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Abstract
Density functional theory of freezing is used to study the phase diagram of a binary mixture of
superparamagnetic colloidal particles in two dimensions. The particles interact via a purely
repulsive potential that scales as the inverse cube of the inter-particle separation.
This corresponds to a magnetic dipole interaction where the dipoles are induced by an external
magnetic field applied normal to the plane. The pair correlation functions needed as input
information in the density functional theory are calculated by the hypernetted chain integral
equation closure. Considering the freezing into a disordered triangular solid phase, a spindle
phase diagram is found for the susceptibility ratio 0.9 of the species, which changes to an
azeotrope at a ratio 0.8. A eutectic-like phase diagram with an intervening solid phase emerges
for the susceptibility ratio 0.7. The results are verifiable in real-space experiments on
superparamagnetic colloids in external magnetic fields.
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1. Introduction

Binary mixtures can exhibit rich equilibrium phase diagrams
including eutectic, azeotropic, and spindle shapes as a
function of composition, together with compound solids with
various compositions of the two species [1–6]. Therefore,
binary systems provide an ideal testbed for solidification
and vitrification processes, including homogeneous and
heterogeneous nucleation and crystal growth [7, 8]. For
one-component systems, on the other hand, the situation is
much simpler as there are typically only very few stable solid
structures.

Recent studies have used two spatial dimensions with
a repulsive dipole–dipole interaction between the particles.
This interaction is motivated from superparamagnetic colloidal
particles at a pending air-water interface in an external
magnetic field. The latter induces dipole moments in the
particles according to their magnetic susceptibility. These
superparamagnetic suspensions are very good realizations of a

classical 2D repulsive dipole–dipole system [9–14]. Recently,
for a one-component system, a density functional approach
was put forward to calculate the freezing transition [15, 16].
This density functional approach was made dynamical to
explore crystal nucleation and subsequent growth phenomena
at imposed nucleation clusters [17–19]. Two-component
dipolar systems can also be prepared and were studied
experimentally [20–25], however, the full parameter space
in equilibrium now also involves the composition and the
susceptibility ratio, which sets the relative interaction strength.
The zero-temperature phase diagram of the binary system
has been explored over a wide range of susceptibility ratios,
and a wealth of stable solid lattices were found [26]
(see also [27]).

Here, we generalize the density functional theory in terms
of a two-component dipolar system, using the binary fluid
pair structure as an input. The latter is obtained within the
hypernetted chain liquid integral theory [28]. We calculate the
equilibrium freezing phase diagram for finite temperature and
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a given fixed susceptibility ratio. Increasing the asymmetry,
the phase diagram shifts from a spindle-type towards an
azeotropic-type and, finally, to a eutectic-type. While this trend
is in general qualitatively agrees with results obtained for other
mixtures of repulsive particles in two and three dimensions, the
eutectic phase diagram obtained here has an unusual topology
involving an intervening solid phase. Moreover, the proposed
density functional can serve as a building block for future
dynamical studies of nucleation and growth, similar to [17–19]
that for the one-component system.

The paper is organized as follows: We describe our
model in detail in section 2 and in section 3, we discuss
the details of liquid integral equation theory. The density
functional theory employed to study the freezing transition
and the common tangent method is given in section 4. We
discuss the resulting phase diagrams in section 5 and provide
conclusions in section 6.

2. The model

We study the freezing in a two-component mixture of
a model 2D fluid containing superparamagnetic colloidal
particles aligned perpendicularly to the 2D-plane by an external
magnetic field. Each component is characterized by its partial
density ρi and susceptibility χi (i = 1, 2). We model the
particles as point-like but refer to the particles having larger
susceptibility as ‘big’ (species 1, A particle) and those with
smaller susceptibility as ‘small’; (species 2, B particle). The
particles are exposed to an external static magnetic field B
that induces a magnetic moment Mi = χiB (i = 1, 2) in the
particles. The strength of the induced dipole moment can be
conveniently tuned by the magnitude of the external magnetic
field. The effective interaction between particles through their
induced parallel dipole moments thus turns out to be purely
repulsive and soft. The three different interactions among
particles pairs are

uij (r) = µ0

4π

MiMj

r3
ij

; i, j = 1, 2, (2.1)

where µ0 is the vacuum permeability and rij is the interparticle
separations. We define the average interparticle distance
a = 1/

