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How does a flexible chain of active particles swell?
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We study the swelling of a flexible linear chain composed of active particles by analytical theory
and computer simulation. Three different situations are considered: a free chain, a chain confined to
an external harmonic trap, and a chain dragged at one end. First, we consider an ideal chain with
harmonic springs and no excluded volume between the monomers. The Rouse model of polymers
is generalized to the case of self-propelled monomers and solved analytically. The swelling, as
characterized by the spatial extension of the chain, scales with the monomer number defining a Flory
exponent ν which is ν = 1/2,0,1 in the three different situations. As a result, we find that activity does
not change the Flory exponent but affects the prefactor of the scaling law. This can be quantitatively
understood by mapping the system onto an equilibrium chain with a higher effective temperature
such that the chain swells under an increase of the self-propulsion strength. We then use computer
simulations to study the effect of self-avoidance on active polymer swelling. In the three different
situations, the Flory exponent is now ν = 3/4,1/4,1 and again unchanged under self-propulsion.
However, the chain extension behaves non-monotonic in the self-propulsion strength. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4916134]

I. INTRODUCTION

In recent years, much interdisciplinary research in soft
matter physics, fluid mechanics, and biology has been
devoted to understand the motion of microswimmers in a
low-Reynolds-number fluid.1–6 Microswimmers can either be
found as microbes such as bacteria,7 viruses or algae,8 or
are realized artificially as self-propelled (“active”) colloidal
particles.9–13 While the former are typically self-propelled by
changing their shape, e.g., using beating flexible flagella,14,15

the latter are form-stable Janus particles exposed to a self-
generated chemical or thermal gradient which brings the
particle into motion.16–18 The combination of self-propulsion
and rotational Brownian motion ultimately leads to diffusion
however with a much higher diffusion coefficient as compared
to unpropelled (“passive”) particles.19,20

Along the route of recent research, the shape of artificial
colloidal swimmers has been made more complex by
considering Janus spheres,12,18,21–27 rods,28–32 and particles
of arbitrary shape.33–38 At the same time, the flexibility of the
flagella was incorporated in models for microbe motion.39–42

Here, we consider a flexible object that is composed
of many active constituents, namely, a linear chain of self-
propelled particles. The motivation to do so is threefold:
first, in a general sense, it is necessary to study how the
collective behavior of microswimmers depends on their
mutual coupling. Typically, a pairwise interaction potential
is assumed between all microswimmers but what is barely
understood is how this behavior is affected by a specific
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strong coupling topology defining a connectivity, e.g., along
a linear chain. Second, chains of active monomers are at the
interface between the physics of microswimmers and polymer
science such that they establish a natural link between these
two scientific disciplines. It would indeed be challenging to
generalize the broad concepts of polymer scaling theory43–45

towards nonequilibrium46–49 and the physics of self-propelled
particles. Finally, polymers of active particles can be realized
by chaining artificial colloids, using, e.g., the lock-and-key
technique50 or DNA,51 towards a linear chain of colloids.
Recently, these linear colloidal polymers have been prepared
and called “polloidal chains”52 or “colloidal caterpillars.”53

When these colloidal beads are replaced by active colloids,
the situation of a flexible chain considered here is, in principle,
experimentally realizable such that theoretical predictions can
be verified on the monomer-resolved level. Another realization
of an active chain is a shaken granulate chain which has
already been realized.54,55 Here, the millimetric beads can
be studied in real-space. Though the details of our modeling
apply to microswimmers in a solvent, we expect qualitative
similarities between an active polymer solution and an active
granular chain.

In the previous work, appropriate models for an active
semiflexible chain have been studied. Here, a finite persistence
length along the chain is assumed but the chain is typically
short in the sense that it does not reach its limit of coiling.
Some of the previous studies56,57 consider only a single active
bead along the polymer, others focus on the dynamics of
an active semi-flexible chain using either simulation or field
theory.58–60 Finally, very recently, a one-dimensional chain of
active beads (i.e., the case of perfect persistence) has been
studied in a ratchet potential.61

0021-9606/2015/142(12)/124905/8/$30.00 142, 124905-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.99.64.168 On: Mon, 30 Mar 2015 14:22:17

http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
http://dx.doi.org/10.1063/1.4916134
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
mailto:kaiser@thphy.uni-duesseldorf.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4916134&domain=pdf&date_stamp=2015-03-30


124905-2 Kaiser et al. J. Chem. Phys. 142, 124905 (2015)

