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Abstract. While the theory of diffusion of a single Brownian particle
in confined geometries is well-established by now, we discuss here the
theoretical framework necessary to generalize the theory of diffusion to
dense suspensions of strongly interacting Brownian particles. Dynam-
ical density functional theory (DDFT) for classical Brownian particles
represents an ideal tool for this purpose. After outlining the basic in-
gredients to DDFT we show that it can be readily applied to flowing
suspensions with time-dependent particle sources. Particle interactions
lead to considerable layering in the mean density profiles, a feature that
is absent in the trivial case of noninteracting, freely diffusing particles.
If the particle injection rate varies periodically in time with a suit-
able frequency, a resonance in the layering of the mean particle density
profile is predicted.

1 Introduction

The diffusion of a Brownian particle in confined geometries such as channels, obstacles
and ratchets has been intensely studied over the last decades both by theory [1], real-
space experiment on colloids [2] and computer simulation [3]. Some basic effects, such
as rectification, are observed already for a single particle while others are collective
such as single-file diffusion [4]. A large part of recent studies considers diffusion of a
single Brownian particle in confining geometries.
In this minireview, we show that dynamical density functional theory (DDFT)

provides an ideal framework to study the dynamics of interacting Brownian par-
ticles in confining geometries, and we provide a brief introduction into the DDFT
equations. The most important quantity entering into these equations is the
equilibrium two-particle direct correlation function c(r) which can be determined
from the pair-interaction potential V (r) via liquid integral equations, based on the
Ornstein-Zernike equation [5]. Here we outline the DDFT for diffusing profiles of
density variations on top of a homogeneous background density in an arbitrary num-
ber of spatial dimensions d. Results are presented for the generic case of hard disk
suspensions in d = 2 dimensions, at various particle number densities. Our results
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include Green’s functions that correspond to spatio-temporal point sources of
particles, steady-state density profiles around a constantly emitting particle source,
which correspond to a chemotactic potential [6,7], as well as spatially and temporally
oscillatory density profiles for injection of particles with a periodically time-dependent
rate. In contrast to the smooth density profiles that are found for freely diffusing,
noninteracting particles, we find considerable particle layering for suspensions where
strong particle interactions prevail. For temporally periodic particle injection we find
resonances in the density profile at a suitably chosen particle injection frequency
which matches the inverse time scale needed to advect a density peak in the flowing
suspension.
The remainder of this work is organized as follows: we outline the dynamical den-

sity functional theory in Sect. 2, which is followed by a brief description of the specific
systems under study in Sect. 3. In Sects. 4, 5, and 6, we apply DDFT to compute
diffusion profiles and chemotactic potentials for three different types of particle injec-
tion. In Sect. 7, we sketch possible generalizations of DDFT towards other situations
and draw our conclusions.

2 Dynamical density functional theory (DDFT)

The formulation of dynamical density functional theory [8–10] (see [11] for a recent
review) starts from the continuity equation

∂ρ(r, t)

∂t
+∇ · j(r, t) = 0, (1)

for the compressible one-particle density field ρ(r, t), which guarantees particle num-
ber conservation. Neglecting solvent-mediated hydrodynamic interactions of the sus-
pended particles, the current density j(r, t) is given by Fick’s law

j(r, t) = − 1
γ
ρ(r, t)∇μ[ρ(r, t)] (2)

with μ[ρ(r, t)] denoting a formal chemical potential which is in general given as a
functional of the one-particle density ρ(r, t), and with γ denoting the Stokesian drag
coefficient. The chemical potential can be derived from the equilibrium free energy
density functional F [ρ(r, t)] as

μ[ρ] =
δF [ρ]
δρ
· (3)

Hence we obtain the following DDFT equation of generalized diffusion for the time
evolution of the density field:

γ
∂ρ(r, t)

∂t
= ∇ρ(r, t)∇

(
δF
δρ

∣∣∣∣
ρ=ρ(r,t)

)
. (4)

For any system with a given pairwise additive interaction, characterized by a pair-
potential V (r), this functional exists [12] and depends parametrically on the thermal
energy kBT . In equilibrium, minimization of the functional yields the equilibrium
one-particle density [13]. In general one can split the functional into three parts as

