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Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of
active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic
equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we
develop and explore this strategy in more detail and show explicitly how to get to such a large-scale,
mean-field description starting from the microscopic dynamics. The effective free energy emerging
from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale,
our results thus agree with the mapping of active phase separation onto that of passive fluids with
attractive interactions through a global effective free energy (motility-induced phase transition).
Particular attention is paid to the square-gradient term necessary for the phase separation kinetics.
We finally discuss results from numerical simulations corroborating the analytical results. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4922324]

I. INTRODUCTION

The separation of a suspension of passive colloidal
particles into liquid and vapor is a complex and rather well-
studied phenomenon.1 For phase separation to occur, suffi-
ciently strong attractions between particles have to be present.
This is well understood from the perspective of thermody-
namics: the potential energy gained by the suspension forming
the dense phase compensates for the loss of entropy.

Recently, a separation into dense and dilute regions has
also been reported for “active” suspensions composed of self-
propelled colloidal particles.2–4 For a brief perspective on
this phenomenon see Refs. 5–9 for more general recent re-
views on various aspects of active matter. By constantly con-
verting external energy into directed motion, such systems
of self-propelled particles can be driven into a non-equilibrium
steady state. Steady dynamic states of orientationally ordered
collective motion can arise,10–19 but also swirling and turbu-
lent-like situations were observed.20–23 There are different
possibilities how to provide the energy input in experiments:
light, if sufficiently strong, can create a temperature gradient
leading to self-thermophoresis24,25 or can lead to the local
demixing of a binary solvent.26 In most experiments, however,
energy is provided chemically, e.g., through the decomposition
of hydrogen peroxide27 or the release of stored ions.28 All
of these mechanisms are based on a symmetry breaking on
the particle level. In the case of spherical Janus particles,29

it is provided by different surface properties of typically two
distinct hemispheres.

What is intriguing from a fundamental perspective is that
the phase separation of active colloids strongly resembles
the phase separation in a passive suspension but occurs also
for purely repulsive particles. This has been demonstrated
convincingly in computer simulations of a minimal model
by a number of groups.30–33 This minimal model of active

Brownian particles incorporates the two basic physical ingredi-
ents: volume exclusion and persistence of motion, i.e., particles
interact via repulsive potentials (or hard-core exclusion) and
every particle has an orientation along which it “swims” at
constant speed. The particle orientations evolve independently
and stochastically. The microscopic reason for particle accu-
mulation is simple (see, e.g., the kinetic model in Ref. 31):
due to the persistence of the self-propelled motion and the
excluded volume, particles block each other on the time scale
that it takes for orientations to decorrelate. If the mean collision
time is shorter (the suspension is sufficiently dense), clustering
ensues. Simulations with idealized boundary conditions show
that hydrodynamic interactions due to the solvent can modify
these time scales.34,35 On the other hand, experiments4 indicate
that for colloidal swimmers the basic scenario is robust, and we
will neglect hydrodynamic interactions in the following.

Even if the microscopic mechanism is known, the collec-
tive large-scale and phase behavior are still highly non-trivial.
Tailleur and Cates have been the first to realize that the
phenomenon of phase separation in active systems can be ex-
plained by the dependence of the particle motility on local den-
sity.36–38 The resulting theory is referred to as “motility induced
phase separation” (MIPS). Within this framework, it has been
demonstrated that the temporal evolution of the coarse-grained
density can be mapped onto that of an effective bulk free en-
ergy. Good agreement between particle-resolved simulations
of active Brownian particles and the numerical solution of the
coarse-grained density has been demonstrated.39,40 In analogy
to the mean-field treatment of phase separation in passive
suspensions (with attractive forces), binodal and spinodal lines
are identified from the minima and inflection points of the
effective bulk free energy, respectively, from which a sche-
matic phase diagram is constructed. Both lines merge at a
single critical point. The resulting free energy involves only
the density, a result that is based on the elimination of the

0021-9606/2015/142(22)/224109/11/$30.00 142, 224109-1 © 2015 AIP Publishing LLC
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polarization through neglecting temporal and spatial deriva-
tives (a detailed discussion follows in Sec. III). In particular,
this treatment produces a bulk free energy that does not contain
a term that penalizes sharp interfaces. It is thus not able to
describe the dynamics of domain formation and coarsening.
In order to cure this shortcoming, Cates and coworkers have
argued that the dynamics has to be augmented by gradient
terms that are not derivable from a free energy.39,41

The purpose of the present paper is to follow the complete
path from the microscopic dynamics to the large-scale Cahn-
Hilliard equation42 and to give a comprehensive derivation
of the results obtained in Ref. 43. To this end, we derive
effective hydrodynamic equations and perform a weakly non-
linear analysis.44 Our results refine the MIPS scenario in three
ways: (i) Our systematic derivation leads to a square-gradient
term that completes the bulk free energy to the conventional
Ginzburg-Landau form. (ii) We clarify the validity of a descrip-
tion in terms of the density alone and show that it can strictly
hold only close to the loss of linear stability. The physical
reason is that this instability occurs on length scales that are
larger than the persistence length of the directed motion and
thus allow us to study the coarse-grained density alone. The
microscopic “trapping” of particles due to their directed mo-
tion then enters as an effective attraction. Quenching deeper
into the two-phase region, the non-equilibrium nature of active
suspensions will become evident again, and the coupled evolu-
tion of density and orientation has to be considered. Finally,
(iii) we argue that non-potential gradient terms are absent.

Our paper is organized as follows: In Sec. II, we discuss
active Brownian particles as a minimal model for self-
propelled disks. Starting from the full many-body dynamics,
we sketch the derivation of the effective hydrodynamic equa-
tions of motion following Ref. 32. In Sec. III, we explore the
consequences of the adiabatic approximation of the hydro-
dynamic equations leading to an effective equilibrium theory
for the density alone. We then describe the weakly non-linear
analysis in Sec. IV, the ramifications of which are discussed in
Sec. V. Conclusions and outlook are given in Sec. VI.

