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The ionic composition and pair correlations in fluid phases of realistically salt-free charged col-
loidal sphere suspensions are calculated in the primitive model. We obtain the number densities of
all ionic species in suspension, including low-molecular weight microions, and colloidal macroions
with acidic surface groups, from a self-consistent solution of a coupled physicochemical set of non-
linear algebraic equations and non-mean-field liquid integral equations. Here, we study suspensions
of colloidal spheres with sulfonate or silanol surface groups, suspended in demineralized water that
is saturated with carbon dioxide under standard atmosphere. The only input required for our theoret-
ical scheme are the acidic dissociation constants pKa, and effective sphere diameters of all involved
ions. Our method allows for an ab initio calculation of colloidal bare and effective charges, at high
numerical efficiency. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869338]

I. INTRODUCTION

Predicting the structural correlations in suspensions of
charged colloidal particles without any fitting parameters still
represents a formidable challenge of statistical physics. This
is mainly due to two reasons: first, the Coulomb interactions
are long-ranged and there are nontrivial correlations between
the colloidal macroions and between the microions which re-
quire an extension of standard mean-field theories of linear
screening.1–3 Second, the (bare) charge of the colloidal par-
ticles in suspension is not known a priori, but underlies the
chemical charge regulation process, with the dissociation de-
gree of ionizable colloidal surface groups depending on the
amount of added electrolyte ions and on the colloidal con-
centration. The resulting colloidal bare charge largely differs
from the titration charge, i.e., the maximal possible charge
for a colloidal particle with fully dissociated acidic surface
groups.4, 5

In addition, presence of microions with non-mean-field
like distributions in narrow diffusive layers about the colloidal
particle’s surfaces6–13 causes that the effective electrostatic in-
teraction is further reduced. For instance, in a one component
macroion fluid (OMF) model, where the microion degrees of
freedom are integrated out,14 it is an effective colloidal charge
that dictates the pair-correlations among colloidal particles.
Typically, the colloidal (effective) charge is treated as a fit
parameter. An example is the fitting of a Debye-Hückel po-
tential to the far-field numerical nonlinear Poisson-Boltzmann
solution.15 The so-determined type of effective charge is also
known as renormalized charge. In experimental analysis, an
effective charge is commonly used in describing colloidal
static structure factors or radial distribution functions.16–25

Also the phase behavior26 and the elastic properties in the
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solid state5, 27 can be interpreted in terms of a Debye-Hückel
potential, based on a fitted effective charge, and, further-
more, colloidal effective charges determine the suspension’s
electro-kinetic properties.4, 28, 29 Conductivity measurements,
in particular, access the number of uncondensed, freely mov-
ing counterions.30, 31 Although the various effective charges,
probed by these different experiments, are conceptually dif-
ferent from each other, the ratio of their numerical values
seems to be correlated.29, 31, 32 The chemical and experimen-
tal boundary conditions for charged sphere suspensions can
be varied over a wide range,33 allowing for large variations in
the colloidal charge numbers. In a self-consistent parameter-
free approach, the colloidal bare and effective charges in an
aqueous solvent should be predicted based on the chemical
equilibrium conditions of dissociated surface ionic groups and
bulk ions.34

Nonlinear screening theories,35, 36 computer simulations
of the primitive model (PM),37–41 and liquid integral equation
theory of strongly coupled Coulomb systems13, 42, 43 are rou-
tinely used to treat the ionic correlations, but the second as-
pect of bare charge variability has often been ignored in these
approaches.

Monte Carlo44–49 or Molecular Dynamics50, 51 computer
simulations with an explicit account for charged surface
groups are computationally very expensive, especially when
the size- and charge disparity between macroions and mi-
croions is large. This renders the development of computa-
tionally more efficient methods desirable.52 For a recent re-
view on surface charge regulation in biomolecular solutions,
we refer to Ref. 53.

Behrens, Borkovec, and Grier have solved the prob-
lem of charge regulation of two electrolyte-immersed sur-
faces, with Poisson-Boltzmann microion distributions54–57

and, recently, the conductivity of charged, electrolyte-filled
fluidic nanochannels have been investigated in a comparable

0021-9606/2014/140(12)/124904/12/$30.00 © 2014 AIP Publishing LLC140, 124904-1
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mean-field-level study.58 Coupled surface and bulk chemistry
in colloidal suspensions have also been considered in a mean-
field-like approach59–63 which takes account of macroion cor-
relations only within (revised versions of) the minimalistic
cell model.15 This was used to predict electrokinetic prop-
erties of aqueous suspensions. An account of water self-
dissociation and carbon dioxide based contaminations yielded
an improved agreement with experimental data in these stud-
ies on the mean-field level.

In this paper, we tackle both problems – the non-
mean-field correlations in ionic colloidal suspensions and
the chemical regulation of the colloidal charge – simulta-
neously, in a self-consistent semi-analytical approach based
on liquid integral equations. Thereby, ionic correlations be-
yond the linear screening theory level are incorporated in a
good approximation. At the same time, the liquid integral
equation solution provides a coupling between the chemi-
cal association-dissociation balances of acidic groups on the
colloidal sphere’s surfaces, and the bulk concentrations of
all ionic species. The key idea, illustrated schematically in
Fig. 1, is that liquid integral equations predict the excess
chemical potentials of all ionic species, which then enter
into the chemical association-dissociation balance of colloidal
acidic surface groups. The degree of surface-group dissoci-
ation is directly proportional to the colloidal bare charge,
which, in turn, influences the overall (bulk) ionic composi-
tion and the pair correlations among all ion species in the
liquid integral equation system. The so-obtained implicit set
of physicochemical equations is numerically self-consistently
solved, yielding results that include colloidal bare and effec-
tive charges, and the suspension’s pH-value.