In this paper, we focus on the swelling behavior of a
flexible chain composed of active beads using both analytical
theory and computer simulation. In doing so, we discriminate
between an ideal chain (i.e., a chain without self-avoidance)
and a self-avoiding chain. For the former case, we generalize
the traditional Rouse model44,62 of polymer dynamics towards
the situation of active monomers; for the latter, we use
computer simulations. In the spirit of the simplicity of the
Rouse model which assumes a linear bead-spring chain with
harmonic coupling between nearest neighbors and neglected
hydrodynamic interactions, we introduce an activity for the
monomers but neglect any correlations in the activity of
neighboring beads. This generalized Rouse model with no
explicit aligning interactions for active polymers is then
solved analytically in two dimensions. As a basic result,
the Flory random-walk exponent ν = 1/2 which measures
how the typical extension of the chain scales with the
monomer number is not affected by activity but the prefactor is
corresponding to a higher effective temperature when mapped
onto a corresponding passive chain. This implies that the
extension of an active chain increases with the strength of the
self-propulsion (or Péclet number).

Self-avoidance in two dimensions yields a Flory swelling
exponent ν = 3/4 for passive monomers. Our computer
simulations show that for long chains, this exponent is not
affected by self-propulsion of the monomers. This is in line
with experiments using a shaken granular chain54,55 where the
Flory exponent was found to be unaffected by the activity.
However, as a function of the self-propulsion strength, there
is a non-monotonicity in the chain extension which is absent
for an ideal chain. Interestingly, this effect was found recently
in the reverse set-up of a passive chain in an active bath63,64

which can be realized for granulates,65 and which shows the
same Flory scaling for large monomer number.

We also solve the Rouse model of an active ideal chain
either confined to an external harmonic trap or dragged at one
end. In these situations, the Flory exponent is ν = 0 and ν = 1,
respectively, and also not changed by activity. But again,
the prefactor is affected by self-propulsion. Self-avoidance
leads to the Flory exponents ν = 1/4 and ν = 1 in these two
situations. Our simulations show that these exponents are
unaffected by internal activity of the chain.

The paper is organized as follows: we describe our model
and the different situations in Sec. II and the simulation in
Sec. III. Results are discussed in Sec. IV, and we conclude in
Sec. V where we comment on how an active polymer can be
realized experimentally.

II. ROUSE MODEL FOR AN IDEAL CHAIN OF ACTIVE
PARTICLES

In our Rouse-like model, we describe the polymer
as a linear chain of N beads. Neighbors are connected
by harmonic springs66,81 with a spring constant k. We
focus on the two-dimensional case. At a given time t,
the monomers are at positions rn(t) = [xn(t), yn(t)] where
n = 1, . . . ,N , and possess orientations described by the unit
vectors ûn = (cos φn,sin φn). The self-propulsion velocity of

FIG. 1. Sketch of an active polymer consisting of N monomers which are
self-propelled with an effective driving force F along their orientation ûn for
the three studied situations: (a) free chain, (b) chain in harmonic confinement
Uext, and (c) chain with a dragging force Fd applied to the first monomer.

each monomer is introduced via an effective driving force
Fn = Fûn, acting along this orientation, see Fig. 1(a). A
single monomer experiencing overdamped dynamics with
a translational friction coefficient γ would then move with
the constant self-propulsion speed v0 = F/γ.67 We neglect any
hydrodynamic interactions as in the traditional Rouse model.62

The overdamped equations of motion for the positions rn(t)
of the nth bead of the chain can then be written as

γ
drn
dt
= −k

∂2rn
∂n2 + Fûn + ξn(t), (1)

whereby ∂2rn/∂n2 = (rn+1 + rn−1 − 2rn) corresponds to the
spatial differential quotient of neighboring beads, using the
constraints r0 = 0 and rN+1 = 0. Assuming the Stokes-Einstein
relation applies not too far from equilibrium, the translational
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friction coefficient γ is close to kBT/D where D is the short-
time diffusion coefficient for a single bead and kBT the thermal
energy. The random forces ξn(t) are Gaussian distributed with
zero mean and variance ⟨ξ(t) ⊗ ξ(t ′)⟩ = 2δ(t − t ′)1(kBT)2/D.
The orientation of the particle ûn is described by the rotational
Langevin equation

γr
dûn

dt
= ζn × ûn(t). (2)

Here, ζ is a Gaussian-distributed torque with zero mean and
variance ⟨ζ (t) ⊗ ζ (t ′)⟩ = 2δ(t − t ′)1(kBT)2/Dr and γr is the
rotational friction coefficient, which is close to kBT/Dr . The
rotational diffusion coefficient Dr is determined from the
relation D/Dr = 4b2/3.