F [ρ] = Fid[ρ] + Fexc[ρ] + Fext[ρ] (5)
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where

Fid[ρ] = kBT
∫
ddr

[
ln(Λdρ(r, t))− 1] ρ(r, t) (6)

is the free energy for a non-interacting (i.e. ideal gas) system with Λ = h/
√
2πmkBT

denoting the (in the following irrelevant) thermal de Broglie wavelength in terms of
Planck’s constant h, particle mass m, Boltzmann’s constant kB and absolute tem-
perature T . The exponent d in Eq. (6) denotes the number of spatial dimensions of
the system (typically d = 1, 2, 3). The excess free energy functional Fexc[ρ(r, t)] is
not known explicitly for interacting systems and needs to be approximated. The last
term in Eq. (5) is the external free energy, which is given by

Fext[ρ] =
∫
ddrVext(r, t)ρ(r, t), (7)

where Vext(r, t) denotes an external potential, an example of which is a confining,
generally time-dependent geometry.
A popular approach to construct an excess free energy functional is the so-called

Ramakrishnan-Yussouff approximation [14] where one expands the system perturba-
tively around a fixed reference bulk fluid density ρ̄ as follows:

Fexc[ρ] ∼= −kBT
2

∫
ddr

∫
ddr′c(2)(|r− r′|, ρ̄)(ρ(r, t)− ρ̄)(ρ(r′, t)− ρ̄). (8)

Here, c(2)(r, ρ̄, T ) ≡ c(r) denotes the equilibrium direct correlation function which is
fixed by the particle interaction potential V (r) at fixed uniform bulk number density ρ̄
and temperature T . One could in principle use more accurate approximations for the
excess free energy functional, like fundamental measure theory for non-overlapping
particles [15–20]. Nevertheless, in order to allow for straightforward analytic progress,
we choose the simpler Ramakrishnan-Yussouff scheme in the present work.
Upon entering the approximation in Eq. (8), the DDFT Eq. (4) becomes

∂ρ(r, t)

∂t
=D0Δρ(r, t) +∇

(
ρ(r, t)

∇Vext(r, t)
kBT

)

−∇ρ(r, t)
∫
ddr′∇c(|r− r′|)(ρ(r′, t)− ρ̄) (9)

with D0 = kBT/γ denoting the free diffusion coefficient of the Brownian particles. At
this stage, a couple of remarks are in order: first, the DDFT equation can be derived
from the Smoluchowski equation [9] by using one essential approximation, namely
the so-called adiabatic approximation stating that the one-particle density field is
the single slow variable of the system (i.e. all other variable are much faster) [10].
Thereby nonequilibrium correlations are approximated by equilibrium correlations.
This explains why there is no additional noise term in the DDFT equations. It is only
for phase transitions that such noise terms have been phenomenologically introduced
[11]. Second, an alternative approach to incorporate particle interactions has been
recently proposed by Santamaria-Holek et al. [21], which works with an entropic
activity coefficient and includes only local terms.
As it stands in Eq. (9), the DDFT equation is nonlinear and can therefore not

be solved analytically in general. A basic insight into the physics of diffusion can,
however, be gained by linearizing the DDFT equation with respect to small density
variations around the prescribed mean density ρ̄, resulting in the following equation
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Fig. 1. Injection of colloidal particles into a tilted, flowing suspension.

for the dimensionless relative density deviation ε(r, t) = (ρ(r, t)− ρ̄)/ρ̄:
∂ε(r, t)

∂t
=D0Δε(r, t) +

1

γ
ΔVext(r, t) +

1

γ
∇ (ε(r, t)∇Vext(r, t))

−D0ρ̄
∫
ddr′Δc(|r− r′|)ε(r′, t). (10)

While this equation is still hard to solve for a general external potential, we restrict
ourselves here to a time-independent external force in x-direction, giving rise to the
external potential

Vext(r, t) = −gx (11)

that corresponds, for d = 2, to a tilted plane along which the particles are allowed to
move (see Fig. 1).
Using Eq. (11) for the external potential, Eq. (10) simplifies to

∂ε(r, t)

∂t
= D0Δε(r, t)− g

γ

∂ε(r, t)