√
ρ with ρ = ρ1 + ρ2 as characteristic length scale of

the system and introduce the dimensionless coupling strengths
�ij , expressed as

�ij = µ0

4π

βχiχj B2

a3
; i, j = 1, 2, (2.2)

where β = 1/kBT , with kB being Boltzmann’s constant and
T as the temperature. Using the definition in equation (2.2)
and rescaling the inter-particle distances with the characteristic
average distance a, x = rij /a, we can write the interaction
(2.1) in the form

βuij (x) = �ij

x3
(2.3)

Therefore, the two-component system can be completely
characterized by three parameters:

1 the composition defined as γ1 = ρ1/ρ, or complementar-
ily as γ2 = 1 − γ1.

2 the susceptibility ratio m = χ2/χ1, which we call the
susceptibility asymmetry parameter,

3 one of the three interaction strengths �ij , which we chose
to be �11. Then, the two remaining coupling strength
parameters are �12 = m�11 and �22 = m2�11. �11 can
be expressed in terms of the dimensionless scaled density
ρ∗ and temperature t∗ as

�11 = (ρ∗)3/2

t∗
(2.4)

where ρ∗ = �2ρ and t∗ = kBT/ε. Here, � =
(µ0χ1/4π)1/3 is the natural length scale and ε = χ1B2

is the natural energy scale originating from the interaction
potential u11(r).

As previously mentioned, the zero temperature phase diagram
as a function of composition and susceptibility asymmetry
for the above system has been explored by Assoud et al
[26]. Using lattice sums, a rich variety of different crystalline
structures was reported to be stable, including AmBn structures
with triangular, square, rectangular, and rhombic lattices, with
a basis comprising various structures of A and B particles.
For smaller susceptibility asymmetry, stable intermediate AB2

and A2B crystals besides A and B triangular crystals were
found. Here, we consider pure triangular A, pure triangular B,
and substitutionally disordered triangular solid (DS) phases
as the candidate structures, and density functional theory is
used to study the freezing transitions. We restrict our study to
substitutionally disordered solids as density functional theory
is expected to be most accurate, and simulation data is missing
in this case.

3. Liquid integral equation theory

The pair structure in the mixture is fully determined by the
set of partial radial distribution functions gij (r) or the direct
correlation functions cij (r). Defining the total pair correlation
function hij (r) = gij (r) − 1, the former two quantities are
connected via the Ornstein–Zernike (OZ) relation [29]

hij (r12) = cij (r12) + ρ
∑

l

γl

∫
dr3cil(r13)hlj (r32) (3.1)

Since the OZ equation couples two unknown quantities, hij (r)

and cij (r), it must be supplemented with a closure relationship
between these functions. The HNC closure relation for the
mixture can be written as [29]

hij (x) = exp[−βuij (x) + hij (x) − cij (x)] − 1 (3.2)

The pair correlation functions are obtained by the self-
consistent solution of equations (3.1) and (3.2). To solve the
OZ equation, it is advisable to use its Fourier representation,
which is obtained by substituting the Fourier–Bessel transform
of h and c functions in equation (3.1). The Fourier–Bessel
transform of a general functionf (r) in 2D is defined as [30, 31]

f (k) = 2π

∫ ∞

0
drrf (r)Jn(kr) (3.3)
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Figure 1. Comparison of partial radial distribution functions g11(r), g12(r), and g22(r) for parameters (a) γ2 = 0.29, �11 = 4.9 and
(b) γ2 = 0.44, �11 = 22.6, at fixed susceptibility ratio m = 0.1, with the corresponding experimental and Monte–Carlo simulation results of
Assoud et al [32]. (c) shows the three partial structure factors versus wave number k as obtained from the HNC closure. The full lines are
for parameters of (a) and the dashed lines for the parameters of (b).

f (r) = 2π

(2π)2

∫ ∞

0
dkkf (k)Jn(kr) (3.4)

where Jn(kr) is the Bessel function of first kind of nth
order. Substituting h(r) and c(r) by their respective Fourier
transforms in equation (3.1), we get a set of algebraic equations
in Fourier space

hij (k) = cij (k) + ρ
∑

l

γlcil(k)hlj (k) (3.5)

