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Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside
through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted.
The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models:
first, the orientational memory imprinted into one class of the materials during their synthesis; second,
the structural arrangement of the magnetic particles in the materials; and third, the strength of an external
magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and
analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical
properties helps to design materials that optimize the requested behavior.
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I. INTRODUCTION

Often the internal dissipation in soft matter systems is
sufficiently large so that their dynamics can be considered
as overdamped. For instance the motion of dispersed colloidal
particles is dominated by the friction with the surrounding
liquid [1]. Another example is the dynamics of polymer chains
in melt or solution, described in a first approach by the famous
Rouse and Zimm models [2,3]. Apart from that, in polymeric
systems the dynamic behavior is often dominated by relaxation
processes. The reason is found in the large size of their
building blocks. A long time is necessary for conformational
rearrangements to adjust to changes in their environment [4].
Frequently, the slower processes are the ones that strongly
influence the macroscopic behavior.

Here, we consider the combination of the two materials
mentioned above in the form of ferrogels or magnetic
elastomers [5]. In this case, magnetic colloidal particles are
embedded into a crosslinked polymeric matrix. Qualitatively
different kinds of this “embedding” can be achieved by
different protocols of synthesis. On the one hand, the mag-
netic particles can simply be enclosed in mesh pockets of
the polymer network [5]. This allows a certain degree of
freedom for particle reorientations. On the other hand, via
surface functionalization, the magnetic particles can serve
as crosslinkers and thus become part of the polymer mesh
[6–8]. Then, restoring torques hinder reorientations of the
particles. We use the term “orientational memory” to refer
to this situation [9].

From the internal architecture of these materials it is
obvious that their magnetic and mechanical properties are
strongly coupled to each other. This is what makes them
interesting from both an academic and an application point
of view. For example, the mechanical properties, such as
the mechanical elastic modulus, can be tuned and adjusted
reversibly from outside by applying external magnetic fields
[5]. This may be exploited in constructing novel damping
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devices [10] and vibrational absorbers [11]. Several theoretical
studies have shown that the internal spatial particle distribution
plays a qualitative role in this effect [12–15].

Furthermore, applying time-dependent external magnetic
fields can induce deformations, which makes the materials
candidates for use as soft actuators [5,16,17]. Related to this
feature, it has been demonstrated theoretically that the spatial
particle arrangement in the materials has a qualitative impact
on the magnetostrictive behavior [18–20].

Apart from that, quick remagnetizations of the magnetic
particles by an alternating external magnetic field can lead
to local heating. The effect is due to hysteretic losses in
the dynamic magnetization processes. It can be used for
hyperthermal cancer treatment when magnetic particles are
embedded into tumor tissue [21,22]. Ferrogels, which likewise
feature magnetic particles embedded in a gel-like matrix, can
serve as model systems to investigate some of the aspects that
become important during this form of medical treatment.

In all these processes, dynamic modes of the materials
are excited. This happens via the time-dependence of the
applied mechanical deformations and external magnetic fields.
Different modes will dominate depending on the type of
external stimulus. In the described situation there are two major
differences when compared to the classical picture of phonon
modes in conventional solids [23]: we expect the dynamics
of the magnetic particles to be mainly of the relaxatory kind,
and the particle arrangement is not that of a regular crystalline
lattice.

A natural goal is to optimize the materials in view of their
applications. For this purpose, it is important to understand
if and how the dynamic modes are determined by internal
structural properties and by external magnetic fields. So far,
a macroscopic continuum theory for the dynamic response of
magnetic gels has been developed using a hydrodynamic-like
symmetry-based approach [16,24]. However, particle-resolved
studies that connect the dynamic material behavior to structural
properties on the magnetic particle level are missing. Our
investigations in the following are a first step into this direction.

In the next section, we review the simplified dipole-spring
model that we recently introduced to investigate equilibrium

1539-3755/2014/90(4)/042311(9) 042311-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.042311


MITSUSUKE TARAMA et al. PHYSICAL REVIEW E 90, 042311 (2014)

ground states of simple model systems [9]. We expand
it by formulating the corresponding relaxation dynamics.
Our approach contains memory terms to include a possible
orientational coupling of the magnetic particles to the polymer
network [9]. We then demonstrate and analyze the impact
of three different factors on the dynamic relaxatory modes.
First, the orientational memory can qualitatively impact the
appearance of the materials, which also influences the dynamic
modes. This is demonstrated for the illustrative example of a
short linear magnetic chain in Sec. III. Second, the spatial
distribution of the magnetic particles is important. We depict
this fact using simple symmetric lattice cells in two spatial
dimensions in Sec. IV. Third, the mode structure can be
influenced by an external magnetic field. This is highlighted
for a spatial particle distribution that was extracted from the
cross section of a real experimental sample in Sec. V. The
results are summarized in Sec. VI.

