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Liquid pair correlations in four spatial dimensions: theory versus simulation
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(Received 6 November 2014; accepted 26 November 2014)

Using liquid integral equation theory, we calculate the pair correlations of particles that interact via a smooth repulsive pair
potential in d = 4 spatial dimensions. We discuss the performance of different closures for the Ornstein–Zernike equation,
by comparing the results to computer simulation data. Our results are of relevance to understand crystal and glass formation
in high-dimensional systems.

Keywords: liquid integral equations; molecular dynamics simulations; spatial dimension; pair correlations; equations of
state

1. Introduction

Particle-resolved structure in a classical homogeneous bulk
liquid is typically measured in terms of pair-correlation
functions. In real space, the pair correlations provide the
conditional probability density to find a particle at a distance
r from another particle. The associated Fourier transform
correlates density waves of wavenumber k [1]. While the
latter is a typical outcome of a scattering experiment [2],
the former can be obtained from the real-space coordinates
of the individual particles such as colloids [3,4] or dusty
plasmas [5]. Computer simulations of classical many-body
systems with a prescribed particle pair-interaction potential
are a suitable and well-established route to calculate pair
correlations [6]. There are, however, situations that require
a (semi-)analytical statistical mechanical approach as an
alternative to computer simulations. In such cases, there is
a choice of various liquid integral equations that are based
on the Ornstein–Zernike equation, and that have often been
proven to predict pair correlations accurately and efficiently
[1,2,7–13]. The large body of complementary experiments,
simulations, and analytical theory have resulted in a good
understanding of pair correlations in the fluid or liquid state
by now.

Most of the studies so far have focused on the physically
most relevant situation of three spatial dimensions (d = 3),
but liquids can also exist in lower spatial dimensions when
they are confined [14,15], e.g., to two-dimensional inter-
faces [16] or between plates [17] (d = 2) or inside narrow
cylindrical tubes (d = 1) [18]. Though they do not possess
an immediate physical realisation, higher spatial dimen-
sions (d > 3) have been another focus of recent research.
The motivation to consider dimensions higher than three

∗
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derives from the ambition to understand the salient neces-
sary ingredients for freezing and the glass transition. As
the number of dimensions is increased the number of near-
est neighbours around a tagged particle also increases, and
one can therefore expect mean-field like descriptions to be-
come increasingly accurate. In addition, phase transitions
occur at smaller densities in higher dimensions, and one
should expect triplet and higherorder particle correlations
to be less and less influential. Note that in the framework
of the mode coupling theory (MCT) of the glass transition,
Biroli and Bouchaud [19] proposed an upper critical di-
mension dc = 6, that was later corrected to dc = 8 [20]. The
MCT of the glass transition of hard hyperspheres in high
dimensions [21] suffers from inaccurate structural input for
a large but finite number of dimensions d, which can give
rise to artefacts in the predicted glass transition lines. Here,
liquid integral equations can be used to bridge the gap be-
tween low spatial dimensions, d � 12, for which computer
simulations are feasible, and very high dimensions, d �
100, at which limiting infinite-dimensional results apply.
The possibility to compute correlation functions in virtu-
ally unlimited ranges of particle separation distances and
wavenumbers without any statistical noise and in a compu-
tationally efficient way, qualifies liquid integral equations
as a valuable alternative to computer simulations in every
number of spatial dimensions.

In the existing literature on higher dimensional partic-
ulate systems, hard hyperspheres have mostly been stud-
ied [22–26] while there are less studies for particles with
soft pair potentials like, e.g., the Lennard-Jones potential
[27,28].

