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The kinetic separation of repulsive active Brownian particles into a dense and a dilute phase is analyzed
using a systematic coarse-graining strategy. We derive an effective Cahn-Hilliard equation on large length
and time scales, which implies that the separation process can be mapped onto that of passive particles. A
lower density threshold for clustering is found, and using our approach we demonstrate that clustering first
proceeds via a hysteretic nucleation scenario and above a higher threshold changes into a spinodal-like
instability. Our results are in agreement with particle-resolved computer simulations and can be verified in
experiments of artificial or biological microswimmers.
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The collective behavior of living “active” matter has
recently attracted considerable interest from the statistical
physics community (for reviews, see Refs. [1,2]). Even if
the mutual interactions of the individual units are following
simple rules, complex spatiotemporal patterns can emerge.
Examples in nature occur on a wide range of scales from
flocks of birds [3] to bacterial turbulence [4]. A basic
physical model is obtained by describing the individual
entities as particles with internal degrees of freedom (in the
simplest case just an orientation) that consume energy
and are thus driven out of thermal equilibrium.
Consequently, shaken granular particles [5] and phoreti-
cally propelled colloidal particles [6–9] have been inves-
tigated in detail. Moreover, the observed collective
behavior might find applications in, e.g., the sorting [10]
and transport of cargo [11].
Here we are interested in the phase behavior of repulsive

particles below the freezing density. While in equilibrium
only one fluid phase exists, sufficiently dense suspensions
of repulsive self-propelled disks undergo an “active phase
separation”; i.e., particles aggregate into a dense, tran-
siently ordered cluster surrounded by a dilute gas phase.
This has been observed first [12,13] in computer simu-
lations of a minimal model [14–16]. Clustering has also
been reported in experiments using colloidal suspensions of
active Brownian particles, in which the particles are
phoretically propelled along their orientations due to the
catalytic decomposition of hydrogen peroxide on a plati-
num hemisphere [7], or due to light-activated hematite [8].
In these experiments, phoretic attractive forces play an
important role. A closer realization of ideally repulsive
particles is possible through the reversible local demixing
of a near-critical water-lutidine mixture [17]. Colloidal
particles propelled due to the ensuing local density gra-
dients show indeed the predicted phase separation [9].
While in passive suspensions phase separation occurs only
for sufficiently strong attractive forces, the microscopic

mechanism for repulsive active particles is due to self-
trapping: colliding particles block each other due to the
persistence of their orientation [9]. In sufficiently dense
suspensions, the “pressure” of the free, fast particles leads
to the growth of small clusters until phase separation is
reached. This generic dynamical instability due to a
density-dependent mobility has been first studied by
Tailleur and Cates for the run-and-tumble motion of
bacteria [18] and later also for active Brownian particles
[19]. At even higher densities, first steps have been taken to
study glassy dynamics [20,21] and crystallization [22,23].
Another interesting question is the interplay of the pro-
pulsion with attractive forces [24–26].
While the phase separation and nucleation in passive

suspensions has been studied extensively, an open funda-
mental question is whether the clustering of active
Brownian particles, which is an intrinsically nonequili-
brium system, can be mapped on the phase separation
dynamics of passive particles. In this Letter, we demon-
strate for a simple model system of Brownian particles that
a consistent mapping exists on coarse-grained length and
time scales. We find a formal analogy with the Cahn-
Hilliard equation, which implies that the phase separation
of active Brownian particles close to the dynamical
instability cannot be distinguished from the phase separa-
tion process of passive particles governed by attractive
forces. This allows us to translate established concepts to
the study of active systems and, moreover, implies that
statistical properties (growth exponent, scaling of clusters,
etc.) are unchanged in active systems. We comment that
recently additional terms in the dynamics of phase sepa-
ration have been studied [15,27], which are not derivable
from an effective free energy. Our crucial point here is that
simple, genuinely active systems do not generally need
these non-Hamiltonian terms in order to be described
correctly on the coarse-grained level. Moreover, we predict
by a weakly nonlinear stability analysis—and confirm our
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prediction through particle-resolved computer simulations
—that the nature of the separation process (spinodal
decomposition or hysteretic nucleationlike behavior)
depends on the propulsion speed along the instability line.
While it corresponds to a spinodal decomposition for small
speeds (high density), it changes to a hysteretic nucleation-
like behavior upon crossing a threshold. The actual
instability line predicted by our analysis is in good agree-
ment with the simulation data.
The minimal model for active Brownian particles

