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The growth of quasicrystals, i.e., aperiodic structures with long-range order, seeded from the melt is
investigated using a dynamical phase field crystal model. Depending on the thermodynamic conditions,
two different growth modes are detected, namely defect-free growth of the stable quasicrystal and a mode
dominated by phasonic flips which are incorporated as local defects into the grown structure such that
random tilinglike ordering emerges. The latter growth mode is unique to quasicrystals and can be verified in
experiments on one-component mesoscopic systems.
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Quasicrystals are aperiodic structures that possess long
range positional and orientational order [1,2]. Since their
discovery by Shechtman [1], hundreds of quasicrystals
have been reported and confirmed. Most of them are
metallic alloys (see, e.g., [3,4]) but more recently they
have also been found in soft-matter systems that are made,
e.g., by amphiphilic molecules [5], supramolecular den-
dritic systems [6,7], or by star block copolymers [8,9]. Such
soft matter quasicrystals can provide scaffolds for photonic
materials [10] and serve as well-characterized mesoporous
matrices [11,12]. In general, quasicrystals occur either as
defect-free structures stabilized by energy [13–17] or as
locally disordered phases, leading to random tilinglike
structures, stabilized by entropy [18].
One of the key issues for quasicrystal formation is to

understand their growth mechanism out of an undercooled
melt. Unlike ordinary growth of periodic crystals where a
layer-by-layer mode is possible, quasicrystals lack any
strict sequential growth mode due to their aperiodicity
which renders their formation quite complex. Based on
atomistic simulations, it has been proposed that instead first
clusters are formed in the fluid which then assemble in the
growing solid-fluid interface [19] but the fundamentals and
details for quasicrystal growth are far from being under-
stood. In particular, the incorporation of defects into the
emerging structure during the growth process plays the
leading role to discriminate between grown defect-free and
random tilinglike quasicrystals.
In this letter we explore the growth behavior of quasi-

crystals using an appropriate dynamical phase field crystal
model with two incommensurate length scales which
exhibits stable defect-free quasicrystals in equilibrium.
Depending on the thermodynamic conditions (such as
undercooling and distance from the triple point), we find
two different growth regimes for quasicrystals. There is
either a defect-free growth into the stable quasicrystal or a
mode dominated by phasonic flips which are incorporated
as local defects into the grown structure such that a
metastable random tilinglike ordering emerges. The latter

growth mode is unique to quasicrystals and can be verified
in experiments on one component mesoscopic systems
which exhibit quasicrystalline order. Our findings do not
only provide a microscopic (i.e., particle-resolved) under-
standing of the growth processes on the scale of the particle
motion but can also be exploited to steer the emerging
quasicrystalline texture by the thermodynamic conditions.
Phase field crystal (PFC) models in general employ a

coarse-grained free-energy expansion with respect to a
scalar density field ψð~r; tÞ, which is related to the one-
particle density ρð~rÞ [20]. In a fluid phase, the density field
ψð~r; tÞ is constant, while crystal phases are described by
periodic or quasi-periodic modulations of ψð~r; tÞ. The PFC
formalism was introduced first in the framework of periodic
pattern formation as a Swift-Hohenberg free energy [21,22]
and was later derived from microscopic theories [23,24]. In
the original form, only one preferred length scale is
regarded in the free energy, which in two dimensions
allows for only two periodic solid phases consisting of
triangular order or stripes [25,26]. By adding a second
length scale, quasicrystalline structures can be found that
minimize the free energy [27,28]). Therefore this PFC
model describes one-component systems whose particles
interact according to a pair potential with at least two
lengths scales [27,29]. Quasicrystals were predicted in such
systems theoretically [30–34] and one-component soft
matter quasicrystals [5–9] are expected to occur due to
such pair interactions [29].
In our dynamical PFC model, the density field will