In our model, b =
√

kBT/k characterizes a typical bead
extension or bead distance generated by the finite temperature,
the so-called Kuhn length. In terms of this length, a typical
elastic energy contained in the harmonic spring is given by
kb2 such that we define the ratio between thermal and elastic
energy as the parameter

λ =
4kb2

3kBT
. (3)

The strength of self-propulsion, on the other hand, is
characterized by the Péclet number

Pe =
v0 b
D

. (4)

We do not consider explicit aligning interactions between
neighboring beads.

In this paper, we focus subsequently on three different
situations, namely, a free chain, a chain confined to an external
harmonic trap, and a chain dragged at one end. These situations
are sketched and summarized in Fig. 1.

A symmetric external harmonic trap potential is shown
in Fig. 1(b). It is given by

Uext(r) = 1
2
κr2 (5)

and can be incorporated by adding the corresponding external
force −κrn to the right-hand side of Eq. (1). This introduces a
further dimensionless parameter into the model, namely, the
ratio of the external and internal spring constants κ/k.

Finally, a constant drag force Fd = −Fdêx is applied to
the first monomer of the chain, see Fig. 1(c). The dragging
force results in an anisotropic mean shape of the chain. The
relative strength of the dragging can be described in terms of
elasticity determined by the dimensionless parameter Fd/kb.

III. COMPUTER SIMULATIONS FOR A SELF-AVOIDING
CHAIN

In the Brownian dynamics simulations, we model the
active polymer as a sequence of N coarse-grained spring
beads in analogy to the previous works considering short
flexible rods.68,69 For simplicity, interactions between the
active monomers are modeled by a smooth repulsive WCA

(Weeks-Chandler-Andersen) potential

UWCA(r) =



4ϵ
(
σ

r

)12
−

(
σ

r

)6

+ ϵ, r ≤ 21/6σ,

0, r > 21/6σ.
(6)

Here, σ denotes the diameter of a single bead and ϵ = kBT is
the interaction strength. These quantities represent the length
and energy units, while times are conveniently measured in
units of the Brownian time τ = σ2/D. The self-avoidance of
the chain is incorporated via the finite length σ.

Springs between neighboring beads are introduced via
a so-called FENE (finitely extensible nonlinear elastic)
potential70

UFENE(ri j) = −1
2

K R2
0 ln


1 −

(
ri j
R0

)2
, (7)

with neighboring beads i, j and their distance ri j = |ri − r j |.
The spring constant is fixed to K = 27ϵ/σ2 and the maximum
allowed bond-length to R0 = 1.5σ.

In our Brownian dynamics simulations, the same
overdamped equations of motion [see Eqs. (1) and (2)]
were integrated with a small finite time step ∆t, but now
with self-avoidance and FENE-chains. The external harmonic
potential and the dragged monomer were included using the
same expressions as introduced in Sec. II.

Statistics are gathered for up to 50 independent initial
configurations along times of t = 104τ after an equilibration
period. The time step used in our Brownian dynamics
simulations is ∆t = 10−4τ. All our simulations are in two
spatial dimensions.

IV. RESULTS

A. Free ideal chain

First, we focus on a free ideal chain which is long
(N ≫ 1). In our analytical calculations, we consider the linear
transformation

Xp =

 N

1
dn φpnrn(t) (8)

and choose the coefficients φpn such that the equation of
motion for Xp has the form

γp

dXp

dt
= −kpXp + Fp(t). (9)

This leads to the relations44

φpn =
1
N

cos
(

pπ(n − 1)
N − 1

)
, (10)

kp = k
γp

γ

( pπ
N

)2
, (11)

Fp =
γp

γ

 N

1
dnφpnF̃n, (12)

using F̃n(t) = (Fûn + ξn(t)) · êα and γp = 2Nγ, with p
= 1,2, . . . and α = x, y . These equations can now be applied
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to calculate the mean square of the gyration radius as



R2
Gα(t)

�
=


1
N

 N

1
dn(rn − rcm)α2


= 2

∞
p=1



Xp(t)Xp(t)�. (13)

Here, the center of mass is given by rcm =
1
N

N
n=1 rn and ⟨· · · ⟩

denotes a noise and time average. The end-to-end distance is
given by

REα(t) = rNα(t) − r1α(t) = −4


p: odd int

Xp (14)

for each component, where the sum is over all odd values of
p.