[12–16] that we study consists of N repulsive disks in
two dimensions, the motion of which is governed by

_rk ¼ −∇U þ v0ek þ ηk: (1)

Particles interact via the potential energy U, and ηk is the
Gaussian white noise describing the influence of the
solvent. In addition, particles are propelled with constant
speed v0 along their orientations ek, which undergo free
rotational diffusion with diffusion coefficient Dr and are,
therefore, uncorrelated. In an effort to connect these
microscopic equations of motion with the emerging
large-scale behavior of the suspension, we have recently
derived the effective hydrodynamic equations

∂tρ ¼ −∇ · ½vðρÞp −D∇ρ�; (2)

∂tp ¼ −
1

2
∇½vðρÞρ� þD∇2p −Drp; (3)

starting from the full N-body Smoluchowski equation for
the evolution of the joint probability distribution of all
particle positions and their orientations [14]. Here, D
denotes the long-time diffusion coefficient of the passive
suspension. Eqs. (2) and (3) have been derived under the
assumption of spatially slowly varying number density
ρðr; tÞ and orientational field pðr; tÞ. Instead of assuming a
phenomenological functional form for the effective speed
vðρÞ (see Refs. [12,28]), we have shown that for the
minimal model close to the instability line the linear
relation vðρÞ ¼ v0 − ρζ follows, where ζ quantifies the
force imbalance due to the self-trapping. This force
imbalance controls the effective pressure PðρÞ ¼ 1

2
vðρÞρ

appearing on the right-hand side of Eq. (3). Hence, in
contrast to the pressure in passive suspensions, dense but
sufficiently slow regions have a lower effective pressure
compared to dilute regions.
Before we continue, we simplify the equations through

choosing 1=Dr as the unit of time, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
D=Dr

p
as the unit

of length, and we normalize both fields by the average
density, ρ↦ρ̄ð1þ δρÞ and p↦ρ̄p. The equations then read

∂tδρ ¼ −α∇ · pþ∇2δρþ 4ξ∇ · ðpδρÞ; (4)

∂tp ¼ −β∇δρþ∇2p − pþ 4ξδρ∇δρ; (5)

where we have separated the nonlinear terms. The dimen-
sionless coefficients appearing here are defined as

ξ≡ ρ̄ζ

v�
; α≡ 4ðv0=v� − ξÞ; β≡ 2ðv0=v� − 2ξÞ

(6)

with characteristic speed v� ≡ 4
ffiffiffiffiffiffiffiffiffiffi
DDr

p
.

Dropping the nonlinear terms in Eqs. (4) and (5), it is
straightforward to investigate the linear stability of the
homogeneous solution δρ ¼ 0 and p ¼ 0. Indeed, depend-
ing on the values of the coefficients α and β, the homo-
geneous density profile might become instable. The
dispersion relation

σðqÞ ¼ −
1

2
− q2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αβq2

q
≈ −ð1þ αβÞq2 (7)

quantifies the growth rate of a perturbation with wave
vector q. On large scales (small q), the instability occurs
whenever 1þ αβ < 0. From the condition 1þ αβ ¼ 0, we
determine the value of the dimensionless force imbalance
coefficient

ξc ¼
3

4
ðvc=v�Þ −

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvc=v�Þ2 − 1

q
(8)

at the onset of the instability for a given critical speed vc
[14]. Clearly, v� is the smallest propulsion speed for which
the instability is possible, vc ≥ v�.
In the linear analysis, a small initial perturbation grows

unbounded. Of course, due to the nonlinear terms implying
a coupling to other modes, the amplitude of the perturba-
tion will saturate. We now aim to derive an equation of
motion that describes the evolution of an initial perturba-
tion for propulsion speeds v0 ¼ vcð1þ εÞ in the vicinity of
the linear stability limit [29]. The fastest growing wave
vector following Eq. (7) is qc ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαβÞ−1 − αβ

p
, which

dominates the initial stage of the developing instability.
Expanding α ¼ α0 þ εα1 þ � � � and β ¼ β0 þ εβ1 þ � � � we
find qc ∼

ffiffiffi
ε

p
with α0β0 ¼ −1. The growth rate of this mode

is σðqcÞ ≈ −εσ1q2c ∼ ε2 to lowest order, where we have
defined σ1 ≡ α0β1 þ α1β0.
We are interested in the large-scale behavior of the

suspension. As suggested by the scaling of critical wave
vector and growth rate, we rescale length with 1=

ffiffiffi
ε

p
and

time with 1=ε2, amounting to ∂t↦ε2∂t and ∇↦
ffiffiffi
ε

p ∇.
Matching powers suggests to expand

δρ ¼ εcþ ε2cð2Þ þ � � � ;
p ¼ ffiffiffi

ε
p ½εpð1Þ þ ε2pð2Þ þ � � ��:

(9)

To lowest order in ε, we find pð1Þ ¼ −β0∇c for the
orientational field leading to
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0 ¼ ð1þ α0β0Þ∇2c; (10)

which reproduces the result of the linear stability analysis
as required. Gathering terms of the next order leads to

∂tc ¼ −α0∇ · pð2Þ − α1∇ · pð1Þ þ∇2cð2Þ þ 4ξc∇ · ½cpð1Þ�;
0 ¼ −β0∇cð2Þ − β1∇cþ∇2pð1Þ − pð2Þ þ 4ξcc∇c:

Solving the second equation for pð2Þ and plugging the result
together with pð1Þ into the first equation, we first note that
the terms containing cð2Þ drop out. We, therefore, obtain an
evolution equation for the large-scale density fluctuations
cðr; tÞ alone,

∂tc ¼ σ1∇2c −∇4c − 2g∇ · ðc∇cÞ ¼ ∇2
δF
δc

; (11)

which is the central result of this Letter. Here, g≡ 2ξcðα0 þ
β0Þ ≥ 0 determines the strength of the nonlinear term,
where the equals sign holds for the smallest possible critical
speed vc ¼ v�.
We recognize Eq. (11) as the celebrated Cahn-Hilliard

equation [30] routinely employed to study phase separation
dynamics. It implies the existence of an effective free
energy functional

F½c� ¼
Z

dr

�
1

2
j∇cj2 þ fðcÞ

�
; (12)

with bulk free energy density fðcÞ ¼ 1
2
σ1c2 − 1

3
gc3. Two

things are noteworthy: (i) Following our analysis, no active
nonintegrable terms enter the interfacial free energy on this
coarse-grained level, cf. the analysis in Ref. [15]; (ii) the
expression for fðcÞ misses the customary c4 term stabiliz-
ing the high density phase at a finite value for the density
[31]. The reason is the following: we have derived a
systematic expansion holding for a coarsened description
on length scales much larger than the particle size. The
“damping” then arises from coupling to scales that are not
included in the expansion. However, the onset of the phase
separation, i.e., the destabilization of the homogeneous
phase, is already consistently described by the functional
form of Eq. (12) as we now demonstrate.
We have performed Brownian dynamics simulations of

Eq. (1) for N ¼ 4900 particles. Particles interact pairwisely
via the repulsive Weeks-Chandler-Andersen (WCA) poten-
tial, the parameters of which have been obtained previously
by matching experimental data [9]. For the simulations, we
fix the particle diameter a, the free diffusion coefficientD0,
and the rotational diffusion coefficient Dr ¼ 3D0=a2. We
vary the propulsion speed v0 and the area fraction
ϕ ¼ Nπa2=ð2LÞ2 ¼ ðπa2=4Þρ̄, where L is the edge length
of the simulation box employing periodic boundary con-
ditions. We measure the degree of clustering through the
average fraction P of particles that are part of the largest

cluster, cf. Refs. [9,14], which is determined from steady
state trajectories. We equilibrate the passive suspension at
the desired density, turn on v0, and let the system relax
into the steady state. The phase diagram is presented in
Fig. 1(a), where, for every simulated state point (ϕ, v0), the
order parameter P is shown.We use a simple threshold such
that for P ≥ 0.1 we consider the suspension to be in the
cluster phase as indicated by a closed symbol. We also
measure the bond orientational order to decide whether the
suspension has become a solid as indicated by triangles. In
qualitative agreement with other simulations [16,22], the
propulsion melts the solid before entering the cluster phase.
In Fig. 1(b), the bulk free energy density fðcÞ is sketched