Due to symmetry of the potentials, h12 = h21. Therefore,
the pair structure is fully determined by three correlation
functions h11, h12, and h22. These are calculated by solving
equations (3.5) and (3.2) iteratively at a grid of interaction
strength �11 for different compositions and susceptibility ratio
χ2/χ1. In figure 1, we compare our results of partial radial
distribution functions gij (r) with those of Assoud et al [32],
obtained by experiment and Monte–Carlo simulation. Results
are compared for a mixture of highly asymmetric particles with
ratio χ2/χ1 = 0.1, with (a) composition γ2 = 0.29, coupling
strength �11 = 4.9 and (b) γ2 = 0.44, �11 = 22.6. Though the
peak amplitude is slightly underestimated, the HNC integral
equation theory is in good agreement with experimental and
simulation results. Finally, figure 1 also shows the three partial

structure factors for the corresponding parameter combinations
as obtained from the HNC theory, which directly enter into the
density functional as discussed in the next section3.

4. Density functional theory and freezing transitions

Density functional theory (DFT) provides a general mean to
approximate the Helmholtz free energy using known structural
and thermodynamic information for the corresponding
uniform fluid. DFT can be extensively formulated and applied
for the study of freezing transitions in one-component as well
as two-component systems [33–42, 47, 49–51]. Here, we
apply the Ramakrishnan–Yussouff (RY) [52] approximation
to explore the phase behaviour of our system. The RY-
approximation requires a pair correlation of a bulk reference
fluid as an input and thereby, the results depend on the
approximation used to calculate these input quantities. In the
one-component case and for very long-ranged interaction in
two dimensions, it has indeed been shown that the results are
affected by quality of the structural input [53].

3 Here, the structure is slightly underestimated by the HNC closure used.
This is expected to cause a slight shift of the freezing line towards higher
temperatures but a quantitative estimate of this shift is difficult to achieve.
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The reduced Helmholtz free energy functional F[ρ] of an
inhomogeneous system is a functional of single particle density
distribution ρ(r) and is written for a two component system as

F [{ρν(r)}] = Fid [{ρν(r)}] + Fex[{ρν(r)}], ν = 1, 2

(4.1)

The ideal gas part is exactly known and written for a two-
component system as

βFid [{ρν(r)}] =
2∑

ν=1

∫
drρν(r){ln[ρν(r)λ2

ν] − 1} (4.2)

with β = 1/kBT and λν as the thermal de Broglie wavelength
of the νth component. The excess part that arises due to
interparticle interaction is related to the two-particle direct pair
correlation function of the fluid c

(2)
νν ′(|r2 − r1|) as

βF s
ex[{ρν(r)}] = βFf

ex[
{
ρ0

ν

}
] − 1

2

∑
νν ′

∫
dr1dr2

×�ρν(r1)�ρν ′(r2)c
(2)
νν ′(|r2 − r1|) (4.3)

Here, βFf
ex[

{
ρ0

ν

}
] is the excess free energy density of a

homogeneous fluid at uniform density distribution
{
ρ0

ν

}
and

�ρν(r) = ρν(r) − ρ0
ν .

The equilibrium one-particle density distribution {ρν}eq
of the solid phase is determined by minimizing the total
free energy functional F[{ρν(r)}] with respect to the
inhomogeneous one-particle density distribution {ρν}. We
choose our candidate solid to have a compositionally
disordered-triangular structure. We consider a single
underlying triangular Bravais lattice, with particles of
different species distributed irregularly over the sites with
probabilities equal to the respective concentrations. A simple
parameterization of solid density is

ρν(r) = γν

N∑
k=1

ϕν(r − Rk) (4.4)

where {Rk} denotes the set of Bravais lattice vectors of a
triangular lattice and ϕν is a function that describes the average
particle density around any lattice site occupied by species ν.
With the choice of ϕν to be a normalized Gaussian centered
around the lattice sites, the parameterization in real space takes
the form

ρν(r) = γν

(
α∗

ν

π

) N∑
k=1

exp[−α∗
ν |r − Rk|2]; ν = 1, 2

(4.5)

The scaled localization parameters α∗
1(= α1a

2) and
α∗

2(= α2a
2) determine the width of the Gaussians. Increasing

α∗
ν leads to enhanced particle localization around the lattice

sites. Fourier transform of equation (4.5) leads to the the form
of density profile in the reciprocal space as

ρν(r) = ρνs


1 +

∑
G �=0

µν
GeiG.r


 ; ν = 1, 2, (4.6)

where ρνs is the average density of the solid with respect to the
νth species, {G} is the set of reciprocal lattice vectors, and µν

G

are the dimensionless Fourier components equal to e−G2/4α∗
ν .