For a long chain (N ≫ 1) of self-propelled particles, we
therefore find



Xp(t)Xq(t)� =

(
v0

2

2
1

kp + Drγp

γpγ

kp
+

kBT
kp

)
δpq,

p,q ≥ 1, (15)


R2
G

�
/b2 =

2
9

N
λ

(
1 +

2
3

Pe2
)
, (16)



R2
E

�
/b2 =

4
3

N
λ

(
1 +

2
3

Pe2
)
. (17)

Interestingly, the Flory exponent describing the basic scaling
of spatial extension of the active polymer, see Eqs. (16)
and (17), is the same as for a passive chain, i.e., we obtain for
large N both

⟨R2
E⟩ ∼ N2ν (18)

and

⟨R2
G⟩ ∼ N2ν, (19)

with ν = 1/2. This implies that for long chains without
aligning interactions, the effect of self-propulsion is not
so dramatic that the scaling is changed. We expect this
to hold true even for short-ranged aligning interactions.
Long-ranged aligning interactions, however, could have an
influence on the Flory scaling exponent, similar to the
scaling of polyelectrolyte chains with long-ranged Coulomb
interactions.71

More precisely, the expressions (16) and (17) are identical
to those for a passive polymer at a higher effective temperature,

Teff/T = 1 +
2
3

Pe2. (20)

The same mapping onto an effective temperature has been
made for a single self-propelled monomer in a gravitational
field12 and has been tested for a single self-propelled bead
along a chain.56,57

Finally, the long time diffusion coefficient for the chain
is given by

DL =
D
N

(
1 +

2
3

Pe2
)
, (21)

which is identical to the case of a single active colloid72 but
reduced by a factor 1/N .

FIG. 2. (a) Reduced end-to-end distance RE (solid lines) and radius of
gyration RG (dashed lines) for a free active polymer chain at Pe= 10. (b)
Relative change in RE induced by activity Pe for a fixed number of active
beads N .

We now turn to effects of self-avoidance. In two spatial
dimensions, self-avoidance changes the Flory exponent from
1/2 to 3/4. Let us briefly recapitulate Flory’s argument: The
free energy of a passive, self-avoiding chain in two dimensions
is composed of two parts

E ∼ Eex + Eel . (22)

The first one, Eex ∼ σ2N2/R2, arises due to excluded volume
effects and leads to chain swelling. The second term
Eel ∼ kR2/N incorporates the elastic properties of the chain73

and leads to chain shrinkage. In equilibrium, the total energy
becomes minimal, leading to the well known Flory exponent
ν = 3/4.

We confirm by simulations that the scaling exponent of
the spatial extension, measured by ⟨R2

E⟩ or ⟨R2
G⟩, is indeed 3/4

unaffected by the activity, see Fig. 2(a).74 This is in agreement
with the experimental findings of an active granular chain,54

where for chain lengths N ≤ 128, the Flory exponent of a
self-avoiding chain ν = 3/4 has been found.

A striking difference generated by self-avoidance,
however, is the Péclet number dependence of the chain
extension. As documented in Fig. 2(b), we find a non-
monotonicity of the chain extension for increasing self-
propulsion. The chain first shrinks and then swells. The
initial chain shrinkage can be attributed to self-propulsion of
a particle encaged by its hard neighbors. Activity will, on
average, drive the particle away from its neighbors which will
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contribute to a zig-zag configuration of the chain implying
a shrinkage. Increasing the activity further will finally swell
the chain since the larger driving force will extend the chain.
The minimum in the chain size, therefore, occurs when the
self-propulsion force F is getting comparable to the elastic
force acting on a particle. Interestingly, very recently, this
effect has been found in the reverse set-up of a passive chain
in an active bath63,64 showing that an active bath particle can
be viewed as forming a joint unit with the polymer chain once
it collides with the chain.

B. Harmonically confined chain

Now, we include a confining harmonic potential, see
Eq. (5). We vary the prefactor κ with respect to the spring
constants keeping the activity of the monomers fixed.