II. DYNAMIC DIPOLE-SPRING MODEL

Our ambition in this paper is to qualitatively demonstrate
that the relaxation dynamics can be influenced by three
different factors: orientational memory, spatial distribution of
the magnetic particles, and external magnetic fields. For this
purpose, we employ a minimal dipole-spring approach that
includes all these ingredients.

We use the recently introduced model energy to describe
the state of a ferrogel [9]:

E = μ0

4π

N∑
i,j=1,i<j

mi · mj − 3(mi · r̂ij )(mj · r̂ij )

r3
ij

+k

2

∑
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(
rij − r

(0)
ij

)2+D
∑
〈i,j〉

(
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ij
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(
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− [
̂m(0)
i × r(0)

ij

] · [
̂m(0)
j × r(0)

ij

])2
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Here, each of the N magnetic particles carries a magnetic
dipolar moment mi and is located at position ri (i = 1, . . . ,N).
The distance vectors are rij = rj − ri . For any vector x
we use the abbreviations x = ‖x‖ and x̂ = x/x. All quan-
tities with the superscript (0) refer to a memorized state
imprinted into the material during its synthesis. We denote
the sum over a limited number of close neighbors by angular
brackets 〈i,j 〉.

The first line of Eq. (1) contains the long-ranged dipolar
interactions. Next, we model the elastic properties of the em-
bedding polymer matrix by effective Hookean springs between
the magnetic particles. k is the spring constant. Both remaining
terms include a simple form of orientational memory of the
dipolar orientations: the term with the coefficient D penalizes
rotations of the dipole moments towards the connecting line
between magnetic particles; τ penalizes relative rotations of
the dipolar moments around these connecting lines, typically
involving torsional deformations of the polymer matrix. See
Ref. [9] for further explanations. In the following we only

consider situations and parameter values for which a collapse
due to the dipolar attractions does not occur; we thus can
neglect steric repulsion between the particles.

All magnetic particles are assumed to be identical. For
ferrofluids [25–28] this simplifying picture could capture the
experimentally observed effects correctly [29,30]. Particularly,
in our case, an identical magnitude of the dipolar moments
is assumed, mi = m (i = 1, . . . ,N). Then, five degrees of
freedom remain for each particle i, given by a five-dimensional
vector yi ≡ (ri ,m̂i). Thus the relaxation dynamics of the
system follows as the 5N -dimensional coupled system of
equations

∂yi

∂t
= − γ · ∂E

∂yi

, i = 1, . . . ,N. (2)

Here, our final simplifying assumption is that the relaxation
rate tensor γ is diagonal and the same for all particles.
Rescaling all lengths by an appropriate distance l0, the
positional relaxation rates can be adjusted to the angular ones,
so that we obtain γ = γ I, with I the unity matrix. In all that
follows, we measure time in units of (γ kl2

0)−1, D and τ in
units of kl2

0 , as well as the magnetic moment m in units of
[kl5

0/μ0]1/2.
We linearize Eqs. (2) with respect to small deviations

δyi from the energetic ground state. The resulting system
of linearized dynamic equations is rather lengthy and listed
in the Appendix. We insert an ansatz δyi = δy0,ie

λt into the
resulting system of linearized dynamic equations. Denoting
by δy the vector composed of all δyi , the resulting system of
equations can be written in the form λδy = M · δy, with M
the force matrix. Therefore, the relaxation rates λ follow as
the eigenvalues of this matrix, whereas its eigenvectors char-
acterize the nature of the corresponding relaxatory dynamic
modes. More precisely, the eigenvectors describe the spatial
displacements and magnetic reorientations δyi = (δri ,δmi) of
all particles i = 1, . . . ,N during the corresponding dynamic
mode. These eigenvalues and eigenvectors are obtained by
standard numerical methods [31]. In our overdamped system,
the relaxation rates together with the relaxatory modes char-
acterize the dynamic behavior.