Note that the major difficulty in tackling the coupled
equation set lies in the numerical solution of the involved liq-
uid integral equations. When all ion species are treated on
equal footing in the so-called primitive model, as done in
the present work, very large asymmetries between the (ef-
fective) hard-core diameters and charge numbers of macro-
and microions must be resolved. These asymmetries pose
a formidable challenge for the numerical stability and effi-
ciency of solution methods for liquid integral equations. Solv-

FIG. 1. Schematic diagram of the coupled physicochemical problem. Chem-
ical association-dissociation balances in bulk suspension and at the colloidal
particle’s surfaces couple to the electrostatic and statistical-mechanical prob-
lems of variable colloidal bare charge and particle pair-correlations described
in the liquid integral equation approach. Relations between the four sub-
problems, that are taken account of in the present work, are indicated by ar-
rows. A closed graph of subproblems is obtained that can be self-consistently
solved.

ing the equations that occur in the present study within rea-
sonable program execution times has been rendered possible
only recently, with the advent of a numerical solution method
by part of the present authors.13 This method is based on ear-
lier work by different groups,64–68 the key ideas of which have
been generalized and combined in a versatile way.

This paper is organized as follows: In Sec. II, we
explicate our theoretical scheme, including association-
dissociation balances between all relevant reactive species
in Sec. II A, constraints on the number concentrations in
Sec. II B, ion pair-correlations and activities in Sec. II C and
Appendix A, the effective charge number of colloidal spheres
in Sec. II D, and the self-consistent solution of the coupled
physicochemical equation set in Sec. II E and Appendix B.
Results predicted by our theoretical scheme are presented in
Sec. III, beginning with a discussion of macro- and microion
pair-correlation functions in Sec. III A, and macroion bare
and effective charges as well as the suspension’s pH-value in
Sec. III B. In Secs. IV and V, we mention possible future con-
tinuations and extensions of the present work, and give our
concluding remarks.

II. THEORETICAL SCHEME

In the following, we investigate aqueous suspensions of
monodisperse colloidal spheres in thermodynamic equilib-
rium. Each colloidal sphere carries a mean (time-averaged)
electric charge of magnitude Ze, where Z is the colloidal bare
charge number, and e denotes the proton elementary charge.
In the model description applied here, colloidal spheres ac-
quire their electric charge solely by the dissociation of acidic
surface groups that are covalently bound to the sphere sur-
faces. We have limited our studies to two types of col-
loidal spheres, with either strongly or weakly acidic surface
groups. The first type represents spheres that are covered
with strongly acidic sulfonate (R–O–SO3H) surface groups.
Such particles have been synthesized and used in various ex-
perimental studies of phase behavior, equilibrium and non-
equilibrium properties.24, 31, 69 The second type represents
spheres covered with weakly acidic silanol (SiOH) surface
groups, such as the experimentally frequently used colloidal
silica particles.18, 20, 21, 26, 70 Weakly acidic surface groups al-
low for a considerable variation of the colloidal charge by
altering the suspension parameters. Both kinds of surface
groups are monovalent acids. As a consequence, we have
0 ≥ Z ≥ −N.

We denote the number concentration of particles of
species i by [i], and all number concentrations in this paper
are given in units of M = 1 mol/l. The (bulk) number
concentration [i] is defined as the total number of particles
of species i, divided by the total system volume. In the PM
description applied here, spherical colloidal macroions as
well as monovalently charged microions are approximated
as non-overlapping hard spheres with pairwise additive hard-
core diameters. The methods presented in this paper could in
principle be applied to suspensions including multivalent low-
molecular-weight microions, where effective charge inversion
of colloidal spheres has been observed.71–80 However, for the
sake of simplicity we limit ourselves here to suspensions with
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monovalent microions. Throughout our analysis, we assume
the approximate microion effective sphere diameters

σH3O+ = σOH− = 0.9 nm (1)

and

σHCO−
3

= 1.1 nm, (2)

reminiscent of ions dressed with one hydration layer of H2O
molecules. All results presented here are for colloidal spheres
with hard core diameter

σCol = 100 nm. (3)

A. Association-dissociation balances

In Fig. 2, the chemical formulas of the seven reactive
species of interest are given, including water (H2O), carbon
dioxide (CO2), bicarbonate (HCO−

3 ), hydronium (H3O+), hy-
droxide (OH−), and colloidal surface groups with (SgH) or
without (Sg−) an attached proton. For the systems studied
in the following, SgH either stands for one sulfonate (R–O–
SO3H) or one silanol (SiOH) group. The species in Fig. 2
are grouped by three ellipses, each surrounding the reactants
of one of the three fundamental association-dissociation bal-
ances of the system, which are

CO2 + 2H2O
pK

CO2
a� H3O+ + HCO−

3 , (4)

2H2O
pK
� H3O+ + OH−, (5)

and

SgH + H2O
pK

SgH
a� H3O+ + Sg−. (6)

Here, pK
SgH
a and pKCO2

a are the acid dissociation constants
of the surface groups and of carbon dioxide, respectively, and
pK is the water self-dissociation constant. Note that Eq. (4)
is short-hand notation for the combined two reactions CO2

+ H2O � H2CO3 and H2CO3 + H2O � HCO−
3

+ H3O+, proceeding via the intermediate species carbonic
acid (H2CO3). Carbonic acid molecules are electrically neu-
tral, and therefore do not influence the PM ion pair-correlation
functions, discussed further down in Subsection II C. Also,

FIG. 2. All relevant chemically reactive species in suspension. Here, SgH
stands for one acidic colloidal surface group (sulfonate or silanol in the cases
studied here), and Sg− is one deprotonated surface group. Reactants of each
of the three association-dissociation balances in Eqs. (4)–(6) are surrounded
by one individual ellipse.