∂x
−D0ρ̄

∫
ddr′Δc(|r− r′|)ε(r′, t). (12)

Clearly, for vanishing particle correlations (c(r) ≡ 0) the free diffusion equation is
recovered. Hence, Eq. (12) is a generalized diffusion equation for interacting particles.
Equation (12) can be solved analytically by a Fourier transform resulting in

∂ε̃(k, t)

∂t
= −D0k2(1− ρ̄c̃(k))ε̃(k, t)− i g

γ
kxε̃(k, t), (13)

where a tilde denotes Fourier transformation in the following sense:

ε̃(k, t) =

∫
ddre−ik·rε(r, t). (14)

The first term on the right-hand-side of Eq. (13) describes particle diffusion, and the
second term leads to a drift induced by the external force. In the limit of diverging
length scales (i.e. vanishing k-vectors), particle motion is governed by a collective
diffusion coefficient Dc = D0(1− ρ̄c̃(0)) that is proportional to the inverse isothermal
compressibility of the reference fluid [5] (see also the discussion in Ref. [22]). Ther-
modynamic stability of the bulk reference fluid requires 1− ρ̄c̃(0) > 0. For repulsive
interactions V (r), one typically has 1− ρ̄c̃(0) > 1, and therefore Dc > D0.
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3 Brownian particles injected into a plane

Figure 1 illustrates the type of physical problem that we will consider in the following
three sections. Colloidal particles are injected at position r = 0 into a colloidal sus-
pension confined to slit and driven in x-direction. The nozzle diameter of the injecting
pipette is only marginally larger than the diameter of a single colloidal particle, such
that the source term that must be added to the generalized diffusion equation is
proportional to a delta function δ(r). Different kind of time-dependencies f(t) for
the source term are considered in the following three sections: In Sect. 4, results
are computed for a source term f(t) = αδ(t), describing the instantaneous ejection
of a number α of particles at time t = 0. A stationary, constantly emitting source
term, f(t) = λ = const is considered in Sect. 5, and in Sect. 6, a periodic source term,
f(t) = λ [cos(ωt) + 1], is assumed. The suspension injection problem studied here may
be thought of as an inertia-free version of a liquid jet impinging on a plane, a problem
that has been studied in detail in experiments, and in the theoretical framework of
continuum fluid mechanics [23].
Note here, that the formalism applied in the present work is restricted to the com-

putation of density modulations ε around a homogeneous mean (reference) density ρ̄.
In case of a quiescent bulk fluid, or a constant external force acting on a bulk fluid
as described by the external potential in Eq. (11), the homogeneous mean density
assumption is obviously valid. There are, however, situations where the present for-
malism cannot be straightforwardly applied. One such example, where the mean fluid
density is not homogeneous but instead position-dependent, is a fluid dripping onto
the apex of a paraboloid that opens downward. Note also that the present formalism
is merely a linear response field theory. The computed density deviations ε represent
Green’s functions, linearly weighted with the source prefactor α or λ. Whenever we
present results for density deviations in the following, we select source terms that
cause the plotted functions to assume values typically of the order of one. Large but
finite density modulations can always be scaled down linearly (by scaling the source
term) into the linear response regime. Steady state density profiles for continuous
particle injection can result in a divergence of the computed density deviation near
the point of injection (see Fig. 4). In such cases, the present theoretical description ap-
plies only at sufficiently large distance from the source, where the density modulation
amplitudes have decreased into the linear response regime.

4 Green’s functions for diffusing density profiles

Diffusing density profiles are obtained by putting an additional source term αδ(r)δ(t)
on the right hand side of Eq. (12). The resulting solution εD(r, t) describes how α
particles initially located at the origin r = 0 at time t = 0 will relax to the final
homogeneous density profile ρ(r, t→∞) = ρ̄. Experimentally this can be realized by
trapping particles with a laser tweezer [24], releasing the laser trap, and observing the
relaxation of the colloidal suspension in real-space. Formally, the solution for εD(r, t)
is the Green’s function of the generalized diffusion equation.
By Fourier transformation one obtains

εD(r, t) =
α

(2π)
d

∫
ddk eik·r exp

{
−D0k2(1− ρ̄c̃(k))t− i g

γ
kxt

}
. (15)