III. IMPACT OF ORIENTATIONAL MEMORY

To demonstrate that the orientational memory has a qual-
itative impact, it is sufficient to consider a one-dimensional
particle arrangement. For such a straight magnetic chain we
had previously observed three qualitatively different energetic
ground states [9]. They occur for a memorized direction m̂(0)

i

oblique to the chain axis and depend on the strength of the
orientational memory (D,τ ): we obtain a “ferromagnetic” state
with all magnetic moments aligned along the chain (small D);
an “antiferromagnetic” state with obliquely oriented magnetic
moments rotated around the chain by π between neighboring
particles (large D, small τ ); and a “spiral”-like arrangement
with the rotation angle smaller than π (large D, large τ ).

For illustration, we here consider a finite straight chain
of only N = 10 particles. It is characterized by an equal
orientation of all memorized m(0)

i with an angle �(m(0)
i ,r(0)

ij ) =
π/4, the pairs 〈i,j 〉 in Eq. (1) denoting nearest neighbors.
We consider three different strengths of orientational memory

042311-2



TUNABLE DYNAMIC RESPONSE OF MAGNETIC GELS: . . . PHYSICAL REVIEW E 90, 042311 (2014)

-4

-2

 0

 0  10  20  30

λ n

n
F

(a)

-4

-2

 0

 0  10  20  30

λ n
n

AF
-4

-2

 0

 0  10  20  30

λ n

n
Sp

δr

F

(b)

-1

0

1

δm
θ

-1

0

1

0 5 10

δm
φ

i
-1

0

1

δr

AF-1

0

1
δm

θ

-1

0

1

0 5 10

δm
φ

i
-1

0

1

δr

Sp-1

0

1

δm
θ

-1

0

1

0 5 10
δm

φ
i

-1

0

1

F

(c)

AF

Sp

FIG. 1. (Color online) Dynamic relaxatory behavior for three
different linear elastic chains of N = 10 magnetic particles of
m = 1.68. The chains differ by orientational memory (D,τ ) leading
to qualitatively different energetic ground states: ferromagnetic
“F” (D = 0.1, τ = 0.04), anti-ferromagnetic “AF” (D = 0.6, τ =
0.0004), and spiral-like “Sp” (D = 0.6, τ = 0.04). (a) Dynamic
relaxation spectra, where n labels the modes. (b) Example of a
characteristic eigenmode (n = 8) that appears very differently in
the three cases due to the varying orientational memory. i labels
the particles, δr denotes displacements along the chain axis, δmθ

and δmφ mark the angular deviations of the magnetic moments in
spherical coordinates. (c) Illustration of the three different energetic
ground states (light gray) and the resulting different modes n = 8 as
characterized in (b). In all cases the lengths of the unstrained linking
springs between the particles are r

(0)
ij = 2.

(D,τ ) that lead to the three different ground states mentioned
above; see Fig. 1 for further details.

We determined the corresponding relaxation spectra and
depict them in Fig. 1(a). The more negative the eigenvalue
λ, the quicker the corresponding mode relaxes. We order
the modes by decreasing λ. First the zero-modes of global
translation along and global rotation around the chain axis
are obtained. The subsequent plateau of slowly decreasing
relaxation rates mainly contains dynamic modes dominated by
rotational relaxation; see Ref. [32] for details. At the end of this
plateau, there is an obvious kink in the spectral curves and the
relaxation rates start to significantly decrease. For these modes,
the relaxation becomes significantly quicker. Those are the
modes that are dominated by longitudinal compressive and
dilative displacements along the chain with higher wave
numbers; again see Ref. [32] for details. That is, these modes
can quickly decay by repositioning within small localized
groups of particles, implying that a collective rearrangement
correlated along the whole chain is not necessary, which makes
those processes faster. In the antiferromagnetic case, we find
a specific step within the plateau region. It separates modes

dominated by dipolar rotations first around and second towards
the chain axis. As Figs. 1(b) and 1(c) show, the orientational
memory can lead to qualitative differences in the nature
of corresponding modes. The complete table illustrating all
occurring modes is included in Ref. [32].

In the above considerations, our limitation to a relatively
short chain of N = 10 particles is due to illustrative purposes
only. The differences in the spectra in Fig. 1 and in Ref. [32]
solely result from the varying orientational memory that lead to
the ferromagnetic, anti-ferromagnetic, and spiral-like ground
states. Analogous results follow for significantly longer chains.
Likewise, there are no qualitative differences between chains
of odd and even numbers of magnetic particles for N � 10
and otherwise identical parameter values.