for speeds v0 > vc slightly above the critical speed. The
form of fðcÞ implies that the homogeneous density profile
with c ¼ 0 becomes unstable. Following the double tan-
gent construction, phase separation into a dense phase with
cþ and a dilute gas phase with c− will occur. The
corresponding area fractions ϕ� ¼ ϕð1þ εc�Þ follow
from the expansion Eq. (9). From the simulations, we

c
c+

f(c)

c-

without
repulsion

with
repulsion

sp
ee

d

1

v1

2
v2

v1

area fraction

FIG. 1 (color online). (a) Instability diagram for repulsive self-
propelled disks as a function of area fraction ϕ and propulsion
speed v0. The symbol color indicates the fraction of particles that
are part of the largest cluster. The open symbols correspond to the
homogeneous suspension (P < 0.1) and closed squares to the
cluster phase. The vertical dotted line marks the freezing density
for the passive (v0 ¼ 0) suspension, closed triangles indicate
solid. The instability line is calculated from the analytical result
Eq. (13). A change from a continuous (solid) to a discontinuous
(dashed) transition at the density ϕ0 ≃ 0.32 occurs. (b) Illustration
of the double tangent construction. We also sketch the bulk free
energy density fðcÞ for σ1 < 0 (dashed line). (c) Derivation of
Eq. (13): Given a point (ϕ1, v1) on the instability line, at the
slightly larger speed v2 ¼ v1ð1þ εÞ phase separation into the
dense phase and the dilute gas phase with area fraction ϕ2 ¼ ϕ−
will occur.
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expect the area fraction ϕþ of the dense phase to be nearly
close packed.
In order to obtain a more tractable expression, suppose

we know a point (ϕ1, v1) on the instability line; see
Fig. 1(c). Increasing the speed to v2 ¼ v1ð1þ εÞ, phase
separation is predicted to occur with area fraction ϕ− ¼
ϕ1½1þ εc−ðϕ1; v1Þ� of the gas phase. Hence, with ϕ2 ¼ ϕ−
we have found a second point on the instability line.
Eliminating ε and taking the limit v2 → v1 leads to the
equation

dϕ
dv

¼ ϕ

v
c−ðϕ; vÞ; (13)

which is formally equivalent to the Clausius-Clapeyron
equation quantifying the slope along the instability line.
However, here the system is intrinsically driven out of
equilibrium.
We now estimate the instability line by numerically

solving Eq. (13). To this end, we approximate c−ðϕ; vÞ ≈
σ1=ð2gÞ by the inflection point of fðcÞ. Note that the c4

term is not required due to this approximation. While we
found an analytical expression for gðv0=v�Þ, the value of
the coefficient σ1 is not predicted within our coarse-grained
theory and we need to make another approximation for σ1
in order to compare with the numerical results. We
asymptotically expand σ1ðϕÞ ∝ ϕ∞ − ϕ around the point
σ1 ¼ 0, where the instability vanishes for v0 → ∞. This is
the simplest ansatz reflecting the two qualitative observa-
tions made in the simulations: (i) there is a lower density
ϕ∞ below which no spontaneous clustering occurs, and
(ii) at higher densities the growth speed of clusters is also
higher. We use this expression for σ1 throughout with ϕ∞ ¼
0.29 as a fit parameter. To obtain a continuous function
v�ðϕÞ, we fit the numerically determined long-time dif-
fusion coefficients DðϕÞ of the passive suspension with a
quadratic function, see Supplemental Material [32]. As
demonstrated in Fig. 1(a), despite these approximations we
obtain excellent agreement with the numerical data.
A striking observation is made when going to lower

densities ϕ∞ < ϕ≲ 0.32, where clustering requires larger
propulsion speeds. Here the order parameter P seems to
jump, which is in contrast to the continuous transition
observed at higher densities. To further investigate this
change, we have performed additional simulations, where
as the initial state we prepare a large ordered cluster
consisting of N=2 particles. We let the system relax for
a finite time (50 Brownian times) before we record the data.
Figure 2(a) shows that at larger densities indeed no
hysteresis is observed; i.e., irrespective of the initial state
(disordered or containing a cluster) the same steady state is
reached. This is quite different for ϕ ¼ 0.3, where a large
hysteresis loop can be found. Hence, we conclude that there
is a point (ϕ0 ≃ 0.32 with vc ≃ 66) on the instability line
where the transition changes its nature from continuous to
discontinuous. The continuous case is usually described as

