final partition function Z. The 
magnetic interactions are simply included by multiplying on 
the mesoscopic level with the additional probability factor 

γβ[− ( )]Vexp m
A B, . The remaining part of the integrand that con-

tains the information drawn from the MD simulations, is not 
affected.

Explicitly introducing the magnetic moments in the micro-
scopic simulation would therefore not affect the final outcome. 

Thus, it is sufficient to determine the effects of the polymer 
chain through MD simulations and add the magnetic interac-
tions analytically in a subsequent step.
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