Summarizing, we have demonstrated the influence of the
orientational memory on the dynamics for a one-dimensional
spatial arrangement of the magnetic particles. Real three-
dimensional bulk samples can contain such chain-like aggre-
gates [5,33–36]. If the distances between the chains are large
enough so that the interaction between them can be neglected
[37], the dynamic properties of the single chains will have
a strong impact on the overall behavior. Nevertheless, the
orientational memory should also become important in other
cases of more isotropic particle distributions, a topic that shall
be investigated further in the future. The orientational memory
in our model is encoded by the parameters D and τ . In reality,
it can for example be tuned during synthesis by the way of
embedding the magnetic particles in the polymer matrix. For
instance, rotations of elongated magnetic particles [38] are
hindered when compared to spheres, and magnetic particles
that are actually part of the network due to chemical surface
functionalization [6,7] experience permanent restoring torques
under reorientation [8].

IV. EFFECT OF SPATIAL PARTICLE DISTRIBUTION

Next, we show that the spatial distribution of the magnetic
particles has an obvious impact on the relaxation dynamics.
For this purpose, it is sufficient to concentrate on a two-
dimensional particle arrangement. We consider a system
without orientational memory of the dipoles, i.e., D = 0
and τ = 0 in Eq. (1). Instead, we assume that a sufficiently
strong external magnetic field orients all magnetic dipoles
perpendicular to the two-dimensional layer. Due to the above
rescaling, the only remaining system parameter is the rescaled
magnitude m of the dipole moments. It characterizes the
ratio between magnetic and elastic contributions to the system
energy.

For illustration, we consider small regular arrangements of
different lattice structures and only N = 9 particles. Of course
much larger arrangements can be evaluated but not as easily
be displayed. In our examples, the textures are of initially
quadratic, rectangular, and hexagonal lattice structure.

We display the relaxation spectra for the three different
lattice structures in Fig. 2(a). Since the orientations of the
magnetic moments are fixed by the strong external magnetic
field, all modes are solely determined by relaxations of the
particle positions. In all cases, three zero modes are observed
corresponding to global spatial translations and rotations.
For the higher modes, the different lattice structures lead to
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FIG. 2. (Color online) Dynamic relaxatory behavior of (from
left to right) a small quadratic, rectangular (aspect ratio 2:3), and
hexagonal lattice of N = 9 particles. Magnetic moments are oriented
perpendicular to the plane and of magnitude m = 1. (a) Changes in
the relaxation spectra for the three different particle distributions.
(b) Different appearance of an example mode (n = 5) for the three
lattices (undeformed energetic ground states indicated in light gray).
In all cases the lengths of the unstrained linking springs between the
particles are r

(0)
ij = 2, except for the long edges of the rectangular

lattice, where they are r
(0)
ij = 3.

different magnitudes of corresponding relaxation rates. Also
the nature of the relaxatory modes significantly depends on
the spatial particle distribution. One example is illustrated by
Fig. 2(b). A complete illustration of all relaxatory modes for
each lattice is again included in Ref. [32].

V. INFLUENCE OF AN EXTERNAL MAGNETIC FIELD

Finally, we demonstrate that an external magnetic field can
change the dynamic relaxatory behavior. This is particularly
important from an application point of view because it allows
us to tune the dynamic properties of the materials in a non-
invasive way from outside.

We consider the same setup as above for the regular lattices.
Now, however, there are N = 969 particles and their spatial
distribution does not follow a regular lattice structure. In
particular, to make the connection to real systems, we use
a real experimental sample and extract the particle positions
as an input for our study.

The experimental sample was extensively characterized
in Ref. [36]. It is a two-component silicone elastomer of
cylindrical shape with a diameter of 3 cm and a height of
1.5 cm. Furthermore, it contains 4.6 wt% of magnetically soft
iron particles, the average size of which is around 35 μm.
During the synthesis of the elastomer, a strong homogeneous
external magnetic field of 220 kA/m was applied parallel to
the cylinder axis. This resulted in the formation of linear
chains of the magnetic particles spanning the whole sample
parallel to the cylinder axis. The chains were resolved by
x-ray microtomography [36], the result of which is displayed
in Fig. 3. Cross-sectional images in planes perpendicular to the
cylinder axis are available—see the left column of Fig. 3—and
contain information about the chain positions [36].

To first approximation, due to the linear chain-like aggre-
gates that are all oriented in the same direction, the structure
at intermediate height of the sample is translationally invariant
along the cylinder axis. The exact positions and sizes of

FIG. 3. (Color online) Chain-like structures observed by x-ray
microtomography in the experimental sample referred to in the main
text [36]. On the left-hand side, three cross-sectional images at
different heights H from the base of the sample are depicted. Bright
spots label the positions of magnetic particles. On the right-hand
side, a three-dimensional reconstruction of the chain-like structures
formed by the magnetic particles in the sample is shown. For details
of the data acquisition see Ref. [36]. Taken from Ref. [36], Fig. 5.
C©IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved.

individual magnetic particles in the sample could not be
resolved. We consider by our model the situation within one
cross-sectional layer cut out from the sample at intermediate
height H . In our example, we choose the cross-section at height
H = 3 mm in Fig. 3.