evolve towards a local minimum following conserved
dynamics [25], i.e.,

∂ψð~r; tÞ
∂t ¼ ∇2

�
δF½ψð~r; tÞ�
δψð~r; tÞ

�
; ð1Þ

where we employ an expansion of the free energy with two
length scales [28,35],
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We choose the long length scale l1 ¼ 2π=k1 such that
k1 ¼ 1 and the diffusion constant is set to one such that the
time is given in units of the time an individual particles
need to diffuse a length l1=π. The remaining parameters of
this model are the ratio of the length scales given by k2,
the mean density ψ̄, and ϵ, which can be interpreted as
the mean field temperature [25,26]. Quasicrystalline struc-
tures that minimize the free energy can be found if the
length scales are properly adjusted [27–30]. Here we
consider the cases of 12- and 10-fold symmetry by using
k2 ¼ 2 cosðπ=12Þ or k2 ¼ 2 cosðπ=5Þ, respectively [28,30].
In Figure 1(d) the equilibrium phase diagram is shown in

the plane spanned by the triple point distance ϵ and the
mean density ψ̄ for the case k2 ¼ 2 cosðπ=12Þ; i.e., the
length scales are chosen to support 12-fold quasicrystalline
order. Note that the diagram is symmetric with respect to
ψ̄ ¼ 0 and therefore we only plot negative values of ψ̄ .

Furthermore, for ϵ > 0 only a fluid phase occurs. The phase
diagram was constructed by comparing the free energies of
the fluid, a quasicrystal with 12-fold rotational symmetry,
triangular phases, and stripe phases. We find stable fluid
and quasicrystalline phases as well as triangular order,
whose lattice constant is given by the small length scale.
The phase transitions are of first order and we employ a
common tangent construction in order to obtained the
coexistence regions marked by gray color in Fig. 1(d).
At ψ̄ ¼ 0 and ϵ ¼ 0, there is a triple point where the

stable quasicrystalline phase with 12-fold rotational sym-
metry, triangular ordering, and the fluid phase meet.
Interestingly, the quasicrystalline phase looks different
depending on the distance ϵ from the triple point. For
small ϵ, we observe that every local symmetry center,
which in the following we will call flower in accordance
with [36], is surrounded by twelve density peaks of
approximately similar height [Fig. 1(a)]. However, for
large ϵ [Fig. 1(e)], the density peaks in a flower usually
have very different heights. Furthermore, in the structure
factor of a quasicrystal close to the triple point, the height of
the main Bragg peaks is significantly larger than that of the
side peaks [Fig. 1(b)] while for a quasicrystal far away from
the triple point side peaks are more pronounced [Fig. 1(f)].
Finally, we also analyzed the distribution of heights of local
maxima of the density field. Close to the triple point, we
find a power law distribution [Fig. 1(c)] which is in
agreement to what one expects from the sum of plane
waves or the pattern created by interfering laser beams (cf.
[37]). Far away from the triple point, the distribution of the
height of local maxima exhibits a minimum for maxima
with intermediate height [Fig. 1(g)] indicating that there are
mainly low or high peaks in the density field.
In Fig. 2 we present the growth behavior of a quasi-

crystal. Our calculations are started with a quasicrystalline
seed that is placed into a supercooled fluid surrounding and
prescribes the initial density field. The seeds (marked by
blue circles) are circular cutouts from the equilibrium
quasicrystal either around the global symmetry center
[Figs. 2(a),(d)] or at another position [Figs. 2(b),(e)]. For
clarity, the global symmetry center, which is the only point
in the quasicrystal with perfect rotational symmetry, is
marked by red circles.
For the parameters marked by the orange point in the

phase diagram of Fig. 1(d) close to the triple point, we
observe a very broad growth front that spans over more
than ten times the small length scale l1 [Figs. 2(a)–(c)]. We
checked different seed shapes and sizes (not shown) as well
as different seed positions [see, e.g., Fig. 2(a),(b)]. Below a
critical seed size, which encloses about 400 density
maxima, the system falls back towards the metastable
fluid. Conversely, above this critical seed size, there is
growth and the emerging structure does not depend on the
details of the seed. Even the global symmetry center is
reconstructed perfectly no matter where the growth process