Substituting equations (4.5)–(4.6) suitably in equa-
tions (4.2) and (4.3) we obtain:
For low

{
α∗

ν

}

βF s
id

N
=

∑
ν


γν(ln λ − 1) + γν ln ρν +

γν

2

∑
G �=0

e− G2

2α∗
ν




(4.7)

For high
{
α∗

ν

}
,

βF s
id

N
=

∑
ν

[
γν(ln λ − 1) + γν ln ρν + γν(ln

α∗
ν

π
− 1)

]

(4.8)

For intermediate
{
α∗

ν

}
,

βF s
id

N
=

∑
ν

[
γν(ln λ − 1) + γν ln ρν + γν

(
ln

α∗
ν

π
− 1

)
+

γνα
∗
ν

π

×
∫

dr exp(−α∗
ν r2) ln

{
1 +

∑
k �=0

exp(−α∗
ν (R

2
k − 2r.Rk)

}]

(4.9)

For the homogeneous fluid,

βFf

id

N
=

∑
ν

[
γν(ln λ − 1) + γν ln ρν

]
(4.10)

and

βF s
ex

N
− βFf

ex

N
= −1

2
γ 2

A

∑
G

exp
(

− G2

2α∗
A

)
ĉAA(|G|)

−1

2
γ 2

B

∑
G

exp
(

− G2

2α∗
B

)
ĉBB(|G|)

−γAγB

∑
G

exp

(
−G2

{ 1

2α∗
A

+
1

2α∗
B

})
ĉAB(|G|)

(4.11)

Within RY density functional theory, the excess free energy
density βFf

ex/N of the fluid is obtained by integrating the
compressibility via

βFf
ex

N
=

∫ ρ

0

(
βP

ρ
− 1

)
dρ

ρ
(4.12)

where(
βP

ρ
− 1

)
= − 1

ρ

∑
νν ′

γνγν ′

∫ ρ

0
dρcνν ′(k = 0; ρ) (4.13)

The freezing transition is located by determining the
thermodynamic state characterized by the equality of the
pressure P , reduced temperature t∗, and chemical potentials
of solid (µi

s) and fluid (µi
f ). The step-by-step procedure to

determine the phase diagram is as follows: Equation (4.1)
is minimized with respect to the localization parameters α∗

1
and α∗

2 to get β(F s − Ff )/N at a grid of composition γB

and coupling strength �11. Using equation (2.4), the grid
of �11 is then transformed to a density and temperature
grid for each composition. We then fix the temperature
and integrate equation (4.13) to get the compressibility

4
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g
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t
*
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DS Fluid

Figure 2. Gibbs free energy versus composition with common
tangent construction for a susceptibility ratio 0.9 at a reduced
temperature t∗ = 1.5 and a prescribed pressure P = 8 × 103kBT/�2.
Here, g∗ is a shifted Gibbs free energy obtained by subtracting an
(irrelevant) linear relation ((∂g/∂γB) γB + constant) passing through
two points, one on gs curve and the other gf , in order to make the
double tangent more visible.

pressure at a grid of density and composition, which, when
substituted in equation (4.12), gives the excess free energy
contribution of the fluid. By adding the corresponding ideal
gas contribution, we get βFf /N and hence βF s/N . In the
case of a disordered solid for which the concentration γB

is a free variable, the appropriate thermodynamic potential
is the Gibbs free energy per particle g = F/N + P/ρ

with pressure P = ρ2 ∂(F/N)

∂ρ
. The potentials gs of solid

and gf of fluid are then calculated from the Helmholtz free
energy densities. By fixing the pressure at a preassigned
value, we interpolate gs and gf for all compositions. The
coexistence concentrations γf and γs are then determined by
the geometrical common tangent construction, which insures
the equality of the chemical potentials in the two phases.
The temperature versus composition phase diagram is then
obtained by repeating the procedure for various temperatures
at the same preassigned pressure.

5. Results

As a result, the phase diagram of the 2D dipolar mixture
depends sensitively on the susceptibility ratio χ2/χ1. In the
present study, we calculate the temperature versus composition
phase diagrams for a susceptibility ratio in the range of 0.7 and
1 at a fixed pressure P = 8 × 103kBT/�2.