Each spot in the cross-sectional tomography data identifies
magnetic chain particles. We extracted by image analysis the
centers of these spots; see Fig. 4(a). Then, in our model,
we place one particle on each center, carrying a magnetic
moment m oriented perpendicular to the plane. Finally, as
shown in Fig. 4(a), the area between the particles is tessellated
by Delaunay triangulation. We insert elastic springs along
the edges of the resulting triangles, which here sets the pairs
described by 〈i,j 〉 in Eq. (1). Magnetic interactions are still
considered between all pairs of magnetic particles in the plane.
In this way, we model the physics of one cross-sectional
layer of the real system. Since the magnetic particles in
the experimental sample are not covalently bound to the
polymer matrix [6,7], and since the magnetic moments are
perpendicular to the plane, the orientational memory terms in
Eq. (1) do not play a role.

For large enough particle sizes, the magnetization of the
particles and thus the magnitude of their magnetic moments
can be tuned by the strength of an external magnetic field. We
consider this external magnetic field perpendicular to the plane,
i.e., along the linear chains formed by the magnetic particles in
the real sample. This has two reasons. First, we know from the
procedure of synthesis that such a magnetic field orients the
magnetic moments perpendicular to the plane and maintains

042311-4



TUNABLE DYNAMIC RESPONSE OF MAGNETIC GELS: . . . PHYSICAL REVIEW E 90, 042311 (2014)

(a)

-60

-30

0

0 500 1000 1500

λ n
n

(b)

m=  1
102

103

104

10-5

10-4

10-3

10-2

10-1

10-1 100 101

g/
ω

ω

ω
=

1.
3

ω
=

2.
5

(c)

m=  1
102

103

104

FIG. 4. (Color online) Tunability of the dynamic behavior by an external magnetic field oriented perpendicular to the plane and affecting
the magnetic moments. (a) Positions of the magnetic moments are extracted from the x-ray microtomographic cross-sectional image of an
anisotropic real experimental sample [36] displayed for H = 3 mm on the left-hand side of Fig. 3. Only a fraction of the image is shown
for illustration. Gray areas correspond to the microtomographic spots. (b) Tunability of the spectrum by changing the magnetization. (c) The
density of dynamic modes gets shifted in the frequency direction by adjusting the magnetization. Dynamic modes for ω ≈ 1.3 and ω ≈ 2.5
(m = 1) are illustrated in Figs. 5(b) and 5(c), respectively. [The tomography data in panel (a) are taken from Ref. [36], Fig. 5 (H = 3 mm),
C©IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved.]

the axial symmetry of the sample. Second, in the static case,
the largest degree of tunability of the compressive elastic
modulus was achieved when the magnetic field was oriented
parallel to the anisotropy direction [5]. A similar dependence
may also hold in the dynamic case. To keep the description
general and simple, we do not consider specific magnetization
laws but study the relaxation dynamics directly as a function
of the magnitude of the resulting dipolar magnetic moment m.

As is obvious from Fig. 4(b), the dynamic relaxation
spectra can be tuned by adjusting m. We checked that the
chosen values correspond to external magnetic field strengths
that can be realized experimentally. In our geometry, the
magnetic interactions within the plane are purely repulsive.
Moreover, as can also be seen from Figs. 3 and 4(a), the
sizes of the spots detected by x-ray microtomography in the
cross-sectional layers are not homogeneous. In a variant of our
approach, we varied the strengths of the magnetic moments
proportionally to the area of the detected spots. However, this
did not qualitatively influence our results.

Figure 5 displays several illustrative example modes from
the spectrum for m = 1 in Fig. 4(b). Black dots mark the initial
positions of the magnetic particles, whereas the overlayed
lattice shows the deformed state. The directions and relative
magnitudes of the displacements of the individual particles are
obtained from the eigenvectors calculated as described at the
end of Sec. II.