FIG. 1 (color online). Equilibrium phase behavior determined
with the PFC model for k2 ¼ 2 cosðπ=12Þ. In the center (d) the
phase diagram with stable triangular, 12-fold quasicrystalline,
and fluid phases is shown depending on the reduced temperature
ϵ and the reduced average density ψ̄. Coexistence regions are
shaded in grey. The green line denotes the path considered in
Fig. 3(g). (a),(e) Quasicrystalline density fields with possible
tilings, (b),(f) the corresponding structure factors, and (c),(g) the
distributions of heights of local maxima of the density field
(a)–(c) close to the triple point for ϵ ¼ 0.25 and ψ̄ ¼ −0.314
[orange point in (d)] and (e)–(g) far away from the triple point for
ϵ ¼ 1.90 and ψ̄ ¼ −0.947 (red point). The red line in (c) is a
power law fit.
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is seeded [cf. 2(b)]. Therefore, interestingly, all the infor-
mation about the complete quasicrystal is encoded in the
seed for this case.
In contrast, the growth depicted in Figs. 2(d)–(g) for the

parameters indicated by the red point in Fig. 1(d), i.e., far
away from the triple point, leads to metastable configura-
tions that depend on size, position, and shape of the initial
seed [see, e.g., Figs. 2(d),(e)]. Furthermore, the growth
front does not propagate uniformly but changes between a
fast progression and almost stuck stages (see also movies in
the Supplemental Material [38]). The grown structures
possess a lot of local defects. For example, in Fig. 2(g) we
show a comparison of a tiling of the grown structure (red)
and the structure of the equilibrium quasicrystal (green).
The global symmetry center usually is not reconstructed
[see, e.g., Figs. 2(e)]. Note that though there are a lot of
local defects, we rarely observed global dislocations (using
the methods described in [39], see also Supplemental
Material [40]). Therefore the random tilinglike growth
mode differs significantly from the well-studied situation
in periodic crystals, where the growth especially in the
coexistence region might lead to structures with numerous
dislocations [41,42].
The width of the quasicrystal-fluid interface is about one

or two times l1 [Fig. 2(f)]. Furthermore, the interface is not
smooth laterally. The interface itself is mainly composed of
complete flowers; i.e., the growing quasicrystal completes
flowers even if at the respective position there should be no
flower in the perfect equilibrium quasicrystal. Therefore, the
grown structures possess a lot of local disorder and its overall
shape usually is no longer circular but strongly faceted.
The occurence of the different growth modes is probably

related to the role of the long length scale l1 during the

interface propagation. While close to the triple points both
length scales are equally important, far away from the triple
point l1 seems to dominate. For example, flowers, whose
diameter is 2l1, are completed precipitately, pronounced
density peaks that usually occur at a distance l1 can be
found more often then peaks of intermediate height [cf.
Fig. 1(g) in contrast to Fig. 1(c)], and the tiling of a grown
structure is dominated by squares and triangles with side
length l1 while rhombs are rare (see red tiling of the grown
structure in Fig. 1(g) in contrast to the green tiling of the
equilibrium quasicrystal).
In order to analyze the difference between the two

growth regimes in more detail and to find the crossover
between the two regimes, we compared the density field of
the equilibrium quasicrystal and the density field of a
structure grown from a seed containing 650 maxima around
the global symmetry center for parameters along the green
path shown in the phase diagram in Fig. 1(d). We
determined the places where the difference of the corre-
sponding density fields exceeds 0.2 of the maximum
amplitude of the equilibrium density field. Such pro-
nounced differences only occur far away from the triple
point and correspond to local defects. We find that the local
defects always occur in groups as depicted in Figs. 3(a)–(c).
Such correlated rearrangements are known as phasonic
excitations [32,43–46]. Phasons are additional degrees of
freedom in quasicrystals that do not cost any free energy
in the long wavelength limit [43,44] and that lead to
correlated particle trajectories [45]. Localized phasonic
excitations can also be depicted as local changes of a
tiling [see Figs. 3(d)–(f)] and correspond to so-called
phasonic flips (cf. [32,46]). The relative defect concen-
trations in structures grown at least by a radius 60l1 around

FIG. 2 (color online). Snapshots of structures during the growth. The plotted density is scaled and shifted such that its values in bulk
range from 1 for the maximum (depicted black) to 0 for the minimum (white). The blue circles mark the positions of the original seed,
which either is (a),(d) around the global symmetry center (red circle) or (b,e) at another position. The parameter sets correspond to the
orange and red points in Fig. 1(d), i.e., (a)–(c) close to the triple point leading to a perfect quasicrystal or (d)–(g) far away from the triple
point such that a random tilinglike phase develops. (c),(f) Enlargements of the growth fronts in (b),(e). (g) Comparison of the grown
structure (red tiling) and the perfect equilibrium quasicrystal (green tiling). Movies of (a), (b), (d), and (e) are available in the
Supplemental Material [38].