H2CO3 molecules do not directly participate in either of the
two reactions in Eqs. (5) and (6). It is thus unnecessary to in-
clude carbonic acid molecules explicitly into our description.

The CO2 dissociation constant pKCO2
a quantifies the

equilibrium thermodynamic activity ratio81, 82

aHCO−
3
aH3O+

aCO2

= KCO2
a = 10−pK

CO2
a M (7)

for the reaction in Eq. (4). In Eq. (7) and further down this
text, the thermodynamic activity, ai, of species i is defined
according to the convention

βμi = ln
(
ai�

3
i

) = ln
(
[i]γi�

3
i

) = βμexc
i + βμid

i , (8)

where β = 1/(kBT) with Boltzmann constant kB and absolute
temperature T, and where μi denotes the chemical potential
of species i. The latter can be written as the sum of the ex-
cess chemical potential μexc

i = ln(γi)/β and the ideal chemi-
cal potential μid

i = ln([i]�3
i )/β. In Eq. (8), γi = ai/[i] is the

activity coefficient, and �i is the thermal de Broglie wave-
length, which is of no relevance in the following. Employing
the conventions in Eq. (8) implies that the reference state of
substance i is an ideal gas at number density [i], with chemical
potential μid

i .
In the following, we approximate γi = 1 for all electri-

cally neutral species i. Then, Eq. (7) can be re-written as

[HCO−
3 ] × [H3O+]

[CO2]
= KCO2

a

γHCO−
3
γH3O+

, (9)

and the analogous equation

[OH−] × [H3O+]

[H2O]
= K

γOH−γH3O+
(10)

quantifies the equilibrium state of the water self-dissociation
reaction in Eq. (5), with K = 10−pKM.

The equilibrium state of the acidic surface group dissoci-
ation reaction in Eq. (6) is characterized by

aH3O+aSg−

aSgH
= KSgH

a = 10−pK
SgH
a M. (11)

Realizing that pH = − log10(aH3O+ ), [Sg−] = |Z|[Col], and
[SgH] = (N − |Z|)[Col], Eq. (11) can be converted into the
Henderson-Hasselbalch equation

log10

( |Z|/N
1 − |Z|/N

)
= pH − pKSgH

a − log10(γSg−), (12)

quantifying the chemical regulation of Z.
Links between the three Eqs. (9), (10), and (12) are pro-

vided by the hydronium ion concentration, [H3O+], and also
by the four activity coefficients γH3O+ , γOH− , γHCO−

3
, and γSg− ,

each of which depends on the charge and concentration of
all ionic species in suspension. In the self-consistent PM so-
lution scheme used here, the intricate relations between the
γ i’s, [i]’s, and Z are resolved within the HNC approximation
(cf. Sec. II C).
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All results presented in the following have been obtained
using the (acid) dissociation constants

pK = 15.74, (13)

pKCO2
a = 6.5, (14)

pKSiOH
a = 4.0, (15)

and

pKR-O-SO3H
a = 1.5, (16)

for water, carbon dioxide, silanol, and sulfonate dissociation,
respectively. Values in Eqs. (15) and (16) were chosen as typ-
ical representative cases of a weak and a strong acid.

B. Concentration constraints

Without further constraints, the three Eqs. (9), (10), and
(12), containing five number concentrations, four different
activity coefficients, and the unknown charge number Z, do
not possess an unambiguous solution. In the following, we
construct a closed set of equations with a unique solution
by identifying the relevant concentration constraints, and by
providing PM-HNC expressions for the activity coefficients.
We begin by identifying the known and unknown quantities,
listed in Table I.

In the left column of Table I, the relevant known in-
put parameters are listed, beginning with the number, N, of
dissociable surface groups per colloidal sphere. This quan-
tity is assumed to be known since, in typical experiments,
it can be accurately determined by titration.30, 83, 84 Likewise,
the number concentration of colloidal spheres, [Col], is as-
sumed to be known since it is an experimentally rather well-
controlled quantity. It can either be measured directly,5, 26, 85

or it can be calculated, e.g., on basis of a colloidal form-
factor measurement, the colloidal sphere mass density, and
the colloidal mass fraction.24 In presenting our results for dif-
ferent values of [Col] in Sec. III, we use the colloidal volume
fraction

φ = π

6
σ 3

Col[Col], (17)

TABLE I. The known input parameters of our suspension model, and the ba-
sic quantities that need to be determined for an unambiguous solution. [Col]
is the number concentration of colloidal spheres, each carrying N surface
groups, |Z| of which are dissociated in equilibrium. Further explanations are
given in Subsection II B.

Known Unknown Unknown

N Z γSg−

[Col] [OH−] γOH−

[H2O] ≡ 54.2 M [H3O+] γH3O+

[CO2] ≡ 1.52 × 10−5 M [HCO−
3 ] γHCO−

3

as a control parameter, since φ is more intuitively interpreted
than the quantity [Col]. In Eq. (17), φ is the fraction of the
total suspension volume that is occupied by colloidal spheres.

Since water molecules are the overwhelming majority
species, it is a good approximation to assume a constant
[H2O] = 54.2 M, which corresponds to the number concen-
tration of pure water. This concentration is many orders of
magnitude higher than that of any other species in the self-
consistent solutions reported in Sec. III.

As regards carbon dioxide, we assume a concentration
of [CO2] = 1.52 × 10−5 M, which corresponds to CO2-
saturated, salt-free water under an atmosphere with a CO2 par-
tial pressure of 3.9 × 10−4 atm.86, 87 Note here again that γCO2

is equal to one in our approximate description. It is therefore
consistent to prescribe the number concentration of CO2.