C© 2015 Taylor & Francis
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The computational effort for particle-resolved com-
puter simulations rises quickly as a function of d, which ef-
fectively limits computer simulations to dimensions d � 12
[29]. Analytical [30–32] or efficient numerical [11] meth-
ods for the calculation of pair correlations in dimensions
d > 3 are therefore worth aspiring for. In this study, we
examine the accuracy of the hypernetted chain (HNC) [33],
Percus–Yevick (PY) [34], and Rogers–Young (RY) [35]
integral equations, which are compared with numerically
accurate computer simulations of particles with soft in-
teractions of the Weeks–Chandler–Andersen (WCA) [36]
type, in d = 4 spatial dimensions. We find that (just like in
d = 3 spatial dimensions) the RY scheme predicts paircor-
relations in excellent agreement with the computer simu-
lation results, while the PY and HNC scheme show severe
over- and under-estimation of the undulations in the static
structure factor, respectively.

The remaining parts of this paper are organised as fol-
lows: in Section 2, we define the WCA fluid under study.
We continue in Section 3 to outline the computer simula-
tions, and in Section 4, the liquid integral equations that we
use to compute particle pair correlations. Results for the
static structure factor are presented in Section 5, which is
followed by our concluding remarks given in Section 6.

2. Weeks–Chandler–Andersen pair potential

We study homogeneous fluids of spherically symmetric,
monodisperse particles that interact via a smoothed WCA
potential [36], i.e., a Lennard-Jones potential of depth ε,
which has been truncated at the minimum position r = rc

= 21/6σ , and shifted upwards by ε. Thus, this non-negative
(repulsive) pair potential is defined by

u(r) =
⎧⎨
⎩

0 for r > rc,

f (r)

[
4ε

((σ

r

)12
−

(σ

r

)6
)

+ ε

]
otherwise,

(1)

where f(r) = (r − rc)4/[(σ /200)4 + (r − rc)4] is a smoothing
function that decays rapidly from f(r) ≈ 1 for r < rc −
σ /200 to f(r) = 0 for r = rc. The function f(r) provides
continuity of forces at rc and thus, in a molecular dynamics
(MD)simulation, a better numerical stability is achieved
when using this smoothing function.

The thermodynamic equilibrium state of the WCA fluid
studied here is fully described by two dimensionless param-
eters: the normalised thermal energy kBT/ε (with Boltz-
mann constant kB) and nσ d, which is the number of parti-
cles in a d-dimensional volume σ d. Here, n = N/Ld is the
number density for N particles in a hypercubic box of edge
length L (taken in the thermodynamic limit N → ∞ and
L → ∞, where n is held fixed). Note that in the limiting case
of vanishing temperature (T → 0 or ε → ∞), the smoothed
WCA potential in Equation (1) reduces to the pairpotential
of hard spheres with diameter rc.

3. Computer simulations

We performed MD simulations of a four-dimensional,
monodisperse system of 20,000 particles that interact via
the WCA potential, as given by Equation (1). Newton’s
equations of motion were integrated with the velocity form
of the Verlet algorithm using a time step of δt = 0.00072
in units of τ =

√
mσ 2/ε (with mass m = 1.0). The parti-

cles were put into a simulation box with linear dimension
L = 10.511205 σ , applying periodic boundary conditions
in all four spatial directions. Simulations were done at the
temperatures T = 1.66, 1.7, 1.8, 1.85, 1.9, 2.0, 2.5, 4.0,
7.0 (in units of ε/kB). At each temperature, the system
was fully equilibrated, requiring equilibration runs between
105 time steps at T = 7.0 ε/kB and 4 × 107 time steps at
T = 1.66 ε/kB. The equilibration runs were followed by
production runs of double length, from which the structure
factor S(q) was computed. During equilibration, temper-
ature was fixed by periodically coupling the system to a
stochastic heat bath. The production runs were done in
the microcanonical ensemble. Note that none of the runs
showed any sign of crystallisation.

