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Kiimmel ef al. Reply: In a Comment [1] on our Letter on
self-propelled asymmetric particles [2], Felderhof claims
that our theory based on Langevin equations would be
conceptually wrong. In this Reply we show that our theory
is appropriate, consistent, and physically justified.

The motion of a self-propelled particle (SPP) is force-
and torque-free if external forces and torques are absent.
Nevertheless, as stated in our Letter [2], effective forces and
torques [3—7] can be used together with the grand resistance
matrix (GRM) [8] to describe the self-propulsion of force-
and torque-free swimmers [9]. To prove this, we perform a
hydrodynamic calculation based on slender-body theory for
Stokes flow [10,11]. This approach has been applied
successfully to model, e.g., flagellar locomotion [12,13]
and avoids a general Faxén theorem for asymmetric
particles. A key assumption of slender-body theory is that
the width 2e of the arms of the L-shaped particle is much
smaller than the total arc length L = a + b, where a and b
are the arm lengths.

The centerline position of the slender particle is x(s) =
r—rg+ s for —b <5 <0 and x(s) =r—rg + st for
0 < s < a. Here, r is the center-of-mass position of the
particle in the laboratory frame of reference and rg =
(a*@; — b*ay)/(2L) is a vector in the particle’s frame—
defined by the unit vectors @, G, —such that r — ry is the
point where the two arms meet at right angles. The fluid
velocity on the particle surface is approximated by X + vg
with a prescribed slip velocity vy (s). According to the
leading-order slender-body approximation [10], the fluid
velocity is related to the local force per unit length f(s) on
the particle surface by x + vy =c(I +x' ® x')f with
¢ =log(L/e)/(4xn), the solvent viscosity #, the identity
matrix I, X’ = 0x/Js, and the dyadic product ®. The force
density f satisfies the integral constraints of vanishing net
force, ffb fds = 0, and vanishing net torque relative to the
center of mass, €, - [¢, (—rs+sx') x fds = [©, st - fds—
J§say -fds =0, with e, = (0,0, 1)7.

First, we consider a passive particle driven by an external
force F.,, which is constant in the particle’s frame, and
torque M.,,. For this case, we assume no-slip conditions for
the fluid on the entire particle surface. Then the integral
constraints with net force F.,, and torque M., give

HH<ﬁ|I : l." ﬁJ_ : Ix? ¢)T = (ﬁll ’ Fexv ﬁJ_ ! Fethext)T’ (1)

where
2a+b 0 —a*b/(2L)
H= % 0 a+2b  —ab*/(2L) (2)
—-a*b/(2L) —ab?/(2L) A

with A = [(8L% —3ab)(a® + b*) — 6L(a* + b*)]/(12L?)
is the GRM that depends on the particle shape [8,14].

In the self-propelled case, motivated by the slip flow
generated near the Au coating in the experiments, we set
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vy = —Vgi, along the arm of length b and no slip
(vq = 0) along the other arm. This results in

ﬂH(ﬁn ‘A - 1.',4’)T =(0,bVy/c, —abZVSI/(ZCL))T. (3)

We emphasize that the tensor ‘H in Eq. (3) is identical
to the GRM in Eq. (1). Formally, both equations are
exactly the same if G - Foy =0, 0, - Foiy = bV/c, and
M = —ab*Vy/(2cL). This shows that the motion of a
SPP with vg = —V4li, along the arm of length b is
identical to the motion of a passive particle driven by a
net external force F ., = Fli, and torque M, = [F with
the effective self-propulsion force F = bV /c and effective
lever arm [ = —ab/(2L). By transforming Eq. (3) from the
particle’s frame to the laboratory frame and introducing the
generalized diffusion tensor D = H~!/(Bn) [11], where
is the inverse effective thermal energy, one directly obtains
the noise-free version of the equations of motion (EOMs)
(1) in our Letter [2].

Clearly, for the same particle velocity, the flow and
pressure fields generated by the SPP and the externally
driven particle are different. However, the EOMs are the
same. Therefore, we can formally use external forces and
torques that move with the SPP to model its self-propelled
motion. In that sense, the concept of effective forces and
torques is justified, the application of the GRM is appro-
priate, and the EOMs in our Letter correctly describe the
dynamics of the SPP.
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