In addition to fixing [H2O] and [CO2], a constraint arises
from requiring global electroneutrality of the suspension,
which can be written as

Z[Col] + [H3O+] − [OH−] − [HCO−
3 ] = 0. (18)

The global electroneutrality constraint in Eq. (18), combined
with Eqs. (9) and (10), gives the quadratic equation

[H3O+]2 − Z[Col][H3O+] = KCO2
a [CO2]

γHCO−
3
γH3O+

+ K[H2O]

γOH−γH3O+
,

(19)
with a unique physical (positive) solution for [H3O+].

At this point we have collected the four Eqs. (9), (10),
(12), and (19). In combination with the HNC scheme solution,
from which the ion activity coefficients are obtained, these
equations are sufficient to determine all eight unknowns listed
in the right column of Table I.

C. HNC scheme

We employ the liquid integral equation formalism to
compute the pair-correlations among all ionic species in sus-
pension, based on the multicomponent Ornstein-Zernike (OZ)
equations88

hi,j (r) = ci,j (r) +
∑

k

[k]
∫

d3r ′ci,k(r ′)hk,j (r − r ′), (20)

which are valid for a homogeneous and isotropic, three-
dimensional fluid mixture. In Eq. (20), the ci, j(r) and hi, j(r)
= gi, j(r) − 1 are the partial direct and total correlation func-
tions, respectively, between ions of species i and j.

Here, we solve the coupled OZ equations for a system of
five ionic species: Number one to four are the species H3O+,
HCO−

3 , OH−, and Col, the latter denoting entire colloidal
spheres that carry a charge of Ze each. The fifth ionic species
is identified by the lower index “dilCol” in the following, and
represents an ultradilute fluid of colloidal spheres with diam-
eter σCol and with a charge of (Z − 1)e. Species dilCol is in-
troduced merely as a bookkeeping device, necessary for the
determination of the surface group excess chemical potential
μexc

Sg− , as explicated in Appendix A. The number concentration
[dilCol] is selected several orders of magnitude smaller than
[Col]. Hence, species dilCol exerts a negligible influence on
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the mutual pair-correlation functions between the four species
H3O+, HCO−

3 , OH−, and Col.
To obtain a closed set of integral equations, Eq. (20) is

combined with the approximate HNC closure relation88, 89

gi,j (r) = exp{−ui,j (r) + hi,j (r) − ci,j (r)}, (21)

in which the ui, j(r) are the dimensionless pair-potentials of
direct interaction between ions,

ui,j (r) =
{∞ for r < σi,j ,

LBZiZj

r for r > σi,j ,
(22)

invoking the solvent-characteristic Bjerrum length LB

= e2/(εkBT) in Gaussian units and the pairwise additive hard
core diameters σ i, j = (σ i + σ j)/2. In all calculations with
results presented here, we have used LB = 0.701 nm, corre-
sponding to water at room temperature. Assuming pair poten-
tials of the kind of Eq. (22) for the microion and macroion
species, amounts to an approximate treatment of the ion pair-
interactions within the PM.

The PM description neglects short-ranged van der Waals
attraction, as well as changes in water polarizability which can
play a role at high surface potential.90 Furthermore, it is as-
sumed that the charge of a colloidal sphere is homogeneously
smeared out over the sphere surface. Our model thus neglects
all effects arising from charge patchiness,50 a topic that has
recently received much interest in studies based on the nonlin-
ear and anisotropic Poisson-Boltzmann equation.91–93 Surface
charge patchiness could in principle be included into our de-
scription, if the OZ Eq. (20) were replaced by a reference in-
teraction site model88, 94–96 description, or by anisotropic OZ
equations.97 However, the strong charge- and diameter asym-
metry between macroions and microions renders already the
solution of Eqs. (20)–(22) into a tedious task.13, 98

We solve Eqs. (20)–(22) by means of our recently devel-
oped method,13 which is specially well-suited for application
to highly asymmetric electrolytes, in an arbitrary number of
spatial dimensions. For details of the solution method, which
relies on a generalized version of Ng’s fixed point iteration
scheme64 and a Fourier-Bessel transform on computational
grids with logarithmic spacing,65, 67, 68 we refer to our com-
prehensive description in Ref. 13. Note here that essentially
the same numerical method has been used already in the year
1980 by Rossky and Friedman.66 Our algorithm constitutes
an optimization and generalization of this earlier work, and
the first application of the method to highly asymmetric elec-
trolytes.

Once that Eqs. (20)–(22) have been solved for a given set
of [k]’s and a given Z, the correlation functions are used as in-
put for computing the thermodynamic activity coefficients of
all ionic species by means of the Hansen-Vieillefosse-Belloni
equation88, 99–103

ln(γi) = βμexc
i =

∑
j

[j ]
∫

d3r
1

2
hij (r)[hij (r) − cij (r)]

−
∑

j

[j ]
∫

d3r[cij (r) + uij (r)]. (23)

The surface group excess chemical potential, ln(γSg−), which
is the essential quantity in colloidal surface charge regulation
described by Eq. (12), is obtained within the PM as the right-
hand-side of Eq. (A5). It is taken as the sum of the colloidal
sphere Coulomb self-energy change, caused by the dissoci-
ation of one surface group, plus the difference between the
excess chemical potentials of colloidal spheres with charges
(Z − 1)e and Ze.