There are two major differences when compared to the
classical phonon modes in crystalline solids [23]. First, our
dynamics is overdamped [1]. Therefore, we here focus on
the relaxational spectra determined from the corresponding
relaxation rates λn. Second, our lattice is irregular. Neverthe-
less, the situation is typically discussed in terms of the mode
density g(ω) in frequency space following the notation of the
classical phonon picture of nonoverdamped oscillations [23].
The frequencies ωn of these oscillations in the classical phonon
picture would be determined from the same force matrix as the
one that we find from the right-hand side of Eq. (2). However,
on the left-hand side of Eq. (2), the phonon oscillations would
imply a second time derivative. The two quantities that appear

on the left-hand side in these two different cases are related
by ωn ∼ √|λn|. Since it is common to plot the mode density
g(ω) in frequency space, we adhere to this convention.

At not too high frequencies that correspond to long-scale
collective dynamics, the plane-wave picture should still apply.
In fact, in this regime, a behavior of g(ω) in accordance with
the classical Debye picture [23] was obtained for disordered
structures [39]. Likewise, we observe here for our two-
dimensional disordered solid a “Debye plateau” of the function
g(ω)/ω in Fig. 4(c) at not too high frequencies. Example modes
at the low-frequency end of the spectrum indeed are related to
long-scale collective dynamics, as demonstrated in Fig. 5(a).

However, instead of a pure drop of g(ω) at higher fre-
quencies, a typical “boson peak” can develop in disordered
systems [39], the origin of which is still under debate [40]. In
our example of a two-dimensional disordered solid, the curve
for g(ω) in Fig. 4(c), before it drops at the end of the plateau,
shows a small hump. It is not possible to decide on the basis
of our limited statistical data whether this is the signature of
a “boson peak” in our non-glassy system. What does become
obvious from Figs. 5(b) and 5(c) is that the higher-frequency
modes are significantly more localized. This explains their
higher relaxation rates: large-scale collective motion is not
necessary to relax them.

Most significant for our present purposes is the observation
in Fig. 4(c) that the spectral density g(ω) can be shifted in
frequency direction by adjusting m through an external mag-
netic field. This is an important ingredient from the application
point of view. It allows to adjust the relaxation time reversibly
in response to varying environmental conditions. We recall that
the fraction of the magnetic component in our experimental
sample was only 4.6 wt%. Significantly higher contents of
magnetic particles can be realized. It turns out that already after
halving all distances in our sample plane, switching m from
10 to 103 is sufficient to achieve a similar shift in the spectrum
as the one occuring in Fig. 4(c) between m = 1 and m = 104.
This underlines the potential of the magnetic interaction as
an effective control parameter for the dynamic behavior.
In combination with the established phononic properties of
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FIG. 5. (Color online) Illustration of dynamic relaxational modes for the 969-particle planar irregular lattice extracted from the experimental
sample. Colored illustrations of the deformed lattices for each mode are superposed to the black undistorted lattice corresponding to the energetic
ground state. (a) Examples of lower modes show the expected global collective deformations, here of elliptic (λ4), triangular (λ10), quadratic
(λ13), pentagonal (λ15), hexagonal (λ22), and heptagonal (λ24) shape. Selected eigenmodes (b) around the end of the “Debye plateau” (ω ≈ 1.3)
and (c) around the small hump that might be connected to a “boson peak” (ω ≈ 2.5), cf. Fig. 4(c), show a much more localized character. The
initial spring lengths r

(0)
ij were set according to the values extracted from the experimental sample, while the magnetic moment was chosen as

m = 1.
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colloidal systems [41–43], this mechanism could provide a
route to tunable sound absorbers.

VI. CONCLUSIONS

Summarizing, we have demonstrated that the dynamic
behavior of ferrogels and magnetic elastomers can be tailored
and adjusted by at least three factors: first, by the magneto-
elastic coupling and orientational memory; second, by the
particle distribution; and third, during application, by external
magnetic fields. Thus we can forecast how microscopic details,
e.g. the orientational coupling of the magnetic particles to their
polymeric environment, affect aspects of the dynamic material
properties. There are of course several further factors that
determine our model parameters and in this way influence the
relaxation behavior. For example, these could be the content
of magnetic particles, the temperature during application,
the degree of crosslinking, or the degree of swelling of
the materials. The impact of these parameters should be
analyzed both experimentally and theoretically in the future.
On the experimental side, aspects of the dynamic relaxation
properties can be inferred, for instance, from dielectric
relaxation studies [44] or nanorheology [45]. Having all these
tuning parameters at hand, it should be possible to adjust the
dynamic properties to the requested applicational need.