Obviously, for vanishing correlations the standard Green’s function

εD(r, t) =
α

(2π)
d

(
π

D0t

)d/2
exp

{
− r2

4D0t

}
(16)

for the free diffusion problem is recovered as a special case.
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In order to include particle interactions, we solve the approximate Percus-Yevick
[25] integral equation scheme

g(r)− 1 = c(r) + ρ̄
∫
ddr′ c(r − r′)[g(r′)− 1], (17)

c(r) =

[
1− exp

{
V (r)

kBT

}]
g(r) (18)

for a homogeneous and isotropic reference fluid, to obtain a nontrivial solution for
c̃(k). In Eq. (18), g(r) is the radial distribution function [5], which is not to be confused
with the external drive g in the present paper.
The presented DDFT equations, as well as the Percus-Yevick equation, can be

numerically efficiently solved for any physically relevant kind of isotropic, pairwise
additive particle interactions, and for arbitrary spatial dimension d [26]. However, for
simplicity we restrict ourselves here to the generic case of nonoverlapping hard disks
in d = 2 dimensions, with pair potential

V (r) =

⎧⎨
⎩
∞ for r ≤ σ,

0 for r > σ,
(19)

depending on the hard-disk diameter σ. In absence of external drive and particle
sources, a two-dimensional hard disk system is governed solely by the particle packing
fraction φ = π(σ/2)2ρ̄ [5,27]. In case of the hard disk potential, Eq. (18) can be recast
into the two conditions c(r > σ) = 0 and g(r < σ) = 0 that need to be solved in
combination with the Ornstein-Zernike Eq. (17). The hard hypersphere Percus-Yevick
equation has been solved (semi)-analytically for all odd [28] and even [29] dimensions
d, but these solutions can involve considerable analytical effort and do not generally
result in simple closed expressions for c̃(k). In the present work, we therefore rely
on the accurate and efficient numerical solution method that we have published in
Ref. [26].
A possible extension of the present formalism, promising higher accuracy at the

price of a considerably increased numerical effort, would consist in replacing the
Percus-Yevick scheme Eqs. (17) and (18) for a homogeneous reference fluid by an
inhomogeneous liquid integral equation with position-dependent number density. The
resulting coupled set of DDFT and inhomogeneous liquid integral equations can be
solved self-consistently, in an approach similar to those in Refs. [30–32]. In the present
study, we do not apply this more accurate kind of formalism for the sake of simplicity.
In Fig. 2 we plot the (homogeneous) Percus-Yevick solutions for the pair-

correlation functions of two hard-disk fluids at packing fractions φ = 0.3 (dashed
curves) and φ = 0.65 (solid curves). While the pair correlations are relatively weak
for φ = 0.3, the hard disk fluid at φ = 0.65 is quite close to the fluid-hexatic phase
transition (occurring around φ ≈ 0.70 [33]), thus exhibiting very pronounced pair-
correlations. Starting with the upper left panel and proceeding in clockwise direction,
the panels in Fig. 2 feature the two rerence fluid’s radial distribution functions g(r),
the static structure factors S(k) = 1/[1− ρ̄c̃(k)], and the direct correlation functions
in wavenumber space, c̃(k), and in real space, c(r). At r = σ, both functions c(r) and
g(r) exhibit a discontinuity at all non-zero fluid densities.
Note that the Percus-Yevick scheme is not exact, but nevertheless very accurate

in predicting the pair-correlations of hard disks in the density range studied here:
Highly accurate numerical calculations of the hard disk equation of state by Kolafa
and Rottner [34] can be used as a reference solution. They found a normalized pres-
sure of p/[ρ̄kBT ] = 8.39 at packing fraction φ = 0.65. At the same packing fraction,
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Fig. 2. Pair-correlation functions for two-dimensional homogeneous and isotropic reference
fluids of hard disks at packing fractions φ = 0.30 (dashed curves) and φ = 0.65 (solid curves),
computed by numerical solution of the Percus-Yevick integral equation. Panels feature the
radial distribution functions g(r) (top left), the static structure factors S(k) (top right),
the direct correlation functions c(r) in real space (bottom left) and the direct correlation
functions c̃(k) in wavenumber space (bottom right).