4. Liquid integral equations

The Ornstein–Zernike equation for homogeneous and
isotropic, d-dimensional fluids reads

h(r) = c(r) + n

∫
ddr ′c(r ′)h(r − r ′) (2)

in terms of the d-dimensional particle number density and
the total and direct correlation functions h(r) and c(r), re-
spectively [1]. To obtain a closed integral equation for a
given kind of pairpotential u(r), the Ornstein–Zernike equa-
tion must be supplemented by a closure relation. With the
exception of very small number densities, exact closure re-
lations are unknown in general and one has to resort to
approximate closures. Here, we study three different ap-
proximate closures. The first two are the PY closure [34]

c(r) = [γ (r) + 1] × [
e−βu(r) − 1

]
(3)

and the HNC closure [33]

c(r) = −γ (r) − 1 + eγ (r)−βu(r), (4)

both written in terms of the indirect correlation func-
tion γ (r) = h(r) − c(r) and the inverse thermal en-
ergy β = 1/(kBT). Both the PY closure and the HNC
closure are thermodynamically inconsistent, in the sense
that the predicted normalised inverse isothermal osmotic
compressibility computed in the fluctuation route,

1

χc

= β

(
∂Pc

∂n

)
T

= 1 − n

∫ ∞

0
c(r) dr, (5)
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does not match the corresponding expression

1

χv

= β

(
∂Pv

∂n

)
T

, (6)

from the virial route. Here, Pv is the virial pressure which,
for monodisperse particles with WCA pairpotentials as
studied here, can be calculated according to

βPv

n
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + βnωd

2d
rd
c g(r+

c ) for T = 0,

1 − βnωd

2d

∫ ∞

0
drrdg(r)

du(r)

dr
for T > 0.

(7)

In Equation (7), g(r) = h(r) + 1 is the radial distribution
function, ωd = 2πd/2/(d/2) is the d-dimensional unit hy-
persphere surface in terms of the Gamma function (ω4 =
2π2), and g(r+

c ) = limr↘rc
g(r) is the contact value of the

hard-sphere radial distribution function in the special case
of T = 0.

Thermodynamic inconsistency with respect to the
isothermal compressibility can be avoided by using the RY
closure [35]

c(r) = −γ (r) − 1 + e−βu(r)

[
1 + eγ (r)f (r) − 1

f (r)

]
, (8)

where f(r) = 1 − exp {αr} is a mixing function that depends
on the non-negative inverse length α. The RY closure inter-
polates between the PY closure (which is recovered in both
limits r → 0 and α → 0), and the HNC closure (recovered
for r → ∞ or α → ∞). The parameter α is selected such
that equal values are obtained for the isothermal osmotic
compressibility calculated in the fluctuation route and the
virial route. The standard RY scheme, as used in this work,
is thermodynamically self-consistent with respect to the
isothermal osmotic compressibility only. At the expense of
an increased numerical effort, the RY scheme can be further
improved by requiring consistency in additional, indepen-
dent thermodynamic quantities [12]. Note also that the RY
scheme usually does not have a solution for non-positive-
definite pair potentials. However, for such potentials, dif-
ferent thermodynamically partially self-consistent closure
relations have been devised [37,38], similar in spirit to the
RY scheme.

The equation of state of four-dimensional WCA fluids
at various temperatures is investigated in Figure 1, where
we plot the excess part of the normalised pressure, βP/n −
1, as calculated in the RY scheme.

The (partial) thermodynamic self consistency of the RY
scheme usually results in a significantly improved accu-
racy of the pair-correlation functions including g(r) and the
static structure factor S(q) = 1 + nF[h(r)](q), with F de-
noting the d-dimensional Fourier transform of an isotropic
function. However, the good accuracy of the RY scheme
is essentially an empirical finding that should be tested by
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n σ4
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Figure 1. Equations of state for four-dimensional WCA fluids,
for eight different reduced temperatures kBT/ε = 0.0, 0.25, 1.0,
1.66, 2.5, 5.0, 7.0, and 10.0, as indicated. The Rogers–Young
normalised excess pressure is plotted as a function of the number
of particles in a volume σ 4. The dashed curve for T = 0.0 is the
result for a four-dimensional fluid of hard spheres with diameter
rc = 21/6σ .

comparison to simulation results, for each pairpotential and
each number of spatial dimensions.