A brief discussion is in place here, regarding the accuracy
of Eq. (23), which is the HNC approximation of an exact ex-
pression that has been derived by Kjellander and Sarman104

and Lee105 (see also Ref. 106). In Refs. 105 and 107, it has
been shown and discussed that Eq. (23) generally provides
a very poor approximation for the excess chemical poten-
tial of particles with a hard core. Since we are indeed con-
cerned with particles that exhibit hard-core plus Coulomb
interactions, the applicability of Eq. (23) may therefore be
questioned. However, our method for calculating the salient
surface group excess chemical potential is based on the dif-
ference μexc

dilCol − μexc
Col between excess chemical potentials of

colloidal spheres that differ in their electric charges, but not
in their hard core diameters. As we have checked, the inac-
curate hard-core contributions (i.e., the contributions to the
integrals in Eq. (23) for 0 < |r| < σCol, HCO−

3
) are practically

identical for both species Col and dilCol, and therefore cancel
out nearly perfectly when the difference is taken. The remain-
ing non-overlap parts of the integrals in Eq. (23) are quite
accurate due to the very rapid decay of the (neglected) bridge
function at non-overlap distances of particles with Coulomb
interactions.

In addition to the surface group excess chemical
potential, the hydronium ion excess chemical potential
ln(γH3O+) enters into the charge regulation Eq. (12), via pH

= − log10(γH3O+ [H3O+]). In computing ln(γH3O+ ), the inac-
curate hard-core contributions to the integrals in Eq. (23) play
no significant role either, due to two reasons: First, the num-
ber concentration [Col] is orders of magnitude smaller than
[H3O+] in all examples studied here, such that the summands
with j = Col play no important role for i = H3O+. Second, as
we have numerically tested, the remaining relevant microion–
microion contributions to the sums in Eq. (23) are totally
dominated by the electrostatic (non-overlap) parts of the in-
tegrals, due to the strong electrostatic interactions among
microions.

In a future extension of the present work, the HNC
closure may be replaced by a thermodynamically partially
consistent closure relation. Here, a specially suitable candi-
date is the closure that has been proposed by Bomont and
Bretonnet,108 and that has been supplemented by an expres-
sion for the excess chemical potential,107, 109 similar in form
to Eq. (23), but significantly less suffering from an inaccu-
rate hard-core contribution. Bomont and Bretonnet’s108 clo-
sure is especially well suited for application to a restricted
PM of electrolytes containing microions only, or for elec-
trolytes containing rather small polyions, e.g., charged glob-
ular proteins.23 Note, however, that the application of a ther-
modynamically self-consistent closure to a PM with strong
charge- and size-asymmetries is somewhat hampered by the
fact that the number of correlation functions raises more

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.99.64.185 On: Thu, 27 Mar 2014 14:29:30



124904-6 Heinen, Palberg, and Löwen J. Chem. Phys. 140, 124904 (2014)

quickly than the number of consistency criteria when the
number of species is increased.110 Therefore, keeping in mind
the slight inaccuracy of Eq. (23), we resort to the simpler
HNC scheme in the present work.

D. Colloidal effective charge

In the analysis of experiment results, and in the con-
struction of theoretical schemes for colloidal dynamics, one
is often interested in a mesoscopic description of reduced
complexity, where the microion’s degrees of freedom have
been integrated out. In such an OMF description, the colloidal
spheres remain as the only species whose correlations are ex-
plicitly resolved, and the hard-sphere Coulomb pair-potential
among macroions, uCol, Col(r), must be replaced by an effec-
tive, state-dependent macroion pair potential ueff

Col, Col(r) that
takes implicit account of the presence of microions.

Having solved the coupled PM-HNC Eqs. (20)–(22) for
all ionic species, an effective macroion pair potential can be
extracted via an inversion of the HNC relation.13, 111 In a very
similar way, HNC inversion has been used to extract effective
macroion potentials from digital video microscopy data.112

The effective macroion potential from HNC inversion can be
mapped to the electrostatic repulsive part,

uDLVO
Col, Col(r) = LB

(
Zeffe

κaCol

1 + κaCol

)2
e−κr

r
, r > σCol, Col

(24)
of the Derjaguin-Landau-Verwey-Overbeek (DLVO) pair
potential between two finite-sized macroions in an elec-
trolyte with microion correlations treated in Debye-Hückel
approximation.14 For the chemical composition of suspen-
sions studied here, the square of the inverse exponential
screening length κ in Eq. (24) is given by

κ2 = 4πLB

(
[Col]|Zeff| + 2[HCO−

3 ] + 2[OH−]
)
. (25)

In case of a dilute suspension of weakly charged macroions
with |LBZ/σCol, Col| � 1, the potential in Eq. (24) accurately
represents the effective macroion pair potential with Zeff = Z.
In suspensions where |LBZ/σCol, Col| � 1, the potential in
Eq. (24) remains to be a good approximation of ueff

Col, Col(r)
at sufficiently large macroion separation distances, but the ef-
fective charge number, Zeff, satisfying |Zeff| ≤ |Z|, can con-
siderably differ from the bare charge Z.6–12, 15, 113–123

We determine Zeff in the following by fitting uDLVO
Col, Col(r) to

ueff
Col, Col(r) at large particle separations. Here, Zeff is used as

the only tunable fit parameter. The effective charge Zeff can
be regarded as the overall charge of a colloidal sphere and
that part of its surrounding double layer in which the Debye-
Hückel approximation of microion distributions break down.

We note here that our description of the electric double
layer is similar, but not equal to the so-called “Basic Stern
Model” or “Zeroth-order Stern Model.”124, 125 Like these vari-
ants of the Stern model, our PM description takes account
of the finite size of microions in using the pairwise addi-
tive ion hard-core diameters σ i, j. However, going beyond the
Stern model, our description also takes account of non-mean-

field (PM-HNC) correlations between all ion species, regard-
less of the ion separation distance. The Stern model, in con-
trast, assumes mean-field (Poisson-Boltzmann) microion dis-
tributions in the diffusive (non-condensed) part of the double
layer, in the same fashion as the historically preceding Gouy-
Chapman model.