An analytical calculation for the ideal chain is still
possible. However, the external potential leads to a shift
in the values of kp, which are now given by

kp =
γp

γ


k
( pπ

N

)2
+ κ


. (23)

Accordingly, the radius of gyration and the end-to-end distance
are now given by

⟨R2
G⟩/b2 =

4
9λ

k
κ

Pe2


κ

k
coth

(
N


κ

k

)
− 1

N

− λκ

λκ + k
*
,


λκ + k
λk

coth *
,

N


λκ + k
λk

+
-
− 1

N
+
-



+
2
3λ

k
κ

(
κ

k
coth

(
N


κ

k

)
− 1

N

)
(24)

and

⟨R2
E⟩/b2 =

16
9λ

Pe2

−


λk
λκ + k

tanh *
,

N
2


λκ + k
λk

+
-

+


k
κ

tanh
(

N
2


κ

k

) 
+

8
3λ


k
κ

tanh
(

N
2


κ

k

)
,

(25)

respectively. In the limit of large N , we find the Flory exponent
ν = 0 which implies that the chain is completely localized.
Again, the activity of the monomers only affects the prefactor
but not the scaling behavior of the whole chain. As a function
of monomer number N , a plateau in the spatial extension can
be observed above a threshold chain length Nt which scales
with the strength of the applied external potential as

Nt = 2


k
κ

(
1 +

2
3

Pe2
)−1

. (26)

Consequently, for large self-propulsion strengths, Pe ≫ 1,
the threshold chain length decays as Nt ∼ Pe−2. Below this
monomer number, the well known Flory exponent ν = 1/2
is found, see Fig. 3(a), reproducing the trends for a passive
polymer.75

For a self-avoiding passive polymer chain, Flory’s
argument, see Eq. (22), can be extended by including an
external harmonic potential to the total free energy as

E ∼ Eex + Eel + Eext , (27)

FIG. 3. Reduced end-to-end distance RE (solid lines) and radius of gyration
RG (dashed lines) for a harmonically confined polymer in the case of (a)
no self-avoidance and (b) a self-avoiding chain for fixed activity Pe= 10 of
the monomers and varied confinement strengths κ. (c) Threshold number of
monomers Nt as a function of κ/k .

where the scaling of Eext can be obtained by integrating a
constant sharp-kink monomer density profile inside a circle
of radius R as Eext ∼ κN R2. The latter two contributions will
enforce a compactification of the polymer chain. For long
chains (N ≫ 1), the external energy Eext dominates the elastic
energy, which leads to a new exponent ν = 1/4. Below a
threshold monomer number Nt, the elastic properties of the
chain dominate such that the Flory exponent is ν = 3/4. Again,
this monomer number scales as Nt ∼

√
k/κ.

In case of a self-avoiding active polymer chain, we find
the same Flory exponent ν = 1/4 in the limit of large N , see
Fig. 3(b). As before, the scaling behavior is not drastically
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altered by the activity. For varied confinement strengths, we
can confirm the predicted scaling for the threshold monomer
number Nt for an ideal as well as a self-avoiding chain of
active particles, see Fig. 3(c).

C. Dragged chain

We will now treat the situation of a constant drag force Fd

applied to the first monomer of the chain, see again Fig. 1(c).
The equations of motion are the same as in Eqs. (1) and (2)
but now include the term −Fdêx on the right-hand side of
Eq. (1) for r1(t). The analytical solution of the Rouse model

FIG. 4. Reduced end-to-end distance RE (solid line) and radius of gyration
RG (dashed line) for an active polymer which is dragged with a force
Fd in the case of (a) no self-avoidance and (b) a self-avoiding chain for
a constant activity Pe= 10. (c) Crossover number of monomers Nc for
fixed activity as a function of reduced drag forces Fd/(kb), respectively,
Fd/(Kσ).

can be extended to an ideal dragged chain. In detail, we obtain



Xp(t)Xq(t)� =

(
v0

2

2
1

kp + Drγp

γpγ

kp
+

kBT
kp

)
δpq

+
4 Fd

2

kpkq
, p,q ≥ 1. (28)

This implies that



R2
G

�
/b2 =

2
9

N
λ

(
1 +

2
3

Pe2
)
+

1
45

(
Fd

kb

)2

N2, (29)



R2
E

�
/b2 =

4
3

N
λ

(
1 +

2
3

Pe2
)
+

1
4

(
Fd

kb

)2

N2, (30)

such that for long chains (N ≫ 1), the Flory exponent is
ν = 1 in the dragged situation, see Fig. 4(a). Intuitively, this
is expected as a strong drag force stretches the chain along its
pulling direction êx. As it becomes directly visible from the
expressions (29) and (30), there is a crossover in the scaling
of the squared chain extension from N to N2. In fact, for
small drag forces and small N , the Flory exponent is still that
of an undragged chain (ν = 1/2). For large self-propulsion
(Pe ≫ 1), the crossover between the two regimes in N occurs
at a threshold of