“spinodal decomposition,” whereas the discontinuous
behavior of the order parameter agrees with a nucleation
scenario in which a sufficiently large critical nucleus has to
form in order for phase separation to proceed.
Quite remarkably, this change is already contained in the

mean-field description of the Cahn-Hilliard equation (see,
e.g., Ref. [33]). For a qualitative insight, let us discuss the
amplitude jaj of “roll” perturbations cðrÞ ¼ aeiq·r þ c.c.,
where for this purpose we complementarily consider the
stabilizing c4 term, see Supplemental Material [32]. For
σ1 < 0, the nontrivial solution for the amplitude reads

jaj ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ1=ðg2� − g2Þ

q
: (14)

This solution exists for g < g� with a threshold g� ∝ q
proportional to the wave vector q of the destabilizing
perturbation. In this case the bifurcation is supercritical and
thus indeed corresponds to a continuous growth of the
amplitude as we push the system deeper into the instability
region. When g reaches g�, this supercritical solution ceases
to exist. Rather the transition becomes subcritical; i.e., there
is a finite region where a stable spatially homogeneous
solution jaj ¼ 0 and a stable solution of nonzero amplitude
jaj ≠ 0 coexist and are separated by an intermediate
unstable solution. In Fig. 2(b), the bulk free energy density
fðcÞ is plotted for the different regimes, showing that for
g > g� it becomes nonconvex, which promotes a discon-
tinuous course of the transition.
In summary, starting from the effective hydrodynamic

equations obtained previously [14], we have derived an
equation of motion [Eq. (11)] for the large-scale density
fluctuations in a suspension of active Brownian particles

FIG. 2 (color online). (a) Hysteresis at low area fraction ϕ and
vanishing at higher values of ϕ. Shown is the mean fraction P of
particles in the largest cluster after the (metastable) steady state
has been reached for two initial conditions: starting from the
homogeneous disordered passive suspension (solid lines, open
symbols) and already containing an ordered cluster (dashed lines,
closed symbols). (b) Effective free energy density fðcÞ for σ1 > 0
containing an additional c4 term that stabilizes the high density
phase. The dashed line indicates g ¼ g�. For g > g�, the energy
density develops a nonconvex part indicating coexistence of
regions of two different particle densities, which promotes
hysteresis.
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close to the limit of linear stability. This evolution equation
is known from the study of phase separation dynamics in
passive systems as the Cahn-Hilliard equation. In particu-
lar, it implies an effective, although asymmetric, free energy
without “nonintegrable” terms, in spite of the genuine
activity of the system. Instead of performing the double
tangent construction explicitly, we have derived Eq. (13)
quantifying the slope of the phase boundary. We have
demonstrated excellent agreement with particle-resolved
Brownian dynamics simulations. Moreover, there is a
change of the transition from continuous to discontinuous,
which is also in agreement with the mean-field theory
presented here. The limits of such a mean-field description
and the role of finite size effects and transitions [34] remain
to be investigated in detail. Another open question is the
exponent for the scaling of the coarsening length of
domains. While the Cahn-Hilliard equation for a conserved
order parameter implies the exponent 1=3, computer
simulations of active Brownian particles in two dimensions
have reported somewhat lower exponents [13,15].
However, these simulations might still be in a transient
regime as is also speculated in Ref. [27]. Nevertheless, this
point will have to be resolved in the future and calls for
further experimental investigations.
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priority program 1726.

[1] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323
(2010).

[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liver-
pool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys.
85, 1143 (2013).

[3] A. Cavagna, Phys. Rep. 476, 51 (2009).
[4] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,

R. E. Goldstein, H. Löwen, and J. M. Yeomans, Proc. Natl.
Acad. Sci. U.S.A. 109, 14308 (2012).

[5] V. Narayan, S. Ramaswamy, and N. Menon, Science 317,
105 (2007).

[6] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet,
Phys. Rev. Lett. 105, 088304 (2010).

[7] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, and
L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).

[8] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and
P. M. Chaikin, Science 339, 936 (2013).

[9] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[10] M. Mijalkov and G. Volpe, Soft Matter 9, 6376 (2013).
[11] J. Palacci, S. Sacanna, A. Vatchinsky, P. M. Chaikin, and D.

J. Pine, J. Am. Chem. Soc. 135, 15978 (2013).
[12] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702

(2012).
[13] G. S. Redner, M. F. Hagan, and A. Baskaran, Phys. Rev.