To our knowledge, investigating aspects of the dynamic
material behavior on the level of the magnetic particle
distributions represents a new direction in the field. We hope
that our study can stimulate further, more detailed, and more
quantitative theoretical and simulation work in this context.
Naturally, the extension to three spatial dimensions is an
important next step. Our main goal here was to outline for
simple one- and two-dimensional model cases the different
factors that can influence the dynamics of the systems. To
allow for quantitative predictions on the dynamic behavior of
real samples, three-dimensional analyses will be mandatory
in most situations. On the experimental side, for example the
differences between isotropic and uniaxial ferrogels should
be analyzed concerning dynamic properties. All of these
questions are of high practical relevance in view of the
dynamic applications. For instance, response and relaxation
times determine the range of usability of ferrogels as the
basis of the above-mentioned novel damping devices [10],
vibrational absorbers [11], or soft actuators [5,17].

Our analysis represents a first step towards an optimization
of the dynamic behavior of magnetic gels. Theory and
simulations could assist this process by identifying particle
properties and structural arrangements that lead to the re-
quested characteristics. A further investigation to connect our

approach to directly experimentally measured quantities such
as the dynamical susceptibilities is currently underway [46].
We hope that our study can stimulate further investigations to
support the design of these fascinating materials and optimize
their tunable dynamic properties.
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APPENDIX: DYNAMIC EQUATIONS FOR THE
RELAXATIONAL BEHAVIOR

Here we list the complete expressions for the linearized
equations characterizing the relaxation dynamics and follow-
ing from Eq. (2). In this way, the relaxation dynamics of small
deviations δyi from the energetic ground state is obtained,
where yi ≡ (ri ,m̂i) and i = 1, . . . ,N labels the particles:

∂δyi

∂t
= − γ

N∑
j=1

Lij δyj . (A1)

For simplicity, we only show the formulas for the one-
dimensional chain and for the two-dimensional planar particle
arrangements considered in the main text. In the latter case,
we assume that the orientation of the magnetic dipoles is fixed
perpendicular to the plane. This can, for example, be achieved
by a strong external magnetic field.

1. Linear chain-like particle arrangement

First, for the one-dimensional chain-like aggregates, the
vector yi reduces to a three-dimensional vector yi ≡ (ri,θi,φi).
In our choice of coordinates, ri marks the position of the
ith particle along the chain, whereas the two angles θi and
φi represent the azimuthal and polar angles of the dipolar
orientation of the particle with respect to the chain direction.
The linearized operator in the above Eq. (A1) is separated into
four parts resulting from the four contributions to the energy
E in Eq. (1) of the main text:

Lij = Ldip
ij + Lel

ij + LD
ij + Lτ

ij . (A2)

We start by calculating the contribution from the dipole-
dipole interaction energy. Its diagonal components are given
by

Ldip
ii = 3μ0

4π

∑
k 
=i

|rik|−3r−1
ik m2

[
4r−1

ik {sin θi sin θk cos(φk − φi) − 2 cos θi cos θk}r̂ r̂ + {cos θi sin θk cos(φk − φi)

+ 2 sin θi cos θk}r̂ θ̂i + sin θi sin θk sin(φk − φi)r̂ φ̂i

] + μ0

4π

∑
k 
=i

|rik|−3 m
[
3r−1

ik {cos θi sin θk cos(φk − φi)

+ 2 sin θi cos θk}θ̂i r̂ − {sin θi sin θk cos(φk − φi) − 2 cos θi cos θk}θ̂i θ̂i + 3r−1
ik sin θk sin(φk − φi)φ̂i r̂

− sin θi{sin θi sin φk cos(φk − φi) − 2 cos θi cos θk}φ̂i φ̂i

]
(A3)
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and its off-diagonal components for j 
= i by

Ldip
ij 
=i = 3μ0

4π
|rij |−3r−1

ij m2
[−4r−1

ij {sin θi sin θj cos(φj − φi) − 2 cos θi cos θj }r̂ r̂ + {sin θi cos θj cos(φj − φi)+2 cos θi sin θj }r̂ θ̂j

− sin θi sin θj sin(φj − φi)r̂ φ̂j

] + μ0

4π
|rij |−3m

[−3r−1
ij {cos θi sin θj cos(φj − φi) + 2 sin θi cos θj }θ̂i r̂

+{cos θi cos θj cos(φj − φi) − 2 sin θi sin θj }θ̂i θ̂j − cos θi sin θj sin(φj − φi)θ̂i φ̂j

− 3r−1
ij sin θj sin(φj − φi)φ̂i r̂ + cos θj sin(φj − φi)φ̂i θ̂j + sin θi cos(φj − φi)φ̂i φ̂j

]
. (A4)

Here rij = rj − ri and r̂ denotes the unit vector in the r direction, i.e., along the chain axis. Likewise, θ̂i and φ̂i represent the unit
vectors in the θ and φ directions for the current orientation of the dipolar moment of the ith particle.