the Percus-Yevick scheme predicts a value of 8.29 for the normalized hard disk virial
pressure, pvir/[ρ̄kBT ] = 1 +

√
πφ g(σ+), corresponding to an underestimation of the

reference result by 1% only.
Hard disks can serve as a model system for sterically stabilized colloidal spheres

that are confined to a planar surface, and the d = 2 systems studied here can be ex-
perimentally realized in a straightforward way, by dripping colloidal particles onto a
tilted plane (cf., Fig. 1). In case that the colloidal particles are not perfectly confined
to a plane but restricted in their movement to a very narrow three-dimensional slit
between parallel walls, it has been shown [35] that lateral and transversal degrees of
freedom decouple asymptotically as the slit width vanishes, and that particle motion
is governed by an effective, slit width dependent in-plane pair potential.
Results for the diffusive reduced density profile εD(r, t), based on a numerical

evaluation of Eq. (15), are shown in Fig. 3. All input parameters for the calculations
are given in the figure caption. Each of the panels of Fig. 3 is a snapshot of the Green’s
function, taken always at the same time t = πσ2/(4.8D0) after the release of particles
by the point source. In the uppermost row a) of panels in Fig. 3, the smooth Gaussian
profile for freely diffusing, noninteracting particles is shown. The next lower row of
panels, b), is for an interacting hard disk suspension at a moderate packing fraction of
φ = 0.3. Under these conditions, the shape of the density profile remains quite similar
to the one obtained for ideal gas free diffusion. However, the density profile in panel
row b) is spreading out quicker than the profile for free diffusion, due to the reduced
osmotic compressibility of the hard disk suspension. In addition, the density profiles
for interacting particles exhibit layering, i.e., regions where the radial derivative of
the density profile becomes positive. Layering is indeed present in the system plotted
in panel row b) of Fig. 3, but it is not visible in the scale of the panels, since the the
layering-induced modulations of the density profile occur too far away from the par-
ticle source, and at too small values of |εD|. A significant degree of particle layering,
and a further accelerated spread of the profile, is observed in row c) of Fig. 3, which is
for packing fraction φ = 0.65. Note that there is no finite critical packing fraction for
the onset of layering. Instead, due to the discontinuity in c(r) at r = σ being present
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Fig. 3. Green’s functions εD(r, t) for density deviations corresponding to a spatio-temporal
particle point-source αδ(r)δ(t). The top row of panels, labeled a), is for an ideal gas, and the
three lower panel rows b)–d) are for different fluids of hard disks. Plotted are the numerical
solutions of Eq. (15). All results are for d = 2 spatial dimensions, for a source strength of
α = 10/ρ̄, and all panels correspond to the same time t = πσ2/(4.8D0). Ideal gas results are
given by the Gaussian function in Eq. (16). Panel row b) is for a hard-disk fluid at packing
fraction φ = 0.3, and Panel rows c) and d) are for a dense hard disk fluid at φ = 0.65. All
panels except row d) are for vanishing driving force, g = 0. Results in panel row d) are for
g = 10 × (γD0ρ̄1/2) and otherwise the same parameters as in row c). The color code is the
same in all panels.

at all non-zero packing fractions, the layering also occurs for all non-zero packing
fractions. Rows a)–c) of Fig. 3 all correspond to a vanishing external drive, g = 0,
as signaled by the location r = 0 of the density profile centers. The lowermost row
d) of panels in Fig. 3 is for a non-zero driving force g = 10× (γD0ρ̄1/2) that acts in
the positive x-direction, and otherwise for the same parameters as in row c) of the
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same figure. The only effect of the external drive is a convective displacement of the
spreading density profile in x-direction.