5.1. 1 > χ2/χ1 > 0.85

In this region, the difference in the susceptibilities of the
components of the mixture is small. In figure 2, we plot a
representative g versus γB curve corresponding to fluid and
disordered solid phases at χ2/χ1 = 0.90. We observe that
both curves are concave everywhere and intersect only once at a
given temperature and pressure. The solid curve gs(t

∗, P , γB)

0 0.2 0.4 0.6 0.8 1
γΒ

1.3

1.4

1.5

1.6

t
*

DS Fluid

Figure 3. Spindle-type of phase diagram for a susceptibility ratio
χ2/χ1 = 0.9 and a prescribed pressure P = 8 × 103kBT/�2.

falls below gf (t∗, P , γB) towards the low γB side. The
difference in the coexistence compositions of fluid and solid is
smaller in the low composition and high composition regions
and diminishes at γB = 0 and 1, where triangular crystal of
component A and B are stable, respectively. Below t∗ =
1.26, the solid Gibbs free energy curve moves below the
fluid curve for the entire composition but does not intersect
it. The resulting phase diagrams corresponding to this range
of χ2/χ1 values have a spindle shape, as shown in figure 3
for χ2/χ1 = 0.90. Therefore, at these asymmetries, the
particles are miscible in all proportions in both phases, but the
concentration of small particles is always lower in the solid.
Note that the solidus and liquidus lines for asymmetry 0.90 are
very close to each other, but with clearly visible opening in
the middle. At higher susceptibility ratios the two lines shifts
closer to each other and hence a spindle looks like a line. A
tie line drawn, for example, at t∗ = 1.40 passes through the
disordered solid, coexistence region and the fluid phase as we
move along the composition axis.

5.2. χ2/χ1 = 0.8

At χ2/χ1 = 0.8, the g versus γB curves are again concave
at all temperatures. The solid curve intersects the fluid curve
only once up to a certain temperature, below which it intersects
twice for a given temperature and pressure. In the composition
range lying between the compositions corresponding to the
two intersection points, the gf (t∗, P , γB) curve drops below
gs(t

∗, P , γB). In figures 4(a)–(c), we show g versus γB curve,
and the common tangent constructed in the low composition
and high composition regions at temperature t∗ = 0.92.
We observe that a temperature t∗ � 0.91 exists at which
the two Gibbs free energy curves have a single point of
contact. Further lowering the temperature results in shifting
the solid curve below the fluid curve for the entire range of
compositions. The resulting phase diagram, shown in figure 5,
is an azeotrope, with a point corresponding to temperature

5
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Figure 4. Gibbs free energy versus composition with the corresponding common tangent construction for a susceptibility ratio 0.8 at a
reduced temperature of t∗ = 0.92 and a prescribed pressure P = 8 × 103kBT/�2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
γΒ

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

t
* 0.8 0.85 0.9 0.95 1

γΒ

0.91

0.92

0.93

0.94

t
*

DS Fluid

Figure 5. Azeotrope phase diagram for a susceptibility ratio
χ2/χ1 = 0.8 with a fluid-disordered solid coexistence line at a
reduced temperature of t∗ = 0.92 and a prescribed pressure
P = 8 × 103kBT/�2. The inset magnifies the regime of high γB .

t∗(t∗az) � 0.91, where the coexisting phases have identical
compositions γB � 0.80. The two components of the mixture
are still miscible in the solid phase but at low temperature,
the mixture is not ideal. Moving along a tie line drawn at
temperature, for example, t∗ = 0.93 passes through solid

phase, mixed phase, fluid phase, and then again to mixed phase
and, finally, to the solid phase in the high composition region.

5.3. χ2/χ1 = 0.7

On further increasing the size asymmetry of the two
components of the mixture to 0.7, we observe that, while
the fluid Gibbs free energy curve remain concave for the
entire range of compositions at all temperatures, the solid
curve is found to be concave, lying below the fluid curve
and intersecting it only once in the temperature range
1.53 < t∗ < 0.88. Below t∗ = 0.88, in the temperature range
0.88 < t∗ < 0.6 (see figures 6(a)–(c)), the solid free energy
curve becomes convex for the intermediate compositions,
signaling a phase separation into a low composition solid and a
high composition solid while intersecting the fluid curve twice,
a typical situation for a eutectic phase diagram. However,
on further lowering the temperature below 0.6, we observe a
narrow temperature range extending up to 0.57 in which the
two minima of solid shift completely to the left of the fluid
curve but free energies of the fluid and solid still intersect
twice (see figures 6(d)–(f )). This leads to a possibility of three
common tangents: (i) between the two minima of the solid on
the left of the fluid curve, (ii) between the second minimum
of solid and the fluid, and (iii) between fluid and the solid
curve on the high composition side. Therefore, in this region,
a disordered solid (e.g. DSI) coexists with another disordered
solid (e.g. DSII) in the low composition side, and the DSII
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Figure 6. Gibbs free energy versus composition with the common tangent construction for a susceptibility ratio 0.7 at a prescribed pressure
P = 8 × 103kBT/�2. Plots (a)–(c) correspond to t∗ = 0.7, (d)–(f ) correspond to t∗ = 0.595, and (g)–(i) correspond to t∗ = 0.56.
The inset in (d) shows the same curve on another scale.