In the important generic case of hard hyperspheres, the
(in this case rather accurate) PY integral equation [34]
can in principle be solved analytically for arbitrary odd
dimension [30,31], and semi-analytically for arbitrary even
dimension [32]. However, these (semi-)analytical solution
methods are quite cumbersome, with an analytical effort
that rises quickly with increasing number of dimensions d.
Moreover, the PY scheme usually over-estimates the un-
dulations in the pair-correlation functions (in particular in
the static structure factor), when it is applied to soft repul-
sive pairpotentials. Another analytically solvable integral
equation is obtained in the mean spherical approximation
(MSA) c(r) = −βu(r) [1], which represents a linear clo-
sure for the Ornstein–Zernike equation. The MSA integral
equation can be solved analytically in case of hard-sphere
systems (for which it reduces to the PY scheme) and for
hard spheres with an arbitrary superposition of Yukawa
potentials at non-overlap distances (Ref. [39]). Note that
the MSA scheme cannot be directly applied to divergent
soft-core potentials like the WCA potentials studied here.
However, a number of rescaled, semi-analytically solvable
versions of the MSA have been proposed in several
studies of three-dimensional hard-sphere Yukawa systems
[10,40,41], which are all based on the introduction of an ef-
fective hard-core radius at small particle separations where
the finite pairpotential greatly exceeds the thermal energy
kBT. In a similar fashion, the divergent part of a soft-
core potential close to r = 0 could be replaced by an ef-
fective hard-sphere repulsion in a rescaled version of the
MSA.
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Figure 2. (Colour online) Static structure factor for a four-dimensional fluid of particles interacting via WCA pair potentials [Equation
(1)], for particle number density n = 1.6384σ−4 and for kBT = 1.66ε. Circles: molecular dynamics simulation results; dotted curve:
Percus–Yevick scheme; solid curve: Rogers–Young scheme; and dashed curve: hypernetted chain scheme. The three insets magnify the
region of very low wave numbers q, the region around the principal peak, and around the second peak.

A versatile and computationally efficient alternative to
the (semi-)analytical solution of arbitrary-dimensional liq-
uid integral equations is the numerical solution by means of
a spectral solver. Within this numerical method, employed
in this study, it is easy to implement a variety of differ-
ent closures for the Ornstein–Zernike equation, suitable
for a variety of particle pair-interaction potentials. In this
work, we employ a numerical method that we have com-
prehensively outlined in Ref. [11]. This method, based on
techniques that were originally published in Refs [42–46],
is applicable in all positive spatial dimensions d and is nu-
merically very efficient and robust. Our implementation of
the numerical solution algorithm allows to compute solu-
tions for 1 ≤ d � 30, the upper boundary for d depending
on the kind of pairpotentials, the closure relation, and the
particle number density.

As a further motivation for studying liquid integral
equations in higher dimensions, we note here that MCT
has been employed to study the glass transition of hard hy-
perspheres in very high dimensions [21]. In Ref. [21], the
structural input to the MCT equations was generated by
approximating c(r) by the Mayer function exp { − βu(r)}
− 1. As outlined in Ref. [21], the latter approximation is

exact in the limit of infinite spatial dimension (d → ∞), and
remains to be a good approximation of the actual particle
pair correlations for dimensions d � 100. For dimensions
d in the range 1 ≤ d � 100, the approximation c(r) ≈ exp
{ − βu(r)} − 1 is insufficient unless the particle number
density is very low. This leads to unphysical artefacts in
the predicted glass transition lines for d � 100 [21]. As an
alternative, one can use simulation results for the static pair
correlations as input to MCT [47]. However, the compu-
tational effort of computer simulations rises quickly as a
function d, which limits this approach to dimensions d �
12 [29]. Hence, there is a gap for 12 � d � 100, where
neither simulation results nor infinite-dimensional limiting
expressions can be used. This gap can be essentially filled in
by numerical liquid integral equation solutions as reported
in this paper and in Ref. [11].