5 Chemotactic density profiles for a constant particle source

We now consider solutions of Eq. (12), with a source term λδ(r) added to the right
hand side of the equation, corresponding (for λ > 0) to a steady inflow of particles.
The resulting solution describes how particles flow outwards from a source with con-
stant ejection rate λ located at the origin r = 0. In colloidal experiments, this can be
realized by particle inflow along the third dimension (for such an example see
Ref. [36]). The same kind of density profiles computed here describes the distribution
of low molecular weight chemoattractants or -repellents in the context of chemotaxis,
and therefore one might call the computed functions chemotactic profiles. Here we
denote the time-independent (steady-state) solution as εC(r).
In the case of free diffusion in the absence of external drive (g = 0), the steady-

state chemotactic density profile is formally identical to the solution of the classical
Poisson equation of electrostatics [6]. For finite external drive, but for free diffusion
only, the analytical solution has been discussed by Sengupta et al. [7].
Chemotaxis in an arbitrary concentration field ρ(r, t) is most easily described by

a sensing force in direction of the spatial gradient of ρ(r, t), such that ρ(r, t) can be
viewed as a chemotactic potential [37]. For an ensemble of mutually chemotactically
sensing objects the solution εC(r) is therefore proportional to the chemotactic pair
potential. In d = 3, for free diffusion and positive chemotaxis, it has been shown by
Tsori and de Gennes [6] that this is formally equivalent to the classical problem of
gravitational collapse.
Using Fourier transformation one obtains the expression

εC(r) =
λ

(2π)
d

∫
ddk eik·r

1

D0k2(1− ρ̄c̃(k)) + i gγ kx
(20)

for the steady state chemotactic density profile. In the ideal gas case (that is,
for c̃(k) = 0) the convection-diffusion equation with stationary source term can
be solved analytically. The corresponding two-dimensional ideal gas result reads

εC(r) ∝ exp [gx/2γD0]K0 [gr/2γD0], in terms of r =
√
x2 + y2 and the modified

Bessel function of the second kind, K0. As one can easily verify from Eq. (20) or from
the ideal gas result, the function εC(r) diverges logarithmically to infinity when the
limit r → 0 is taken. In fact, the ideal gas result diverges to infinity at every point
r, in the limit g → 0 of vanishing external drive. This is an artifact of assuming a
two-dimensional system with one particle source, and no particle sink: At long times,
the particle number density diverges everwhere. In the Fourier integral in Eq. (20) the
divergent contribution occurs in the infinite wavelength limit k → 0, corresponding to
a spatially homogeneous density that grows with no bounds. We circumvent this arti-
fact in the following, using computational grids in r- and k-space that do not include
the points r = 0 or k = 0: In our implementation of the Fast-Fourier-Transform, we
employ rectangular grids with equidistant gridplanes that are parallel to the x- and
y-axis. The grid is offset from both coordinate axes by half a grid spacing, such that
the divergent part of the integrand is not sampled, leaving only the finite density
modulations to be computed.
In Fig. 4, explicit examples for εC(r) are shown. All results in Fig. 4 are for

packing fraction φ = 0.65, and for a point source of particles at r = 0, ejecting
particles at a constant, time-independent rate λ = (2π)

2
D0. The only variation in

input parameters, for the results in the four rows of panels a)–d) of Fig. 4, is in the
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Fig. 4. Stationary density deviation solutions εC(r) for hard disk fluids in d = 2 spatial
dimensions, at area fraction φ = 0.65, obtained by numerical solution of Eq. (20). A point-
like particle source, located at r = 0, ejects particles at a constant, time-independent rate
λ = (2π)2D0. The results shown in the uppermost row of panels (a) are for a vanishing
driving force g = 0. Results in panel rows b), c), and d) are for g/(γD0ρ̄

1/2) = 10, 20, and
50, respectively. The functions are sampled on grids that exclude the point r = 0, at which
εC(r) diverges to infinity.

external drive g, which increases from top to bottom: In the uppermost panel row a),
the external drive vanishes, and a radially symmetric chemotactic profile is obtained
around r = 0. For panel rows b), c), and d), we have chosen g/(γD0ρ̄

1/2) = 10, 20,
and 50, respectively. With increasing external drive, an increasing deformation of the
density profile towards positive x-direction is observed, as particles get carried away
from the source into that direction. Significant layering of particles is observed in
all panels of Fig. 4. For strong external drive (cf. the lowermost row of panels), the
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layering results in flow-aligned high density strips that extend far away from the source
in the downstream direction. The lateral spacing between the strip centers is equal
to the particle diameter σ. For lower packing fractions (not shown in Fig. 4), particle
layering becomes less pronounced, but the distance between layers remains equal to σ
at all finite packing fractions φ. This can be understood on basis of Fig. 2 (lower left
panel): the discontinuity in c(r) always occurs at r = σ and varies in strength only. In
the infinite dilution limit φ→ 0, the ideal gas result without layering is recovered in
the numerical solution. Note that the particle source creates an approximately semi-
circular bow wave in upstream direction. Due to the infinite speed of information
transmission in the underlying classical diffusion equation, the upstream bow wave
is observed at all values of the external driving force g (i.e., a Mach-cone is never
observed).