II. MEAN-FIELD THEORY

A. Minimal model for self-propelled disks

The model we study consists of N identical, interacting
disks with free diffusion coefficient D0 moving in a periodic
box with area A. Each disk has an orientation ek
= (cos ϕk,sin ϕk)T that undergoes free rotational diffusion with
diffusion coefficient Dr. We consider both diffusion coefficients
to be constant and eliminate them through rescaling time
t → t/Dr and length r → ℓr, where ℓ ≡

√
D0/Dr. Neglecting

hydrodynamic interactions, the coupled equations of motion
become

ṙk = −∇U + v0ek + ξk, (1)

where U =


k<k′u(|rk − rk′|) is the potential energy (in units
of the thermal energy) with pair potential u(r), and the noise
correlations due to the solvent read as

⟨ξk(t)ξTk′(t ′)⟩ = 21δkk′δ(t − t ′). (2)

The orientational angles obey

⟨ϕ̇k(t)ϕ̇k′(t ′)⟩ = 2δkk′δ(t − t ′). (3)

We are thus left with two dimensionless parameters defining
a non-equilibrium state point: the number density ρ̄ ≡ Nℓ2/A
and the free speed v0.

B. Derivation

An equivalent representation of the equations of motion,
Equation (1), is given by the Smoluchowski equation

∂tψN =

N
k=1



∇k · [(∇kU) − v0ek + ∇k] + ∂2

∂ϕ2
k



ψN (4)

for the joint probability ψN({rk, ϕk}; t) of particle positions
and their orientations. This representation is convenient since
it allows for systematic approximations. Following Ref. 32, we
aim to derive a closed equation of motion for the one-point
particle density

ψ1(r1, ϕ1; t) ≡


dr2 · · · drN


dϕ2 · · · dϕN NψN (5)

integrating out all other particles. The local density

ρ(r, t) ≡


dϕ ψ1(r, ϕ; t) (6)

corresponds to the probability of finding a particle at position
r at time t.

Inserting Eq. (4) into the time derivative of Eq. (5), we
obtain

∂tψ1 = −∇ · [F + v0eψ1 − ∇ψ1] + ∂2
ϕψ1 (7)

dropping the particle index. The force F(r, ϕ; t) is due to inter-
actions of a (fixed) particle with its surrounding particles aver-
aged over their accessible positions and orientations. It thus
couples to the two-point density

ψ2(r1, ϕ1,r2, ϕ2; t)
≡


dr3 · · · drN


dϕ3 · · · dϕN N(N − 1)ψN . (8)

Even in a homogeneous suspension of active particles, the
force F(r, ϕ; t) does not vanish. Rather, there is a force imbal-
ance on each particle due to the directional motion, which
implies a higher probability to find another particle in front
of it (looking along its orientation) than behind. One finds
F ≡ e · F = −ρζψ1 with the force imbalance quantified
through the coefficient32

ζ ≡
 ∞

0
dr r[−u′(r)]

 2π

0
dθ cos θg(r, θ) (9)

with pair distribution function g(r, θ). Here, θ is the angle
between the orientation of a particle and the displacement
vector to another particle at a distance r , see Fig. 1. For an
inhomogeneous density ρ(r) also ζ depends in principle on the
position r. Close to the dynamical instability of the homoge-
neous density profile, we can neglect this spatial dependence,
and in the following, we assume ζ = ζ( ρ̄, v0) to be a state
function.
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FIG. 1. Sketch of the force decomposition. The total average force F is
approximately decomposed into a component along the particle orientation
e and along the local one-point density gradient ∇ψ1. Also shown is one of
the surrounding particles at distance r enclosing the angle θ with the particle
orientation.

We decompose the force

F = (e · F)e + δF ≈ (e · F)e + F∥∇ψ1 (10)

into a component along the particle orientation due to the
force imbalance and a component δF perpendicular. The latter
describes an “evasive” motion leading to an effective diffusion.
Hence, as a closure, we only keep the projection of δF onto
the density gradient ∇ψ1. This is a good approximation as
long as |δF| ∼ 1 is much smaller compared to ρ̄ζ ∼ v0 ≫ 1 [cf.
Eq. (41)]. Rearranging∇ψ1 · F leads to the formal expression65

F∥ ≈
[∇ψ1 − (e · ∇ψ1)e] · F

|∇ψ1|2 . (11)

Inserting Eq. (10) into Eq. (7), the mean-field evolution equa-
tion for the joint probability of position and orientation thus
reads as

∂tψ1 = −∇ · [v(ρ)e − De∇]ψ1 + ∂
2
ϕψ1, (12)

with effective diffusion coefficient De ≡ 1 − F∥ > 0 and effec-
tive speed

v(ρ) ≡ v0 − ρζ (13)

depending on the local density.
For a homogeneous suspension, ρ(r, t) = ρ̄ is a constant.

Assuming De also to be constant, Eq. (12) formally corre-
sponds to the stochastic evolution of a single self-propelled
particle. We can then calculate the mean-square displacement
and from that the long-time diffusion coefficient45

D( ρ̄, v0) = De( ρ̄) + 1
2
[v( ρ̄)]2. (14)

This relation has indeed been confirmed in several numer-
ical studies of active suspensions,32,39 and therefore, in the
remainder, we will treat De( ρ̄) as spatially uniform and inde-
pendent of the speed. This constitutes our final approximation
closing Eq. (12). Clearly, De corresponds to the diffusion coef-
ficient of the passive suspension (v0 = 0).

To briefly conclude, Eq. (12) describes the evolution of
the active suspension on a coarse-grained level, into which the
effects of microscopic particle interactions enter through two
effective parameters: De and the force imbalance ζ . Within the
theory, every state point ( ρ̄, v0) is fully characterized by these
two parameters. However, the theory cannot make predictions
about their values, for which we would have to make further
assumptions or measure them in particle-resolved computer
simulations (as has been done in Ref. 32).

C. Hydrodynamic equations

For the evolution of the local density Eq. (6), one finds

∂t ρ = −∇ · [v(ρ)p − De∇ρ] (15)

using Eq. (12). This equation expresses number conservation
with a particle current that is given by a diffusive term −De∇ρ
and a current vp proportional to the polarization or orienta-
tional order parameter

p(r, t) ≡


dϕ eψ1(r, ϕ; t). (16)

For p , 0, particles in a coarse-grained volume have a
preferred orientation leading to a net particle current. This
orientation evolves according to

∂tp = −∇P(ρ) + De∇2p − p (17)

with “pressure”

P(ρ) ≡ 1
2
v(ρ)ρ (18)

resulting from the directed motion of the particles. The iden-
tification as a pressure follows from the formal analogy with
hydrodynamics (although p is the polarization and not the
momentum density). Inserting Eq. (13), for sufficiently large
ζ , this pressure becomes a non-monotonic function of density.
Hence, for local densities ρ > v0/(2ζ), the density gradient,
∇P(ρ) = P′(ρ)∇ρ, changes sign so that particles migrate to-
wards denser regions. The second term in Eq. (17) is akin to a
“viscosity term” and the last term describes the local relaxation
due to the rotational diffusion.