PRL 112, 255501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
27 JUNE 2014

255501-3



the perfect symmetry center are plotted in Fig. 3(g) as a
function of ϵ, where ψ̄ is chosen such that one is on the
green line depicted in Fig. 1(d). Up to ϵ ¼ 1.2 no defects
occurred in the circle where we analyzed the structures. For
ϵ ≥ 1.25 the number of defects increases almost exponen-
tially [a log-linear plot is presented in the inset of Fig. 3(g)]
until it approaches 1 for ϵ ≈ 1.9 where the grown configu-
ration has a completely different structure and counting of
distinct defects becomes difficult.
So far we have analyzed the growth of quasicrystals with

12-fold rotational symmetry. In Fig. 4 we demonstrate that
the same two growth regimes also occur for a quasicrystal
with 10-fold symmetry, where k2 ¼ 2 cosðπ=5Þwas chosen
in Eq. (2). Therefore, evidence is provided that in case of
quasicrystals with two incommensurate length scales the
reported growth mechanisms are independent from the
specific symmetry of the quasicrystal. Concerning quasi-
crystals with more than two incommensurate length scales,
we expect that it is harder to balance all length scales
during the growth process such that defect-free growth
will rarely occur. This might be an additional explanation
why quasicrystals with three or more incommensurate
length scales rarely occur in nature [5,48,49] and are only
observed as random tilinglike phases in simulations [34].

In conclusion, we presented a theory to describe the
growth of quasicrystals and discovered two different
growth regimes. While in one regime defect-free quasi-
crystals could grow, in the other regime phasonic flips were
built in due to a dominating long length scale such that the
final grown structures correspond to random tilinglike
phases. In order to obtain defect-free growth, there has
to be a balance of the growth in both length scales. For the
random tilinglike growth, the growth is dominated by the
long length scale. As a consequence, there is a tendency to
complete flowers at the interface, which might be related to
a cluster-driven growth (cf. [19]).
Our results can be used to achieve an improved control of

the growth of defect-free or random tilinglike quasicrystals
in simulations or within experimental systems, e.g., the
mesoscopic one-component quasicrystals mentioned in the
introduction. We want to point out that it is not necessary to
explore the whole phase behavior in order to determine the
growth regimes. The type of growth can also be identified
by analyzing the equilibrium structure (cf. Fig. 1). In the
regime with defect-free growth the Bragg peaks of the
structure factor are more pronounced than in the growth
regime where phasonic flips occur. Furthermore, the dis-
tribution of heights of the density maxima in the defect-free
growth regime is a power law, while in the growth regime
with defects this distribution possesses two maxima, one
denoting shallow maxima and one for the most pronounced
maxima. In the case of cluster quasicrystals, the density
distribution can be measured directly by determining the
distribution of cluster sizes [30]. In the case of other
quasicrystals, it can be deduced from the statistical prob-
ability density.

We thank A. Archer, K. Barkan, A. Mijailović, and
M. Sandbrink for helpful discussions. C. V. A. and H. L.

FIG. 3 (color online). (a)–(f) Examples of phasonic flips that
occur during growth for parameters far away from the triple point.
(a)–(c) Difference of the density field of the equilibrium quasi-
crystal and the density field of the grown structure. (d)–(f) The
corresponding tilings for the equilibrium (green) and the grown
structure (red). (g) Number of defects Nd divided by the total
number of analyzed particles Nt for structures grown along the
green line shown in 1(d). The inset shows the same plot in log-
linear representation. The orange and the red circle mark the
results for the parameters used in Fig. 2.

FIG. 4 (color online). Snapshots of the growth of a quasicrystal
with 10-fold symmetry. (a) Close to the triple point, for
ϵ ¼ 0.0685, a defect-free quasicrystal grows. (b) For ϵ ¼ 0.52
the growth front is sharper and the grown structure differs
from the equilibrium quasicrystal. Close to the growth front,
Archimedean-like tilings are observed that are periodic in one
direction and have been obtained for particles that are deposited
on quasicrystalline substrates [47]. The insets show comparisons
of the tilings corresponding to the equilibrium (green) and the
grown structures (red). Movies are included in the Supplemental
Material [38].
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