coexists with the fluid for the intermediate compositions and
fluid coexist again with the solid (e.g. DSIII) in the high
composition side. The occurrence of an intervening solid DSII
of the same (hexagonal) structure is quite remarkable as this
does not occur for other simple pairwise interactions such as
hard disks. The intervening stable solid emerges at an almost
equimolar composition. Remarkably, such isostructural solid-
to-solid transitions also occur in one-component systems for
very short-ranged stepwise attractions [43, 44] or repulsions
[45, 46] due to competition of two length scales. However,

it is not clear whether the mechanism behind isostructural
coexistence is the same here.

For temperatures less than 0.57, the solid curve falls below
the fluid and does not intersect it (see figures 6(g)–(i)). We
notice the presence of an additional minimum towards high
composition side in the solid free energy curve, along with
the two minima corresponding to DSI and DSII. Therefore,
two common tangents can be drawn: (i) between I and II
minimum, giving coexistence compositions for DSI and DSII
and (ii) between the second and the third minimum, giving
coexistence compositions for DSII and DSIII. On further
lowering the temperature, the solid free energy data size
reduces, which leads initially to the disappearance of the third
minimum and then to the second minimum as well.

The resulting phase diagram is shown in figure 7. In the
temperature range t∗ � 0.6, the phase diagram seems to be
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t
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DS DS II DS III
I

Figure 7. Eutectic phase diagram for χ2/χ1 = 0.7 with the
intervening solid phase (DSII). The inset is a magnification close to
the eutectic point.

eutectic. A tie line drawn at t∗ = 0.70 takes us through solid,
solid–fluid coexistence region, fluid, fluid–solid coexistence
region, and then to the solid on the high composition side.
However, for temperature range 0.6 < t∗ � 0.57, moving
along a tie line, we pass through a complex phase sequence,
namely DSI, DSI-DSII coexistence region, DSII, DSII-fluid
coexistence region, fluid, fluid-DSIII coexistence region, and
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finally to the DSIII phase. For temperatures less than 0.57, the
intermediate fluid phase disappears.

6. Conclusions

In conclusion, we have proposed a Ramakrishnan–Yussouff-
like density functional for binary mixture, with dipolar
interactions in two spatial dimensions. The method of common
tangent construction is used to determine the phase diagram
of the system for fixed susceptibility ratios 0.9, 0.8, and 0.7
of the two species. We obtain a spindle phase diagram at
susceptibility ratio 0.9, which changes to an azeotrope at a
ratio of 0.8. For a susceptibility ratio of 0.7, a eutectic-like
phase diagram with an intervening solid was obtained. These
results are qualitatively similar to those obtained for 2D binary
hard-disk liquids [48] and 3D hard sphere mixtures [49, 50],
but the eutectic phase diagram has an interesting and unusual
intervening solid structure, which appears to be specific to the
soft repulsive interactions used in our model. These results
can, in principle, be confirmed by real-space experiments on
superparamagnetic colloidal particles [21] or by Monte–Carlo
computer simulations, see e.g. [54].

Future work should be focused on the dynamics of
crystallization for which dynamical density functional theory
was developed [55–57]. For a recent application to 2D binary
mixtures, see [58]. Thereby, our equilibrium functional can
be used to access the fascinating crystal nucleation and growth
of binary colloidal crystals from the melt. It further provides a
microscopic basis to numerically derive more efficient phase-
field-crystal models [59, 60] for mixtures. Another line of
future research concerns equilibrium density functional studies
of non-spherical particles [61] such as spherocylinders [62],
dumbbells [63], cubes [64, 65], and polyhedra [66] for which
the freezing behaviour of mixtures is hardly understood.
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[46] Denton A R and Löwen H 1997 J. Phys.: Condens. Matter

9 L1
[47] Xu H and Baus M 1990 J. Phys.: Condens. Matter 2 5885
[48] Zeng X C, Oxtoby D W and Rosenfeld Y 1991 Phys. Rev. A

43 2064
[49] Barrat J L, Baus M and Hansen J P 1986 Phys. Rev. Lett.