While we have derived Eqs. (15) and (17) starting from
the full microscopic Smoluchowski equation (4), the formal
structure of the result is not surprising since it has to reflect
macroscopic conservation laws and symmetries. Note that run-
and-tumble dynamics leads to the same hydrodynamic equa-
tions (cf. Ref. 37 and see Appendix A). Although colloidal
self-propelled particles of course move in a solvent, the deci-
sion to neglect hydrodynamic interactions places the resulting
effective hydrodynamic theory into the field of what is some-
times called “dry active matter.”7 Similar equations are, e.g.,
obtained in the Toner-Tu continuum treatment11 of polar active
systems.46,47 In that case, the alignment of orientations leads
to nonlinear terms of the polarization p in Eq. (17) and thus to
dynamical collective behavior.

D. Linear stability

Clearly, any constant density with p = 0 is a stationary
solution of Eqs. (15) and (17). To study the stability of the
homogeneous density ρ̄ with respect to small perturbations,
we set ρ = ρ̄ + δρ and rewrite the equations of motion (15)
and (17) as

∂tδρ = −α∇ · p + De∇2δρ + ζ∇ · (pδρ), (19)

∂tp = −β∇δρ + De∇2p − p + ζδρ∇δρ. (20)

Here, we have separated the non-linear terms and defined the
coefficients

α ≡ v( ρ̄) = v0 − ρ̄ζ , β ≡ 1
2
(v0 − 2 ρ̄ζ). (21)
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FIG. 2. Dispersion relation σ(q) for two speeds v0 below and above the
critical speed vc≃ 1.15 corresponding to ρ̄ζ = 1 and v∗= 1. For v0 > vc,
large-scale perturbations (i.e., small wave vectors q > 0) become unstable.

Dropping the non-linear terms and inserting solutions of the
form δρ,p ∝ eσ(q)t+iq·r, we obtain the dispersion relation

σ(q) = −1
2
− Deq2 +

1
2


1 − 4αβq2

= −(De + αβ)q2 − (αβ)2q4 + O(q6), (22)

which quantifies the growth rate of a perturbation with wave
vector q (see Fig. 2). Hence, for De + αβ < 0, a smooth pertur-
bation of the homogeneous density on small q does not decay
anymore but grows, leading to a dynamical instability. Solving
this condition implies an instability line vc( ρ̄) of critical speeds
(for simplicity, we only consider the smaller solution) such
that for v0 > vc, the suspension becomes linearly unstable. The
growth rate σ(q) is maximized for the wave length

q2
0 =

1
4

(
1
αβ
− αβ

D2
e

)
, (23)

which will thus dominate the morphology at early stages after
the onset of the instability.

III. ADIABATIC APPROXIMATION

For slowly varying fields, we neglect the temporal deriv-
ative as well as the viscosity term in Eq. (17) to obtain the
adiabatic solution

p ≈ pad = −∇P = −1
2
∇(v ρ). (24)

Inserting Eq. (13) for the density-dependent effective speed
v(ρ), there are two possibilities to rewrite this expression,
which we now discuss.

A. Relaxation of density

First, we push the gradient to the right,

pad = −
1
2
(v0 − 2ρζ)∇ρ. (25)

We have assumed that ζ is constant, which holds for the homo-
geneous density profile. Inserting pad into Eq. (15) leads to the
simple evolution equation for the density

∂t ρ = ∇ · [D(ρ)∇ρ], (26)

with collective diffusion coefficient

D(ρ) = De +
1
2
(v0 − ρζ)(v0 − 2ρζ). (27)

The global density at which the diffusion coefficient switches
its sign is given by the condition D( ρ̄) = 0. It signals the
onset of a dynamical instability at which the homogeneous
density profile ρ(r, t) = ρ̄ becomes (linearly) unstable and
small perturbations start to grow. Using the coefficients intro-
duced in Eq. (21), we findD( ρ̄) = De + αβ and thereforeσ(q)
= −D( ρ̄)q2, demonstrating that it is the same instability dis-
cussed in Sec. II D.

B. Free energy

Alternatively, to illustrate the concept of an effective free
energy as advocated by Cates and Tailleur,36,37 we cast the
evolution equation for the density into a form that involves the
functional derivative of a potential function, which thus can
be interpreted as an effective free energy. This is achieved by
pulling out the Nabla operator,

−vpad =
1
2
∇

v2

0 ρ −
3
2
v0ζ ρ

2 +
2
3
ζ2ρ3


. (28)

Inserting this result into Eq. (15), we now find the evolution
equation

∂t ρ = −∇ · (vpad − De∇ρ) = ∇2 δFad

δρ
(29)

implying the functional

Fad[ρ] =


d2r fad(ρ(r)), (30)

with bulk free energy density

fad(ρ) = 1
2
*
,
De +

v2
0

2
+
-
ρ2 − 1

4
v0ζ ρ

3 +
1
12
ζ2ρ4. (31)

We will refer to this function as the adiabatic free energy
density. It has the typical form of a Landau function often
encountered in the study of critical phenomena and phase
transitions.48

In order to discuss the phase diagram following from the
adiabatic solution, we rewrite the bulk free energy density as a
symmetric function plus a linear term,

fad(ρ) = fad(ρ0) + µ(ρ − ρ0)

+
1
2
*
,
De −

v2
0

16
+
-
(ρ − ρ0)2 + 1

12
ζ2(ρ − ρ0)4, (32)

with

ρ0 ≡
3v0

4ζ
, µ ≡ ρ0 *

,
De +

v2
0

8
+
-
. (33)

The bulk free energy density becomes a non-convex function
for speeds

v0 > 4


De ≡ v∗, (34)

where v∗( ρ̄) depends on the global density. As the speed is
increased beyond v∗, the suspension enters the two-phase re-
gion. A common-tangent construction to minimize the bulk
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free energy density in the non-convex region leads to

∂ f
∂ρ

�����ρ(bi)
±

= µ, (35)

with the coexisting densities

ρ(bi)
± = ρ0 ±

√
3

4ζ


v2

0 − v
2
∗ . (36)