Lett. 110, 055701 (2013).
[14] J. Bialké, H. Löwen, and T. Speck, Europhys. Lett. 103,

30008 (2013).
[15] J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo,

and M. E. Cates, Phys. Rev. Lett. 111, 145702 (2013).
[16] Y. Fily, S. Henkes, and M. C. Marchetti, Soft Matter 10,

2132 (2014).
[17] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C.

Bechinger, J. Phys. Condens. Matter 24, 284129 (2012).
[18] J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103

(2008).
[19] M. E. Cates and J. Tailleur, Europhys. Lett. 101, 20010

(2013).
[20] R. Ni, M. A. C. Stuart, and M. Dijkstra, Nat. Commun. 4,

2704 (2013).
[21] L. Berthier, arXiv:1307.0704.
[22] J. Bialké, T. Speck, and H. Löwen, Phys. Rev. Lett. 108,

168301 (2012).
[23] A. M. Menzel and H. Löwen, Phys. Rev. Lett. 110, 055702

(2013).
[24] J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M. E. Cates, D.

Marenduzzo, A. N. Morozov, and W. C. K. Poon, Proc.
Natl. Acad. Sci. U.S.A. 109, 4052 (2012).

[25] G. S. Redner, A. Baskaran, and M. F. Hagan, Phys. Rev. E
88, 012305 (2013).

[26] B. M. Mognetti, A. Šarić, S. Angioletti-Uberti, A. Cacciuto,
C. Valeriani, and D. Frenkel, Phys. Rev. Lett. 111, 245702
(2013).

[27] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D.
Marenduzzo, and M. E. Cates, arXiv:1311.1256.

[28] M. E. Cates, D. Marenduzzo, I. Pagonabarraga, and J.
Tailleur, Proc. Natl. Acad. Sci. U.S.A. 107, 11715 (2010).

[29] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[30] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258
(1958).

[31] As expected, the c4 term is systematically obtained close to
the critical point vc ¼ v�, where length scales “move
together.”

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.218304 for a more
detailed discussion.

[33] A. Novick-Cohen, J. Stat. Phys. 38, 707 (1985).
[34] K. Binder, B. J. Block, P. Virnau, and A. Tröster, Am. J.

Phys. 80, 1099 (2012).

PRL 112, 218304 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

218304-5

http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1016/j.physrep.2009.03.003
http://dx.doi.org/10.1073/pnas.1202032109
http://dx.doi.org/10.1073/pnas.1202032109
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1103/PhysRevLett.108.268303
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1103/PhysRevLett.110.238301
http://dx.doi.org/10.1039/c3sm27923e
http://dx.doi.org/10.1021/ja406090s
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.110.055701
http://dx.doi.org/10.1103/PhysRevLett.110.055701
http://dx.doi.org/10.1209/0295-5075/103/30008
http://dx.doi.org/10.1209/0295-5075/103/30008
http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1039/c3sm52469h
http://dx.doi.org/10.1039/c3sm52469h
http://dx.doi.org/10.1088/0953-8984/24/28/284129
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1209/0295-5075/101/20010
http://dx.doi.org/10.1209/0295-5075/101/20010
http://dx.doi.org/10.1038/ncomms3704
http://dx.doi.org/10.1038/ncomms3704
http://arXiv.org/abs/1307.0704
http://dx.doi.org/10.1103/PhysRevLett.108.168301
http://dx.doi.org/10.1103/PhysRevLett.108.168301
http://dx.doi.org/10.1103/PhysRevLett.110.055702
http://dx.doi.org/10.1103/PhysRevLett.110.055702
http://dx.doi.org/10.1073/pnas.1116334109
http://dx.doi.org/10.1073/pnas.1116334109
http://dx.doi.org/10.1103/PhysRevE.88.012305
http://dx.doi.org/10.1103/PhysRevE.88.012305
http://dx.doi.org/10.1103/PhysRevLett.111.245702
http://dx.doi.org/10.1103/PhysRevLett.111.245702
http://arXiv.org/abs/1311.1256
http://dx.doi.org/10.1073/pnas.1001994107
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1063/1.1744102
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.218304
http://dx.doi.org/10.1007/BF01010486
http://dx.doi.org/10.1119/1.4754020
http://dx.doi.org/10.1119/1.4754020