Nc ∼
(

Pe kb
Fd

)2

. (31)

Our computer simulations for a self-avoiding chain confirm
the same qualitative behavior. Now there is a crossover from
the Flory exponent ν = 3/4 of an ideal self-avoiding chain to
the stretched case ν = 1, see Fig. 4(b), whereby the crossover
number of monomers Nc decreases as a function of the drag
force as given in Eq. (31), see Fig. 4(c). Again, the activity of
the chain does not affect the scaling exponent which stays to
be ν = 1 as known from a passive chain.76,77

Finally, in Fig. 5, we study the Péclet number dependence
of the extension of a dragged chain. Indeed, the threshold chain
length for the crossover Nc scales as predicted in Eq. (31) and
shifts for higher self-propulsion to higher N , see Fig. 5(c).

V. DISCUSSION AND CONCLUSIONS

We have generalized the traditional Rouse model of
polymer dynamics to the situation of an active polymer
consisting of self-propelled monomers. By analytically
solving the Rouse model and numerical simulations of a self-
avoiding polymer, we have shown that the well known Flory
scaling exponents are still valid in the presence of activity. For
an ideal chain of active particles, the activity only affects the
prefactor and can be considered as an effective temperature
when mapped onto a corresponding passive polymer. In the
case of a self-avoiding chain, the spatial extension reveals a
non-monotonicity as a function of activity which is absent
for an ideal chain. The cases of harmonically confined and
dragged active polymer chains reveal a crossover in scaling
for the chain swelling but again activity does not affect the
Flory exponent for long chains.

Chains of active particles can be prepared in experiments
by chaining artificial colloids. This can be achieved using the
lock-and-key technique50 or dipolar or patchy colloids that
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FIG. 5. Reduced end-to-end distance RE (solid line) and radius of gyration
RG (dashed line) for a chain of active particles which is dragged with a
fixed force Fd in the case of (a) Fd/(kb)= 1 with no self-avoidance and (b)
Fd/(Kσ)= 1 for a self-avoiding chain for varied activity Pe. (c) Crossover
number of monomers Nc for a constant drag as a function of activity Pe.

prefer chaining, for some recent realizations, see Refs. 52 and
53. In principle, one can use active colloids as entities to obtain
a one-dimensional chain of active particles. This has not yet
been realized but is at least conceivable. The main advantage
of the colloidal realization is that the motion of the chain
can directly be observed in real-space such that the statistical
average needed for the mean size is obvious. Moreover, the
activity can be controlled from outside such that a direct
comparison with a passive thermal chain is possible, which
enables a test of the effective temperature scaling. Though
our model is designed for Brownian motion in a solvent, we
expect that the key trends are the same as for driven granulates.
Therefore, it would be interesting to perform more granulate
experiments in confinement and under drag to test our further

predictions. A harmonic confining potential can easily be
realized by shaking the granular not on the plane but within
a paraboloid. Finally, dragging the first monomer can be
realized by charging one end-monomer using electrofriction78

and placing the whole granulate chain into a homogeneous
electric field along the vibrating substrate.

Future research should consider three spatial dimensions
where the description of the orientational dependence of
Brownian motion is more complicated,33 but similar results
are expected. While the scaling should still correspond to
that of a passive chain, the prefactor will be affected by
the activity. In particular, in three spatial dimensions, the
activity is less important, which is already visible for the
effective temperature mapping. For active spheres in three
dimensions, Teff/T = 1 + 2

9 Pe2 holds with a prefactor 2/9,
instead of Teff/T = 1 + 2

3 Pe2 in two dimensions where the
prefactor 2/3 is stronger.20 Another line of future research
concerns a chain with both active and passive monomers. Here,
again, we expect the same scaling exponent but a prefactor
in the effective temperature mapping which is smaller than in
the case considered here, where every monomer is active.

Moreover, the influence of hydrodynamic interactions
needs to be considered in more detail following the work of
Ref. 58 which applies to short and stiff filaments. If the solvent
is viscoelastic, new effects come into play, see, e.g., Refs. 79
and 80, which also need to be explored in the future.
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