Consequently, the coefficient µ represents the chemical poten-
tial, which according to Eq. (35) is equal for the two coexisting
phases of densities ρ(bi)

± identifying the binodal. Since f ′′ad(ρ)
= D(ρ), the inflection points defining the mean-field
spinodal

ρ
(sp)
± = ρ0 ±

1
4ζ


v2

0 − v
2
∗ (37)

coincide with the limit of linear stability as expected.
The physical picture following from this discussion is thus

that of an active suspension undergoing a phase separation
into a dense and a dilute phase, see Fig. 3 for an illustration.
Although we study a system that is incessantly driven away
from thermal equilibrium, its large-scale evolution is appar-
ently that of an effective equilibrium suspension, where the
speed v0 plays the role of an inverse temperature. In partic-
ular, the existence of a free energy-like functional guarantees
a unique stationary state in which this functional becomes

FIG. 3. Schematic phase diagram for the adiabatic mean-field free energy
density equation (32) using ζ(v0)= (3v0)/(4ρ̄∗) with critical point at ρ̄∗= 1.2
and v∗= 1 (corresponding to constant De= 1/16). (a) Spinodal (dashed)
and binodal (solid) lines in the (ρ, v0)-plane. Indicated is the behavior for
global density ρ̄ = 1: increasing the propulsion speed v0 (vertical arrow), the
homogeneous profile loses linear stability when reaching the spinodal at vc.
For any quenched v0, the coexisting densities are predicted by the points
on the binodal (horizontal arrows for vc). (b) The corresponding tilted free
energy density fad(ρ)− µ(ρ−ρ0) for v0= vc. The continuation of the dashed
line from the upper panel indicates the inflection point for ρ̄ = 1.

minimal,

dF
dt
=


d2r

δF
δρ

∂ρ

∂t
= −


d2r

�����
∇ δF
δρ

�����

2

6 0, (38)

inserting Eq. (29). In qualitative agreement with numerical
simulations,30,31,39 the mean-field theory predicts a binodal en-
closing the two-phase region and a spinodal within this region.
The condition

ρ0 =
3v∗
4ζ∗
= ρ̄∗ (39)

with ζ∗ ≡ ζ( ρ̄∗, v∗) defines the critical point ( ρ̄∗, v∗) at which
binodal and spinodal meet.

To conclude this section, we comment on two points:
First, the functional equation (30) does not contain a gradient
term penalizing sharp interfaces between low and high density
phase, and we will come back to this point in Sec. IV B.
Second, the pressure P(ρ) [Eq. (18)] does not have to be equal
in the coexisting phases. The interface will consist of particles
pointing into the dense phase (otherwise particles will leave the
interface back into the dilute phase). Hence, the orientation p
does not vanish in the interface allowing for a jump of P(ρ)
following Eq. (24). In addition to the pressure P(ρ), from a
free energy density f (ρ), one can derive the “thermodynamic”
pressure

Pf (ρ) = −∂(a f )
∂a

= − f (ρ) + ρ f ′(ρ), (40)

with Pf , P, where a is a (small) area with locally homoge-
neous density ρ ∝ 1/a. This pressure now becomes equal for
the coexisting densities equation (36).

IV. WEAKLY NON-LINEAR ANALYSIS

A. Dominating mode

Employing the adiabatic solution (24) allows to reduce
the original hydrodynamic equations to a single equation of
motion for the density alone, which, moreover, can be cast into
a form involving an effective free energy. We now attempt to
study the behavior of the hydrodynamic equations in a more
systematic way employing a small expansion parameter.43 To
this end, we will consider the state points ( ρ̄, vc) along the
instability line with force imbalance coefficients

ρ̄ζc =
3
4
vc −

1
4


v2

c − v2
∗ (41)

following from the condition De + αcβc = 0. We study speeds

v0 = vc(1 + ε) (42)

close to the instability line with |ε| ≪ 1. We expand the
coefficients α(v0) = αc + α1ε + O(ε2) and β(v0) = βc + β1ε
+ O(ε2) into Taylor series assuming that they are analytic
functions of the speed v0. To leading order, αβ ≈ −De + σ1ε
with new coefficient

σ1 ≡ αcβ1 + α1βc. (43)

Hence, the fastest growing wave vector Eq. (23) behaves as
q0 ∼

√
ε and the growth rate of structures with this wave vector

becomes σ(q0) ≈ −σ1q2
0ε ∼ ε

2. In the following, it will be
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more convenient to employ non-negative ε > 0 and let σ1
→ ±|σ1| so that the sign of σ1 determines on which side of the
instability line we are: For σ1 > 0 (small) fluctuations decay
while for σ1 < 0 the suspension has become unstable.

We now aim to derive an equation of motion for the density
fluctuations on the scale of the dominating mode. Since these
fluctuations evolve on the length 1/q0 and grow with time scale
1/σ(q0), we rescale length and time leading to

∂t → ε2∂t, ∇ →
√
ε∇, (44)

which we plug into Eqs. (19) and (20).

B. Close to the critical point

In a first step, we expand the local density and orientation
as

ρ = ρ̄ +
√
εc + εc(1) + ε3/2c(3/2) + · · ·, (45)

p = εp(1) + ε3/2p(3/2) + · · ·. (46)

To lowest order, the magnitude of density fluctuations is thus
∼
√
ε, viz., the response is δρ ∝ ε1/2 as expected close to a crit-

ical point with mean-field exponent 1
2 . The expansion form for

p has been chosen to match powers. Plugging all expansions
back into the hydrodynamic equations together with Eq. (44),
we collect terms of the same order ε. To lowest order, we find
p(1) = −βc∇c, and therefore,

0 = (De + αcβc)∇2c, (47)

which is fulfilled for any perturbation c(r, t) since the expres-
sion in brackets corresponds to the instability condition and
thus vanishes.

To next order, we find p(3/2) = −βc∇c(1) + ζc(c∇c) leading
to

0 = −2g∇ · (c∇c) = −g∇2c2, (48)

with another coefficient

g ≡ 1
2
ζc(αc + βc) = 1

4
ζc


v2

c − v2
∗ > 0. (49)

For non-vanishing arbitrary c, the condition (48) is fulfilled
only for g = 0, which implies vc = v∗. Hence, the expansion
equation (45) for the density fluctuations is only valid in an
ε-environment of the critical point ( ρ̄∗, v∗).