E. Self-consistent solution

We solve the set of Eqs. (9), (10), (12), and (19)–(23) for
the eight unknown quantities in Table I, by the iterative algo-
rithm described in Appendix B. This algorithm seeks a fixed
point solution of the coupled set of equations by stepping re-
peatedly through the loop of subproblems that is schemati-
cally depicted in Fig. 1.

III. RESULTS

A. Ion pair-correlations and pH value

As a first result, Fig. 3 features the PM-HNC solutions
for the partial rdf’s gi, j(r) between the four ion species Col,
H3O+, HCO−

3 , and OH−, in two different colloidal suspen-
sions, corresponding to the two panels of the figure. The
partial rdf’s between the ultradilute colloidal sphere species
“dilCol” and other species are indistinguishable from the
corresponding functions for species “Col,” on the scale of
Fig. 3, and are therefore not shown. Results in the top
panel of Fig. 3 are for a suspension of colloidal spheres
that carry N = 5000 silanol surface groups. In the self-
consistent solution of the physicochemical problem, only 4%
of the silanol surface groups are dissociated under these
conditions, which results in a colloidal bare charge of Z
= −212. Due to the strong electrostatic repulsion and the rel-
atively high colloidal volume fraction of φ = 5%, the pair
correlations between colloidal spheres in this suspension are
rather strong, as characterized by a macroion–macroion rdf
principal maximum of gCol, Col(r ≈ 6aCol) = 2.06 (black solid
curve in the upper panel of Fig. 3). The concentration of pos-
itive hydronium ions close to the negatively charged colloidal
sphere’s surfaces is 3.3 times higher than the suspension-
averaged hydronium ion concentration, as indicated by the
contact value gCol, H3O+ (σCol, H3O+ ) ≈ 3.3 (red solid curve in
the top panel of Fig. 3).

The lower panel of Fig. 3 features the partial rdf’s for
a dilute suspension, at a colloidal volume fraction of φ

= 10−5. Here, each colloidal sphere carries N = 230 sul-
fonate surface groups. Due to the small value of the sur-
face group acidic dissociation constant, pKR–O–SO3H

a = 1.5,
the self-consistent solution of the physicochemical set of
equations predicts that 98% of the sulfonate groups are
dissociated here, resulting in a colloidal bare charge of Z
= −225. Attraction of diffusing hydronium counterions to-
wards the colloidal sphere’s surfaces is strong, as signaled
by the contact value, gCol, H3O+(σCol, H3O+ ) = 11.4, of the
macroion–counterion rdf (red solid curve in the lower panel of
Fig. 3). Noting that the low-density (mean-field) approx-
imation gCol, H3O+(σCol, H3O+) ≈ exp{−βuCol, H3O+ (σCol, H3O+ )}
= 22.7 predicts a contact value that is two times too large, we
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FIG. 3. The PM-HNC partial rdf’s gi, j(r) between the four ion species Col,
H3O+, HCO−

3 , and OH− (as indicated in the legend), for two different col-
loidal suspensions. Top panel: Suspension at φ = 5% colloidal volume frac-
tion, with N = 5000 silanol surface groups per colloidal sphere, and a re-
sulting colloidal bare charge of Z = −212. Bottom panel: Suspension at φ

= 10−5, with N = 230 sulfonate surface groups per colloidal sphere, and a
resulting colloidal bare charge of Z = −225. The horizontal (logarithmic)
and vertical (linear) axes ranges are equal in both panels. In the lower panel,
gCol, H3O+ (r) (solid red curve) exceeds the vertical axis range. The principal
maximum of this function is 11.4.

conclude that the non-mean-field character of microion dis-
tributions is a strong effect that must not be neglected under
these conditions.

In Fig. 4, we display the pH-values of different colloidal
suspensions, as functions of the number, N, of acidic surface
groups per colloidal sphere. Red solid curves are for colloidal
spheres with silanol surface groups, and black dashed curves
are for colloidal spheres that carry the more strongly acidic
sulfonate surface groups. Results for three different colloidal
volume fractions, φ = 10−5, 0.01, and 0.05 are shown in
Fig. 4. At the lowest volume fraction, φ = 10−5, the pH-value
is practically independent of N. The reason is that the amount
of hydronium ions which are released by the colloidal spheres
into suspension is negligible, compared to the number of hy-
dronium ions created in bulk suspension in the two reactions
in Eqs. (4) and (5). The resulting value pH = 5.65 is a reason-
able value for demineralized water that is saturated with CO2

10
1

10
2

10
3

10
4

N

4.5

5

5.5

pH

φ = 10
-5

φ = 0.01

φ = 0.05

FIG. 4. Suspension pH-values as functions of the number of acidic surface
groups, N, per colloidal sphere. Red solid curves are for weakly acidic silanol
surface groups, and black dashed curves are for the more strongly acidic sul-
fonate surface groups. Results for three colloidal sphere volume fractions, φ

= 10−5, 0.01, and 0.05 are shown, as indicated in the figure.

under standard atmosphere. As the colloidal volume fraction
is increased to φ = 0.01 and 0.05, surface-released hydro-
nium ions lead to appreciable drops in the pH-value. For col-
loids with sulfonate surface groups, the pH-value drops more
rapidly (as a function of N or φ) than in case of the weakly
acidic silanol groups.