6 Periodic particle injection

Let us now consider a source term λδ(r) [cos(ω0t) + 1] added to the right-hand-side
of Eq. (12), corresponding to temporally oscillatory injection of particles at r = 0,
with an ejection rate that varies harmonically between zero and 2λ, at a period of
T = 2π/ω0. Once again, using Fourier transformation we obtain the expression

εO(r, t) =
λ

(2π)
d

∫
ddk eik·r

[
1

h(k)
+
h(k) cos(ω0t) + ω0 sin(ω0t)

h2(k) + ω20

]
(21)

for the resulting, spatially and temporally oscillating density profile, where we have
defined the function h(k) = D0k

2(1− ρ̄c̃(k)) + igkx/γ.
A resonance criterion for the injection angular frequency ω0 can be constructed

by demanding that the product Tvdrift = 2πg/(γω0) should be equal to the hard disk
diameter σ. Here, vdrift = g/γ is the free particle drift velocity under external drive
g. The resonance criterion can be re-cast into the form

ω0
!
= ωres0 = π

3/2 g

γ

√
ρ̄

φ
· (22)

Selecting an injection angular frequency ω0 that satisfies the criterion in Eq. (22)
results in constructive interference of the injected, diffusing and convecting density
profile: If Eq. (22) is satisfied, maximal ejection rate occurs at those times at which
the bow wave density maximum, created during previous peak injection, has been
convectively transported downstream to a position r ≈ 0, i.e. close to the point of
injection. On the other hand, an angular frequency of ω0 = 2ω

res
0 results in destructive

interference: In this case, peak injection rate occurs at times when the principal bow
wave density minimum arrives at r ≈ 0.
In Fig. 5, we plot our numerically obtained solutions of Eq. (21). Note that each

panel in Fig. 5 depicts the time evolution for a y = const slice of the density deviation:
While one axis is for the x-direction, the other axis is for increasing times t. As
discussed in the previous section, the computational grid excludes both planes x = 0
and y = 0, in order to avoid passing trough the divergence at x = y = 0. We have
therefore chosen to plot slices for the small but non-zero coordinate y = σ/4 in Fig. 5.
All results in Fig. 5 are for hard disk fluids in d = 2 dimensions, each of which is
subject to the same external drive, g = 20×(γD0ρ̄1/2). Furthermore, all results are for
the same injection rate λ [cos(ω0t) + 1] with λ = 3× (2π)2D0, and particle injection
occurs always at r = 0. The only difference in input parameters, for the four systems
depicted in Fig. 5, is in the angular frequency of particle injection, ω0: The top row of
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Fig. 5. Time-evolution for one-dimensional slices of the oscillatory density deviation εO(r, t),
obtained by numerical solution of Eq. (21). A point-like particle source, located at r = 0,
ejects particles at a positive, time-dependent rate λ [cos(ω0t) + 1], into a fluid subject to
an external force g in positive x-direction. All results shown here are for hard disk fluids
in d = 2 spatial dimensions, for packing fraction φ = 0.65, for λ = 3 × (2π)2D0, and for
g = 20 × (γD0ρ̄1/2). All plotted slices through the density function are for y = σ/4. Top
row of panels (a): quasi-stationary solution for a very low angular frequency of injection,
ω0 = 10

−3 × ωres0 . Panel row b): injection with a low, non-resonant angular frequency ω0 =
0.1×ωres0 . Panel row c): resonant injection at ω0 = ωres0 , resulting in constructive interference.
Panel row d): Anti-resonant injection at ω0 = 2× ωres0 , resulting in destructive interference.

panels (a) in Fig. 5 is for a very small angular frequency of injection, ω0 = 10
−3×ωres0 .