Assuming g = 0, at the next order, we finally obtain an
equation of motion

∂tc = σ1∇2c + ζ2
c∇ · (c2∇c) − D2

e∇4c = ∇2 δF1/2

δc
(50)

for the density fluctuations. The right hand side can be ex-
pressed as the functional derivative of a potential function (an
effective free energy)

F1/2[c] =


d2r


D2
e

2
|∇c|2 + f1/2(c)


, (51)

with bulk term

f1/2(c) = 1
2
σ1c2 +

1
12
ζ2

c c4. (52)

In contrast to the adiabatic solution (30), the expansion in ε
now includes the customary square-gradient term.

As the final step, we restore the density through inserting
c = (ρ − ρ̄)/√ε and reverting the scaling Eq. (44). While the
gradient term is invariant, the bulk contribution to the free
energy density becomes

ε2 f1/2 =
1
2
σ1ε(ρ − ρ̄)2 + 1

12
ζ2

c (ρ − ρ̄)4. (53)

In order to show that this expression for the bulk is equivalent to
Eq. (32) obtained from the adiabatic solution, we first consider

De −
v2

0

16
= De −

v2
∗

16
(1 + ε)2 ≈ − v

2
∗
8
ε (54)

up to linear order in ε. On the other hand, we obtain

σ1 = −
v2
∗
8

(55)

inserting the force imbalance coefficient (41) at the critical
point vc = v∗. This demonstrates that the adiabatic solution fad
coincides with the result f1/2 for the bulk free energy density
of a more systematic expansion close to the critical point. In
addition, the latter route also yields a square-gradient term that
describes the cost of creating density inhomogeneities. This
term is important in the coarsening dynamics and allows to pre-
dict an interfacial tension from the mean-field theory. Note that
such a square-gradient term can already be anticipated from the
dispersion relation (22) from the q4 term with (αcβc)2 = D2

e.

C. Away from the critical point

We found in Sec. IV B that an expansion in density fluc-
tuations of order ∼

√
ε only holds for vc = v∗, i.e., at the critical

point. To lift this restriction and to be able to move along
the instability line, we need to satisfy Eq. (48) while at the
same time g , 0. To achieve this within the ε-expansion of the
density, one has to demand that the leading contribution is of
order ∼ε (instead of the larger ∼

√
ε). Effectively, this reduces

the magnitude of density fluctuations. We, therefore, arrive at
the expansion employed in Ref. 43,

ρ = ρ̄ + εc + ε2c(2) + · · ·, (56)

p =
√
ε[εp(1) + ε2p(2) + · · ·]. (57)

As before, we collect terms of the same order. At lowest order,
we again find Eq. (47). The next order already leads to the
equation of motion

∂tc = σ1∇2c − 2g∇ · (c∇c) − D2
e∇4c = ∇2 δF

δc
(58)

for the density fluctuations away from the homogeneous pro-
file, where

p(2) = −βc∇c(2) − β1∇c + De∇2p(1) + ζcc∇c (59)

has been used. The form of the free energy functional coincides
with Eq. (51). In particular, we obtain the same square-gradient
term as before. However, the bulk free energy density now
reads as

f (c) = 1
2
σ1c2 − 1

3
gc3. (60)

Here, the previously introduced coefficients σ1 and g become
the coefficients of the square and cubic term, respectively.
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FIG. 4. Possible shapes of the free energy density equation (60): (a) in the linearly unstable region for σ1 < 0. Due to volume exclusion, there is a maximal
c+ (vertical dashed line) at which the density has a minimum. ((b) and (c)) For σ1 > 0, two cases are possible: (b) the uniform density profile corresponding to
c = 0 is metastable (the second minimum) and (c) the uniform density profile is globally stable.

The striking feature of Eq. (60) is that a c4 term stabiliz-
ing the dense phase is missing. Nevertheless, due to volume
exclusion, a real suspension will not collapse into a single point
but reach the predicted phase-separated state as demonstrated
in experiments and simulations. This mechanism of volume
exclusion works on length scales corresponding to the particle
size implying c < c+ with c+ corresponding to the maximal
density. The damping thus arises from couplings to scales
that are not included in the systematic expansion at the above
order. Thus, the reason for the missing c4 term is the scale
separation between the particle size and the length over which
density fluctuations are coarse-grained. The different possible
shapes of the free energy density f (c) depending on the system
parameters are sketched in Fig. 4. Even without the c4 term, we
can derive a differential equation that describes the instability
line, see Appendix B.

V. DISCUSSION

A. Off-critical quenches

The two local free energy densities f1/2(c) and f (c) for
the two different scalings can be derived from the same global
free energy. To understand this and the role of the asymmetric
c3 term in the free energy density Eq. (60), it is instructive to
recall the situation (for passive suspensions) with a symmetric
free energy density f (ϕ) = a

2 ϕ
2 + κ

4ϕ
4 with order parameter ϕ

∝ ρ − ρ̄∗. The Cahn-Hilliard equation models the evolution
after a quench from a stable homogeneous density ϕ = −c0 into
the two-phase region, where c0 = 0 implies a quench through
the critical point. For an off-critical quench, we set ϕ = c − c0
with c the deviations away from the initial homogeneous den-
sity as before. The Cahn-Hilliard equation then reads as

∂tc = ∇2[(a + 3κc2
0)c − 3κc0c2 + κc3] − D2

e∇4c, (61)

dropping constant terms which vanish due to the spatial deriv-
ative. Clearly, this result becomes Eq. (58) with g = 3κc0 and
σ1 = a + g2/(3κ) when adding a repulsive term 1

4 κc4 to f (c).
The coefficient a(v0) should be a monotonically decreasing
function of speed v0. It changes sign at v0 = v∗ and becomes
negative for v0 > v∗. A given global density ρ̄ determines vc
= vc( ρ̄) and g = g(vc) [Eq. (49)]. Exactly on the spinodal σ1
= 0 holds, which implies a = −g2/(3κ) for the quadratic coef-
ficient of the global free energy. Note that at vc = v∗ we have
g = 0 and, therefore, we recover the function f1/2(c) [Eq. (52)]
if in addition we set κ(v∗) = 1

3 ζ
2
∗ . Hence, f (c) extends the lower

order solution f1/2(c) to higher speeds v0 but with undeter-
mined coefficient κ(v0), which does not follow from the ε-
expansion.