B. Colloidal bare and effective charges

In Fig. 5, we plot the absolute values of Z (black thick
curves) and Zeff (red thin curves), as functions of the surface
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FIG. 5. The absolute values of the colloidal bare charge, Z (thick black
curves), and the colloidal effective charge, Zeff (thin red curves) are plotted
as functions of the number, N, of acidic surface groups per colloidal sphere.
The six rightmost curves (grouped by the blue ellipse) are for colloidal par-
ticles with weakly acidic silanol surface groups, and the left group of curves
(nearly perfectly overlapping in the main panel with logarithmic horizontal
axis) are for the more strongly acidic sulfonate surface groups. The inset mag-
nifies the details of the sulfonate group results on a linear-linear scale. Re-
sults for three different colloidal volume fractions φ are shown: Solid curves
are for φ = 10−5, dotted curves for φ = 0.01, and dashed-dotted curves for
φ = 0.05.
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group number, N. Once again, the three volume fractions φ

= 10−5, 0.01, and 0.05 are considered. Solid curves in Fig. 5
are for φ = 10−5, dotted curves are for φ = 0.01, and dashed-
dotted curves are for φ = 0.05. The six rightmost curves in
Fig. 5 (grouped by a blue ellipse) represent results for col-
loidal spheres with silanol surface groups. The six curves on
the left side, corresponding to sulfonate surface groups, are
nearly overlapping on the logarithmic-linear scale of the main
panel. The end regions of these curves at N � 230 are mag-
nified in the inset, on a linear-linear scale. As the number,
N, of surface groups increases, the colloidal bare and effec-
tive charges also increase monotonically. In case of sulfonate
surface groups, Z(N) and Zeff(N ) rise more quickly than in
case of silanol surface groups. Nearly all sulfonate groups
are dissociated for all probed suspension parameters, result-
ing in |Z| ≈ N. Dissociation of the more weakly acidic silanol
groups is considerably weaker, and becomes significantly and
increasingly suppressed at high values of N, where the func-
tions |Z|(N) increase only logarithmically.

The ratio Zeff/Z of colloidal effective and bare charge
decreases as a function of N, which is due to an increasing
number of microions with non-Debye-Hückel like distribu-
tions. In the suspension with φ = 0.01 and N = 2750 silanol
groups per colloidal sphere, only 8% of the surface groups
are dissociated in equilibrium, resulting in Z = −224, and
nonlinear screening leads to a further diminished value of the
effective charge of Zeff = −199.

The value of |Z| decreases monotonically when φ is
raised. This is due to two reasons: First, the pH-value, en-
tering the charge regulation Eq. (12), drops with increasing φ,
starting from its CO2-buffer controlled limit 5.65 (cf. Fig. 4
and Ref. 47). Second, increasing φ causes increasing number
densities of microions that interact electrostatically with the
acidic surface groups, thereby increasing the excess chemi-
cal potential ln(γSg− ). Both of these contributions are gener-
ally important, reaching similar magnitudes for the φ = 0.05
silanol surface group system at high values of N.

Note that for a fixed value of Z, Fig. 5 exposes a non-
monotonic dependence of Zeff on φ: In case of silanol sur-
face groups and |Z| = 205, for example, we find |Zeff| = 198
at φ = 10−5, |Zeff| = 192 at φ = 0.01, and |Zeff| = 200
at φ = 0.05, i.e., an initially decreasing |Zeff|(φ) which
then increases. The same effect is also observed in case of
sulfonate surface groups (see here the inset of Fig. 5). In
fact, also mean-field effective charge calculations show such
behavior.83, 119 The observed nonmonotonicity in |Zeff|(φ) can
be understood as follows: In the infinite dilution limit, the en-
tropic gain for counterions diffusing in the bulk beats the gain
in electrostatic binding energy near the colloidal surfaces.
Hence, all counterions diffuse away from the colloidal sphere
surfaces, and |Zeff| is (nearly) equal to |Z| for φ → 0. When φ

is increased, the expected non-Debye-Hückel like distribution
of microions about the colloidal surfaces sets in, resulting in
a decrease of |Zeff|. When φ is further increased, global elec-
troneutrality demands that the microion number densities in
bulk solvent (i.e., far away from the colloidal sphere’s sur-
faces) continue to increase, and the result can be a reduc-
ing electrostatic energy penalty for a counterion that diffuses
from a colloidal surface into the bulk. In the bulk, the coun-

terion itself experiences now an appreciable screening of its
electric field, caused by the presence of the many other mi-
croions. A counterion with a very strongly screened electric
field will ultimately behave like an uncharged hard sphere and
will not condense onto the colloidal surface at all. Therefore,
at high φ, |Zeff|/|Z| can rise again. cf. here, the similar effect
that has been found in simulations of protein solution at high
salinity.126

We finally note, that the present approach is similar in
spirit to the determination of effective charges from elas-
ticity experiments.127 There the shear modulus of a ran-
domly oriented polycrystalline colloidal solid is determined
and interpreted in terms of an effective DLVO pair poten-
tial [cf. Eq. (24)], with Zeff as the only free fit parameter.
This implies an account for nonlinear screening, but fur-
thermore also for the so-called macroion shielding effect,128

i.e., the screening of the macroion–macroion pair potential
due to the presence of other macroions. Consequently, the
effective elasticity charge is lower than any electro-kinetic
charge measured on the very same suspension.5, 27 Within a
mean-field level description, macro-ion shielding is a many
body effect,129 which considerably complicates the search
for suitable pair-interactions.119, 120 It becomes most impor-
tant, when the range of the repulsion exceeds the nearest
neighbor distance, i.e., close to the fluid-solid phase transi-
tion. It appears to vanish at strong screening, or at elevated
volume fractions.130 If macroion shielding effects are sub-
sumed under the elasticity effective charge, the latter can
be used to predict, e.g., the fluid-solid phase boundary for
this suspension employing the results of Monte Carlo sim-
ulations for charged spheres interacting via a Yukawa-type
pair potential.26, 131, 132 Also in the present approach all elec-
trostatic interactions are accounted for within the PM, which
naturally includes the macroion shielding effect. Our effective
charge number Zeff, obtained from mapping the macroion–
macroion effective interaction potential to a DLVO-type pair
potential, should therefore yield a suitable input for calcula-
tions of the suspension’s fluid structure on the OMF level,
and allow predictions for experimentally measurable structure
factors.