5. Static structure factors

In Figure 2, we plot the static structure factor, S(q), for
a four-dimensional WCA fluid at a rather high number
density n = 1.6384σ−4, and a rather low temperature,
T = 1.66ε/kB. Under these conditions, the fluid exhibits very
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Figure 3. (Colour online) Static structure factors for two four-dimensional fluids of particles interacting via WCA pair potentials
[Equation (1)], for dimension d = 4, particle number density n = 1.6384σ−4, and for kBT = 2.5ε (left panel) and kBT = 7.0ε (right
panel). Black circles filled in white: molecular dynamics simulation results; dotted green curves: Percus–Yevick scheme; solid red curves:
Rogers–Young scheme; and Blue dashed curves: hypernetted chain scheme.

pronounced pair correlations. Shown are the results from
our MD simulation (black circles filled in white), and from
the HNC (blue dashed curve), RY (red solid curve), and PY
(green dotted curve) integral equations. Three insets mag-
nify the regions of very low wave numbers, q � 0, the region
around the structure factor’s principal peak, and the region
around the second peak. Note that the HNC scheme predicts
a structure factor with considerably underestimated undu-
lations, and that the PY scheme is severely over-estimating
these undulations, while the RY scheme is in very good (if
not excellent) agreement with the simulation result. Each
of these observations is inline with the usual observations
that have been made for three-dimensional fluids of purely
repulsive particles.

The only obvious difference between the MD struc-
ture factor and the RY structure factor (and the PY and
HNC results alike) is a failure of the liquid integral equa-
tion schemes to predict the shape of the second peak in
S(q): the right flank of the second peak in the simulation
result exhibits a nearly linear decay of S(q) for values of
q/n1/4 between 12.5 and 15. This feature is missing in each
of the liquid integral equation scheme results, which pre-
dict a rounder shape of the second peak. Similar features
in the second peak of the structure factor have been dis-
cussed as possible freezing precursors, and as signatures of
short-ranged order in the liquid phase [48,49] (see also the
related Ref. [50]). To the best of our knowledge, the sec-
ond peak shape feature is not observed in any of the usual
liquid integral equation schemes that are formulated on the
level of pair-correlation functions. A similar feature (in the
radial distribution function, however, and for d = 3) has
been reported in Ref. [13], where a computationally more
sophisticated integral equation scheme was solved that in-

cludes non-trivial triplet correlations. The implementation
of such a scheme for the four-dimensional fluids under in-
vestigation is beyond the scope of the present work.

Note from Figure 3, that the agreement between the
MD simulation and RY-scheme structure factors is very
good for higher temperatures (T = 2.5ε/kB in the left panel
of Figure 3, and T = 7.0ε/kB in the right panel). For T =
7.0ε/kB, the flattened second peak feature has practically
disappeared in the MD simulation results, and the agree-
ment to the RY scheme is almost perfect.

6. Conclusions

We have demonstrated that the RY integral equation scheme
predicts pair correlations in homogeneous four-dimensional
fluids of particles with soft repulsive interactions in very
good agreement with numerically accurate, but computa-
tionally expensive MD simulations. This finding, which
is in line with the known excellent performance of the
RY scheme for three-dimensional fluids, qualifies the RY
scheme as a numerically highly efficient method for cal-
culating the structure input that is needed for theories of
dynamics, phase behaviour and vitrification in higher di-
mensions [21]. Despite its overall very good accuracy, the
RY scheme (as well as the PY and HNC schemes) fails to
predict the correct shape of the second peak in the static
structure factor when the particle repulsion becomes very
strong. We expect that inclusion of non-trivial triplet corre-
lations into a (thermodynamically partially self-consistent)
liquid integral equation scheme [13] for arbitrary spatial di-
mensions could result in an improved ability of the theory
to reproduce the static structure factor, particularly around
its second peak.
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