B. Nucleation behavior close to the spinodal

The Cahn-Hilliard equation has been derived originally
to describe spinodal decomposition, the homogeneous, bar-
rierless onset of phase separation throughout the system in
response to a quench beyond the spinodal bounding the instable
region. Interestingly, for the spinodal itself, the Cahn-Hilliard
equation predicts a change from a continuous to a discontin-
uous transition (see, e.g., Ref. 49).

To discuss this effect in the present context of active Brow-
nian particles, we symmetrize and rescale the free energy
density Eq. (60) (including the repulsive c4 term) leading to
the scaling functions

f̃±(η) ≡ κ

|σ1|2 [ f (c) − f (c0)]

= µ̃±η +
1
2
(±1 − Γ)η2 +

1
4
η4, (62)

with scaled density η ≡

κ/|σ1|(c − c0), where c0 = g/(3κ) as

in Sec. V A. These functions depend on the single parameter

Γ ≡ gc0

|σ1| =
g2

3κ |σ1| > 0 (63)

combining the three coefficients σ1, g, and κ, with irrelevant
µ̃±(Γ) akin to a chemical potential. Corresponding to the sign of
σ1, f̃− describes the effective free energy density in the unstable
and f̃+ in the linearly stable region.

The parameter Γ is defined along the spinodal. In partic-
ular, the critical point ( ρ̄∗, v∗) corresponds to Γ = 0 and going
away from this point along the spinodal, the value of Γ in-
creases. In Fig. 5, the resulting “phase diagram” is shown in
the (η,Γ) plane. Due to the scaling employed in Sec. IV C,
the functions f̃±(η) correspond to fixed (small) ε, and we now
need to distinguish the two cases shown in Figs. 5(a) and 5(b)
depending on which side of the spinodal the system resides.
Shown are the binodals calculated from the common tangent
construction and the spinodals corresponding to the inflec-
tion points, cf. Sec. III B. The uniform density corresponds
to setting c = 0, i.e., η = −

√
Γ/3. For σ1 > 0, the uniform

density is linearly stable but becomes metastable for Γ > 3
2

(it crosses the binodal). This implies that for Γ < 3
2 crossing

the spinodal (jumping from σ1 > 0 to σ1 < 0) corresponds to
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FIG. 5. Schematic “phase diagrams” obtained from the scaling functions
(a) f̃+ and (b) f̃−, see Eq. (62). Shown are coexisting densities (binodals,
outer solid lines) and the limits of linear stability (spinodals, inner dashed
lines). For σ1 > 0, the uniform density (black line) is linearly stable (it
becomes metastable for Γ > 3

2 ), and forσ1 < 0, it is always unstable. ((c) and
(d)) Sketch of the bifurcation diagrams showing the deviation from the uni-
form density (the “amplitude,” solid lines are linearly stable and dashed lines
unstable) vs. the control parameter ε for fixed Γ. The diagrams of (a) and (b)
correspond to ±|ε | on both sides of the bifurcation point as indicated by the
connected dots for two representative values of Γ: (c) supercritical pitchfork
bifurcation for Γ < 3

2 corresponding to a continuous transition. (d) Subcritical
bifurcation for Γ > 3

2 corresponding to a discontinuous transition.

a continuous transition. In contrast, for Γ > 3
2 , the transition

becomes discontinuous.
It is instructive to also consider the bifurcation diagrams

shown in Figs. 5(c) and 5(d). Here, we show schematically
the solutions of the amplitude equation, which correspond to
the extrema of the effective free energy. Plotted is the density
with respect to the homogeneous density as a function of ε
= v0/vc − 1 for fixed Γ. For any |ε| > 0 close to the instability
at ε = 0, the (scaled) solutions can be directly read off Fig. 5(a)
for ε < 0 (σ1 > 0) and Fig. 5(b) for ε > 0 (σ1 < 0) as indicated
for two values of Γ. These correspond to a continuous and
discontinuous transition, respectively.

C. Non-local speed

Within the weakly non-linear analysis, an integrable
square-gradient term stabilizing domains appears naturally.
To study phase separation kinetics, Cates and coworkers have
followed a different route and posit that the active Brownian
particles sample the density on a length scale λ larger than
the interparticle spacing.39,41 To lowest order, the speed then
becomes a non-local function v( ρ̂) with ρ̂ = ρ + λ2∇2ρ such
that

v( ρ̂) ≈ v(ρ) + v ′(ρ)λ2∇2ρ. (64)

Plugging such a non-local speed into the adiabatic solution
(24) produces the desired square-gradient term but, strikingly,
would lead to an equation of motion for the density that also in-
volves non-integrable terms, i.e., it is not longer representable

as the functional derivative of an effective free energy. Appar-
ent consequences are discussed in Ref. 41.

Replacing the speed Eq. (13) with the expression Eq. (64),
we can again study the systematic ε-expansion of the hydro-
dynamic equations (15) and (17) close to the instability line.
While the lowest order of the ε-expansion remains unchanged,
the non-local speed modifies the expression Eq. (59) as

p(2) → p(2) +
1
2
ρ̄ζcλ

2∇2(∇c) (65)

for the orientation, where we have used v ′(ρ) = −ζ . Conse-
quently, the bulk free energy density Eq. (60) remains the same
and the only effect is that the coefficient of the square-gradient
term is replaced by

D2
e → D2

e +
1
2
αc ρ̄ζcλ

2. (66)

Since the additional term is positive, this corresponds to a
larger interaction range as one would intuitively expect.

In summary, non-integrable terms were introduced when
employing the adiabatic approximation. They do not appear
in a systematic treatment. Instead, the systematic treatment
naturally produces the well-known squared density gradient
term in the effective free energy functional. As a consequence,
close to the instability line and at onset (mean-field), phase
separation kinetics of active suspensions is predicted to not
qualitatively differ from that of passive suspensions even for
a non-local speed.

D. Numerical simulations

Although there are already quite a few numerical studies
of two-dimensional active Brownian particles,30–33,43,50 the
determination of the full phase diagram is still an open task. As
shown, the mapping to a free energy strictly holds only close to
the instability line. Moreover, mean-field treatments are known
to yield incorrect quantitative predictions close to critical
points due to a diverging correlation length and the ensuing
large fluctuations. These fluctuations make numerical sampl-
ing notoriously difficult in the vicinity of a continuous tran-
sition. This problem is already present in passive suspensions
but appears to be even more severe in active suspensions due to
two reasons: (i) fluctuations are even larger and (ii) advanced
sampling techniques for systems out of equilibrium are not
(yet) available.