In this case, where the injection frequency is much less than any other characteristic
frequency of the suspension, a quasi-static density profile is observed, whose x- and t-
dependencies factorize almost perfectly. In the second row of panels, b), a substantially
higher angular frequency of injection, ω0 = 0.1×ωres0 is chosen. During the time period
T , corresponding to the latter injection frequency, convective transport in positive
x-direction can be clearly observed to cause a tilting of the density profile in the
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(x, t)-plane (cf., the right panel in row b) of Fig. 5). However, the injection frequency
in panel row b) is still very different from the resonance frequency in Eq. (22) and
therefore, the height of the peaks and the undulations for x > 0 remain similar to the
ones observed in panel row a) of the same figure. A qualitative difference from row a)
and b) is observed in panel row c) of Fig. 5: Here, the angular frequency of particle
injection is exactly equal to the resonance angular frequency (ω0 = ω

res
0 ), which results

in excessive peaking of the density profile, and in pronounced undulations along the
downstream direction. The lowermost row of panels, d), is for anti-resonant particle
injection at an angular frequency of ω0 = 2×ωres0 . As discussed above, in this case the
interference of convectively transported density minima with the density function at
the locus of particle injection leads to destructive interference. The observed density
profiles are less peaked than the ones in panel rows a)–c), and the undulations die
out quickly in the downstream direction.

7 Conclusions and generalizations

In conclusion, we have proposed the dynamical density functional approach as a versa-
tile tool to address transport and diffusion of interacting, injected Brownian particles
in confined geometry. After reviewing the theory briefly we have discussed a linearized
version of the equation with external drive included. From this approximative equa-
tions some special cases of density profiles, including steady-state profiles around a
constantly emitting particle source and temporally oscillating profiles around a source
that injects particles at a periodic rate, were calculated on basis of the Percus-Yevick
approximation for the particle pair-correlations. Strong particle layering is observed,
as well as resonances in the time-dependent density profiles. Both layering and res-
onance are absent in the case of freely diffusing particles that do not interact. The
presented theory should be a suitable framework to address many more questions,
some of which are summarized below.
There is a plethora of possible further applications and generalizations of DDFT.

It should be noticed that DDFT can be applied to arbitrary confined geometries by
a suitable modeling of the external potential Vext(r, t) which in general, however,
requires a full numerical solution of the problem. As an example, a rather straight-
forward modification of the present study could consist in replacing the tilted plane
potential in Eq. (11) by an oscillating plane potential or a tilted ratchet potential
[38]. Note also that hydrodynamic interactions between particles and particles and
walls [39] can be readily incorporated into the DDFT approach [40,41] on an ap-
proximate level, at the expense of higher numerical effort for the evaluation of the
transport equations. In addition, bulk phase transitions including crystallization are
in principle included in the equilibrium functional [42,43] and therefore the dynamics
of crystallization can be explored [44,45]. Phase transitions have been intensely stud-
ied in the conceptually simpler phase-field-crystal (PFC) approach [11,44,46], and it
would be interesting to explore the dynamics of crystallization in confined geometry,
which is still an open problem. DDFT can readily be applied to mixtures, see e.g.
[47], and to orientational degrees of freedom relevant for liquid crystals [48–51] where
even an arbitrary particle shape has been considered [52], including general Brownian
orientational diffusion. In addition, even more complex situations like a temperature
gradient can be tackled by using DDFT [53].
Finally, active Brownian particles [54] can be considered and again DDFT is gener-

alizable to this recently extensively studied nonequilibrium class of systems [52,55,56].
Experiments on colloids [57] and bacteria [58] have proven that the Brownian sta-
tistics with white noise is sufficient to describe the data. Even single active particles
show various new phenomena such as circle swimming [59], rectification [60], negative
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mobility [61,62] and polar order [63]. And we are still at the beginning to under-
stand the fascinating collective behavior such as turbulence [64], clustering [65–68]
and crystallization [56,69] of active swimmers.
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ported by the ERC Advanced Grant INTERCOCOS (project number 267499). M.H. ac-
knowledges support by a fellowship within the Postdoc-Program of the German Academic
Exchange Service (DAAD).
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