56 1063
[50] Warshavsky V B and Song X 2008 J. Chem. Phys. 129 034506
[51] Singh S P and Das S P 2007 J. Chem. Phys. 126 064507
[52] Ramakrishnan T V and Yussouff M 1979 Phys. Rev. B 19 2775

8

http://dx.doi.org/10.1103/PhysRevLett.68.3646
http://dx.doi.org/10.1006/jcis.1998.5954
http://dx.doi.org/10.1063/1.1872752
http://dx.doi.org/10.1080/09500830701408300
http://dx.doi.org/10.1016/j.colsurfa.2007.09.046
http://dx.doi.org/10.1080/00018730701822522
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1103/PhysRevLett.79.175
http://dx.doi.org/10.1038/35093077
http://dx.doi.org/10.1016/S1359-0294(99)00007-2
http://dx.doi.org/10.1140/epjst/e2013-02068-9
http://dx.doi.org/10.1140/epjst/e2013-02069-8
http://dx.doi.org/10.1140/epjst/e2013-02070-3
http://dx.doi.org/10.1209/epl/i2006-10140-7
http://dx.doi.org/10.1088/0953-8984/20/40/404217
http://dx.doi.org/10.1103/PhysRevLett.100.108302
http://dx.doi.org/10.1103/PhysRevE.79.051404
http://dx.doi.org/10.1103/PhysRevE.87.022306
http://dx.doi.org/10.1103/PhysRevLett.97.078301
http://dx.doi.org/10.1140/epje/i2007-10270-8
http://dx.doi.org/10.1103/PhysRevLett.102.238301
http://dx.doi.org/10.1209/epl/i2002-00458-0
http://dx.doi.org/10.1140/epje/e2005-00034-9
http://dx.doi.org/10.1209/0295-5075/88/66004
http://dx.doi.org/10.1209/0295-5075/80/48001
http://dx.doi.org/10.1039/b717205b
http://dx.doi.org/10.1088/0953-8984/18/45/007
http://dx.doi.org/10.1016/0021-9991(78)90107-9
http://dx.doi.org/10.1002/jcc.23446
http://dx.doi.org/10.1088/0953-8984/21/46/464114
http://dx.doi.org/10.1016/0370-1573(91)90097-6
http://dx.doi.org/10.1016/0370-1573(94)90017-5
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104650
http://dx.doi.org/10.1088/0953-8984/22/6/063102
http://dx.doi.org/10.1063/1.452439
http://dx.doi.org/10.1088/0022-3719/20/10/011
http://dx.doi.org/10.1063/1.456175
http://dx.doi.org/10.1103/PhysRevA.39.4701
http://dx.doi.org/10.1103/PhysRevA.42.7312
http://dx.doi.org/10.1103/PhysRevA.43.3161
http://dx.doi.org/10.1103/PhysRevLett.72.2211
http://dx.doi.org/10.1088/0953-8984/6/50/007
http://dx.doi.org/10.1088/0953-8984/9/2/006
http://dx.doi.org/10.1088/0953-8984/9/1/001
http://dx.doi.org/10.1088/0953-8984/2/26/026
http://dx.doi.org/10.1103/PhysRevA.43.2064
http://dx.doi.org/10.1103/PhysRevLett.56.1063
http://dx.doi.org/10.1063/1.2953329
http://dx.doi.org/10.1063/1.2431805
http://dx.doi.org/10.1103/PhysRevB.19.2775


J. Phys.: Condens. Matter 26 (2014) 465101 M Mukherjee et al

[53] Ballone P, Pastore G, Rovere M and Tosi M P 1985 J. Phys. C:
Solid State Phys. 18 4011

[54] Franzrahe K and Nielaba P 2009 Phys. Rev. E
79 051505

[55] Marconi U M B and Tarazona P 1999 J. Chem. Phys.
110 8032

[56] Archer A J and Evans R 2004 J. Chem. Phys. 121 4246
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