The arguably best studied version of active Brownian
particles in two dimensions employs the repulsive Weeks-
Chandler-Andersen potential51

u(r) =



4ϵ[(σ/r)12 − (σ/r)6] + ϵ (r < 21/6σ)
0 (r > 21/6σ) (67)

for the pairwise interactions with potential strength ϵ and
length scale σ. In this section, we restore units and employ
the Péclet number Pe ≡ 3v0/(σDr). In principle, the rotational
diffusion coefficient Dr is a free parameter of the model.
However, for self-propelled colloidal particles, it is reasonable
to assume (see, e.g., supplementary material of Ref. 4) that
the no-slip boundary condition still holds, which implies Dr
= 3D0/σ

2. Phase diagrams and coexisting densities have been
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FIG. 6. (a) Coexisting densities for a model suspension of almost hard disks, see text for details. Shown are the data from three different numerical studies with
the same repulsive pair potential but varying ratios of effective propulsion force to potential strength. The dashed lines are fits of Eq. (68) with (�) indicating the
extrapolated position of the critical point. The best fit of the high-density branch is achieved for the data of Solon et al. (b) Binodal and critical point of Bialké
et al. as a function of area fraction φ = ρa2π/4. Also shown is the average fraction m of particles in the largest domain (scale bar on the right, from Ref. 43)
after instantaneous quenches. Only state points with m > 0.1 are shown. (c) Comparison of m at φ = 0.5 for two methods: (◦) from a cluster analysis to identify
dense domains and (•) from the coexisting densities via Eq. (69).

reported in three studies: (i) Redner et al.31 use ϵ = kBT for
N = 15 000 disks and vary the speed Pe. This means that at
higher propulsion speeds particles will overlap more strongly.
(ii) Bialké et al.43,52 use ϵ = 100kBT for N = 10 000 disks
and also vary the propulsion speed. Note that Dr = 3D0/a2

with a = 21/6σ. (iii) In contrast, Solon et al.50 effectively vary
the temperature by keeping the ratio between the effective
propulsion force and the potential strength constant with Pe
= 24ϵ/kBT . The number of disks is N = 20 000. Common
to all three studies is that below Pe . 60 fluctuations are so
strong that a reliable determination of coexisting densities is
not possible anymore.

In Fig. 6(a), the reduced coexisting densities ρ±/ρ̄∗ are
plotted for the different Péclet numbers. The low-density
branches collapse when rescaled by ρ̄∗ ≃ 0.89σ−2. Quite in
contrast, the high-density branches differ, which presumably is
due to the different compressibilities. Inspired by the famous
Guggenheim plot,53 we fit the coexisting densities by

ρ±
ρ̄∗
= 1 + a±

(
Pe
Pe∗
− 1

)
+ b±

(
Pe
Pe∗
− 1

)1/3

(68)

with fit parameters a± and b±. From the low-density branch,
we thus estimate the critical point ρ̄∗ ≃ 0.89σ−2 and Pe∗ ≃ 50.
In Fig. 6(b), for the data from Bialké et al., the coexisting
densities (converted to area fractions φ ≡ ρa2π/4) are over-
laid by results from instantaneous quenching:43 The passive
suspension (v0 = 0) is equilibrated at a given global density.
The suspension is then quenched to the final speed v0 and
relaxed to the steady state. A cluster analysis is performed
for the recorded configurations to identify dense domains of
Nc particles, from which the averaged fraction m ≡ ⟨Nc⟩/N of
particles in the largest cluster (i.e., dense domain) is extracted.
Note that only state points with m > 0.1 are shown, i.e., the
largest domain contains at least 10% of all particles.

Fig. 6(b) is compatible with the proposed mapping to pas-
sive phase separation. Below area fraction φ ≃ 0.3, no sponta-
neous phase separation is observed, which thus roughly indi-
cates the location of the spinodal. There is a larger region
around the putative critical point where spontaneous phase
separation seems to occur even below the extrapolated binodal,
which, however, could be interpreted as a finite-size effect.
In a finite system, large fluctuations appear as dense domains
but would not lead to full phase separation in a larger system.

However, this does not explain the observed phase separation at
higher area fraction φ > 0.7. At these high densities, details of
the interparticle interactions and the associated particle length
scale may become important, which is not captured by the
coarse-grained point of view of the weakly nonlinear analysis.

Previously in Ref. 32, we have reported data that would
suggest a continuous transition (for φ = 0.4 and φ = 0.5). In
line with this observation, in Ref. 43, an abrupt onset of hyster-
esis for area fraction φ < 0.32 has been observed, which thus
agrees with the mean-field prediction of a change from contin-
uous to discontinuous (see Sec. V B). Whether this observed
change is a numerical artefact due to the vicinity to a single
critical point (as in passive phase separation) or a genuine non-
equilibrium effect remains to be investigated.

For completeness, we note that for a single dense domain
(as observed at intermediate system sizes) a simple relation
between m and the coexisting densities exists via the lever rule,

m(v0) ≈ 1/φ− − 1/φ
1/φ− − 1/φ+

. (69)

This is demonstrated in Fig. 6(c). The systematic difference
may be attributed to interfacial particles being counted towards
the dilute phase in the cluster analysis.

VI. CONCLUSIONS

To summarize, we have followed a systematic route from
the microscopic dynamics to the large-scale Cahn-Hilliard
equation to address the phase behavior of active Brownian
particles. In Ref. 32, starting from the microscopic dynamics,
effective hydrodynamic equations have been derived for the
temporal evolution of (weakly perturbed) density and average
orientation. Two parameters enter these equations: the free
speed v0 and the global density ρ̄. All details of the particle
interactions are contained in the single function ζ = ζ( ρ̄, v0),
which quantifies the force imbalance due to the interplay be-
tween repulsive forces and directed motion.