After straightforward calculation, the components of the operator containing the elastic part are obtained as

Lel
ij =

⎧⎪⎨
⎪⎩

k
∑

�∈δ�i
r̂ r̂ if i = j,

−kr̂ r̂ if j ∈ δ�i,

0 otherwise,

(A5)

where δ�i denotes the set of the (one or two) nearest neighbors of the ith particle.
In the same way, the first contribution from the orientational memory becomes

LD
ii = −2Dm−1

[{− sin2 θi + (
cos θi − cos θ

(0)
i

)
cos θi

}
θ̂i θ̂i + (

cos θi − cos θ
(0)
i

)
sin θi cos θiφ̂i φ̂i

]
(A6)

and

LD
ij 
=i = 0. (A7)

Finally, the diagonal components of the linearized operator resulting from the second part of the orientational memory are
calculated as

Lτ
ii = 2τ

∑
k∈δ�i

m−1(sin θi)
−1

[− cos θi sin(φk − φi)
{
cos(φk − φi) − cos

(
φ

(0)
k − φ

(0)
i

)}
θ̂i φ̂i − (sin θi)

−1 cos θi sin(φk − φi)

× {
cos(φk − φi) − cos

(
φ

(0)
k − φ

(0)
i

)}
φ̂i θ̂i − {− cos(φk − φi) cos

(
φ

(0)
k − φ

(0)
i

) + cos2(φk − φi) − sin2(φk − φi)
}
φ̂i φ̂i

]
.

(A8)

The corresponding off-diagonal components are given by

Lτ
ij∈δ�i

= 2τm−1(sin θi)
−1

{− cos(φj − φi) cos
(
φ

(0)
j − φ

(0)
i

) + cos2(φj − φi) − sin2(φj − φi)
}
φ̂i φ̂j (A9)

for pairs of nearest neighbors. Otherwise the off-diagonal components are zero,

Lτ
ij /∈�i

= 0, (A10)

with �i = δ�i + {i} in this notation.

2. Planar particle arrangement

Second, in the case of the two-dimensional plane, we assume that all dipole moments are aligned perpendicular to the plane.
Then, since the degrees of freedom for the dipolar orientations drop out, the vector yi reduces to two dimensions, i.e., yi ≡ (xi,yi).
Furthermore, the two terms of orientational memory characterized by the coefficients D and τ , vanish. As a result, the linearized
operator in Eq. (A1) above contains only two contributions resulting from the dipolar and from the elastic part of the energy E

in Eq. (1) of the main text:

Lij = Ldip
ij + Lel

ij . (A11)

The operator characterizing the dipole-dipole interactions is linearized to

Ldip
ii = 3μ0

4π

∑
k∈δ�i

r−7
ik m2

[{
5(xk − xi)

2 − r2
ik

}
x̂x̂ + {

5(yk − yi)
2 − r2

ik

}
ŷŷ + 5(xk − xi)(yk − yi)(x̂ŷ + ŷx̂)

]
(A12)

for the diagonal components and to

Ldip
ij 
=i = −3μ0

4π
r−7
ij m2[{5(xj − xi)

2 − r2
ij

}
x̂x̂ + {

5(yj − yi)
2 − r2

ij

}
ŷŷ + 5(xj − xi)(yj − yi)(x̂ŷ + ŷx̂)

]
(A13)

for the off-diagonal components.
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For the linearized operator resulting from the elastic contribution, the diagonal components read

Lel
ii = −k

∑
�∈δ�i

r−1
i�

[−{
Lr−2

i� (x� − xi)
2 + ri� − L

}
x̂x̂ − Lr−2

i� (x� − xi)(y� − yi)(x̂ŷ + ŷx̂) − {
Lr−2

i� (y� − yi)
2 + ri� − L

}
ŷŷ

]
.

(A14)

Its off-diagonal components are obtained as

Lel
ij∈δ�i

= −kr−1
ij

[{
Lr−2

ij (xj−xi)
2 + rij − L

}
x̂x̂ + Lr−2

ij (xj − xi)(yj − yi)(x̂ŷ + ŷx̂) + {
Lr−2

ij (yj − yi)
2 + rij − L

}
ŷŷ

]
(A15)

for nearest neighbors and otherwise as

Lel
ij /∈�i

= 0, (A16)

where again �i = δ�i + {i}.
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