The hydrodynamic equations exhibit a dynamical insta-
bility at vc = vc( ρ̄), which can be determined through a linear
stability analysis.30,32,33 To go beyond the linear regime, we
have performed a weakly non-linear analysis44 close to the
instability line using as the small expansion parameter
ε = v0/vc − 1. This approach yields an equation of motion for

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.99.64.185 On: Fri, 12 Jun 2015 14:39:51



224109-10 Speck et al. J. Chem. Phys. 142, 224109 (2015)

the density alone, which is formally equivalent to a Cahn-
Hilliard equation. It involves a local effective free energy. We
have discussed two expansions holding for different ranges of
the speed vc, which together agree with the scenario of mapping
active to passive phase separation close to the loss of linear
stability. What happens further away from the instability line?
Including higher orders of the expansion is of course possible
but will lead to a large number of additional terms. Already
at the next order, the non-equilibrium nature of the active
suspension will become manifest since a description in terms
of density fluctuations alone is not possible anymore and the
time evolution of the polarization has to be included. Hence,
there seems to be no real advantage in going to higher orders
since one can also study the original hydrodynamic equations.

One should stress that we have described a mean-field
scenario for the one-point density. Stationary two-point corre-
lations are an input to the theory, and higher order correlations
are neglected. Gaussian noise could be added, which accounts
for uncorrelated fluctuations but of course does not restore
the missing correlations. For passive suspensions, it is well
known that mean-field free energies have to be regularized
by the Maxwell construction to be thermodynamically valid.
Moreover, experimentally and in simulations, no sharp loss
of linear stability is observed and the “spinodal” line is a
pure mean-field concept.54 Still, one might wonder why for
active Brownian particles a mean-field description neverthe-
less seems to reproduce domain morphologies of particle-
based simulations to such a good degree.39 It thus remains to be
tested numerically to which extent the theory outlined here is
valid. Some evidence has been discussed in Sec. V D but more
detailed numerical investigations are clearly needed.

Despite recent progress, there are many open questions
even for the simple minimal model studied here. For example,
the determination of the full phase diagram is still an open
issue both theoretical and numerical. As we have shown here,
in the mean-field picture, already the instability line has a richer
structure than anticipated previously. It will be particularly
interesting to study speeds close to v∗ in order to exactly deter-
mine the critical point and its properties numerically. However,
simulations in this parameter region are hampered by the large
critical fluctuations and will require a more detailed study of
finite-size effects than available so far. Another open issue
is the relation between effective free energy and mechanical
pressure.50,52,55–57

Finally, while here we have studied analytically the sim-
plest version of active Brownian particles (namely, monodis-
perse repulsive disks) in two dimensions without alignment
and without hydrodynamic interactions, we note that multiple
extensions of this model have been discussed in the litera-
ture: mixtures of active and passive particles,58 role of attrac-
tive interactions,59–61 and alignment62 and polydispersity in
connection with the glass transition.63,64
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APPENDIX A: RUN-AND-TUMBLE PARTICLES

The equivalence of active Brownian particles and run-and-
tumble particles on the level of the hydrodynamic equations
has been discussed in Ref. 37. For completeness, we briefly
sketch the derivation for run-and-tumble particles following
the route taken in Sec. II. Again, we consider N identical
particles moving in two dimensions. A particle moves with
constant speed v0 along its orientation e ≡ (cos ϕ,sin ϕ)T (the
“run”). After an exponentially distributed random run time
with mean τr, the particle “tumbles,” i.e., it picks a random new
orientation. The evolution of the one-point density ψ1(r, ϕ, t) is
thus given by

∂tψ1 = −∇ · [µ0F + v0eψ1] − 1
τr
ψ1 +

1
2πτr

ρ, (A1)

where F is the force due to interactions with other particles,
µ0 is the bare mobility, and ρ(r, t) is the local number density
[Eq. (15)]. The second term describes the “death” of particles
with a given orientation ϕ and the third term their rebirth with
uniformly distributed orientation. Dimensionless quantities are
introduced through measuring energies in units of ϵ , rescaling
time t → τrt, and length r → ℓr with ℓ ≡ √ϵ µ0τr.

As a closure, we decompose the force F ≈ −ρζeψ1
− De∇ψ1, where the first term captures the force imbalance
along the orientation slowing down the particles. Since this
force is not exactly aligned with the orientation there will
also be an “evasive” motion, leading to an effective diffu-
sion on larger scales. This is described through the second
term. Inserting the force into Eq. (A1), we thus arrive at [cf.
Eq. (12)]

∂tψ1 = −∇ · [v(ρ)e − De∇]ψ1 − ψ1 +
ρ

2π
, (A2)

with effective speed v(ρ) ≡ v0 − ρζ . It is now straightfor-
ward to derive the hydrodynamic equations (15) and (17),
which demonstrate the equivalence of active Brownian parti-
cles and run-and-tumble particles (at least for weakly perturbed
orientations).

APPENDIX B: DIFFERENTIAL EQUATION
FOR INSTABILITY LINE

The effective free energy density Eq. (60) is a local
function that describes the scaled density deviations in the
vicinity of a point on the instability line. Two points along this
line have different coefficients σ1 and g. Still, these cannot
be completely independent. Consider a global density ρ1.
Quenching the system to a speed v0 = vc(ρ1)(1 + ε) past the
limit of linear stability, separation into dense and dilute regions
will occur. The range of unstable scaled density deviations
is c(sp)

− < c < c(sp)
+ , where c(sp)

− = σ1/(2g) < 0 is given by the
inflection point of f (c) (the maximal value c(sp)

+ is irrelevant
for the following argument). Clearly, a suspension with global
density ρ2 = ρ1 + εc(sp)

− should then become unstable beyond
the speed v0 = vc(ρ2). We can exploit this consistency condition
to derive a differential equation that describes the instability
line, see Fig. 7 for a sketch of the derivation.
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FIG. 7. Sketch for the derivation of Eq. (B2) for the instability line (solid
line). For a global density ρ1, the bulk free energy density f (c) [Eq. (60)] is
sketched in the inset, whereby the homogeneous density corresponds to c = 0.
Densities down to ρ2= ρ1+εc

(sp)
− are unstable, which thus corresponds to a

second point on the instability line.

To this end, consider the derivative

∂ρ

∂v

�����v1

= lim
v2→ v1

ρ2 − ρ1

v2 − v1
= lim
v2→ v1

εc(sp)
−

v2 − v1
(B1)

at speed v1 = vc(ρ1). Inserting ε = (v2 − v1)/v1, we obtain

∂ρ

∂v
=

σ1

2gv
. (B2)

Knowing one point on the instability line, we can integrate this
differential equation and invert the solution to obtain the full
instability line vc( ρ̄), see Ref. 43 for an example.
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