IV. OUTLOOK

The theoretical scheme presented here can be rather
straightforwardly generalized to aqueous colloidal suspen-
sions with added salt or other kinds of reactive electrolytes.
To this end, the salinity-dependent bulk carbon dioxide con-
centration can be used.86, 87

Inclusion of sodium hydroxide83 or pyridine133, 134 into
the theoretical description would be particularly interesting,
since it has been reported that suspensions of colloidal sil-
ica spheres exhibit a phase diagram with reentrant fluid-
solid-fluid phase sequences, when either the concentration
of added base or the concentration of colloidal spheres is
increased.26, 135 Constructing a closed set of equations and
obtaining PM-HNC solutions for all ionic rdf’s in a realis-
tic model for a colloidal suspension with added base will
be somewhat more complicated than for the solvent model
discussed in the present paper, due to the larger number of
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neutral and ionic species that will have to be taken account
of.

While we have concentrated on aqueous suspensions in
this work, (variations of) the presented formalism should also
be applicable to the prominent problem of charge regula-
tion in non-aqueous colloidal suspensions,18, 19, 136, 137 which
can also exhibit unusual phase sequences like crystal-fluid-
crystal.19 In non-aqueous suspensions, the Bjerrum length
is one to two orders of magnitude longer than in aqueous
suspensions, which results in much stronger electrostatic in-
teractions. As a consequence, tight Bjerrum-pairing of mi-
croions occurs,138, 139 and nontrivial ion correlations are of
great importance in the screening of colloidal sphere charges.
Incorporation of non-mean-field like ion distributions in a
semi-analytical theoretical framework like the present one
would therefore be desirable in case of non-aqueous me-
dia. Note, however, that in non-aqueous media the mecha-
nisms of colloidal (chemical) charge regulation are far more
complex than the simple dissociation of surface groups dis-
cussed in our present work. Charging of colloidal spheres
in non-aqueous media can arise from an intricate interplay
of preferential surfactant adsorption, micelle formation, and
dissociation of counterions from the colloidal surfaces into
the hydrophilic core of micelles.140 One future extension of
the present work should be concerned with the inclusion of
these charging mechanisms into the physicochemical problem
set.

V. CONCLUSIONS

We have demonstrated that a set of chemical association-
dissociation balances in the colloidal bulk phase and at the
surfaces of colloidal spheres can be coupled by means of liq-
uid integral equations, and that the resulting set of physico-
chemical equations can be efficiently numerically solved. The
theoretical scheme introduced here allows for an ab initio cal-
culation of colloidal bare charges Z and effective charges Zeff

for fluid colloidal suspensions in a wide range of suspension
parameters. As input to the theoretical scheme one needs to
know only the acidic dissociation constants pKa of the in-
volved chemically reactive species, the (effective) sphere di-
ameters of the macroions and of all microions, the colloidal
volume fraction, and the number, N, of dissociable acidic
surface groups per sphere. Different from Z and Zeff, values
for N can be directly and straightforwardly obtained in titra-
tion experiments and are therefore experimentally more easily
accessible.

The large macroion to microion size- and charge asym-
metries in typical colloidal suspensions cause a huge numer-
ical burden in any relevant computer simulation of the prim-
itive model. In contrast to this, the self-consistent numerical
solution of the scheme presented here takes only few min-
utes or less on an inexpensive personal computer, for a given
set of suspension parameters. Our method is therefore well-
suited for planning and analyzing experiments with charged
colloidal suspensions, and to calculate primitive model pair-
correlation input for theories of colloidal dynamics including
electrophoresis, colloidal diffusion, and rheology.
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APPENDIX A: SURFACE GROUP
CHEMICAL POTENTIAL

In the PM, colloidal particles are approximated as dielec-
tric hard spheres with solvent dielectric constant ε, and the
electric charge is assumed to be homogeneously smeared out
on the colloidal sphere’s surfaces. Within this model, which
neglects surface-charge patchiness, a monovalent charged sur-
face group represents nothing else than a single elementary
charge that is smeared out about the surface of its associ-
ated colloidal sphere. This allows us to construct an approx-
imate method to determine the charged surface group ex-
cess chemical potential in consistence with the already made
PM assumptions. The three-step method consists of a col-
loidal sphere extraction step, a charging step, and a col-
loidal sphere re-insertion step, as described in the follow-
ing. In order to keep the suspension globally electroneutral
at all steps, hydronium (H3O+) counterions are taken into
account.

1. Step 1 (colloidal sphere extraction)

From the five-component PM ionic suspension described
in Sec. II C, one colloidal sphere with charge Ze is extracted
and placed into pure solvent, i.e., into an infinite, otherwise
particle-free, dielectric continuum with dielectric constant ε.
To restore charge neutrality of the suspension, a number of
|Z| hydronium counterions are also extracted from the sus-
pension into pure solvent (and into infinite mutual distance).
The change in Gibbs free energy in step 1 is thus


G1 = −μCol − |Z|μH3O+ . (A1)

2. Step 2 (charging of the sphere)

Inside pure solvent, one elementary charge is removed
from the colloidal sphere and placed into infinite distance
from the sphere. Then, the removed charge is compressed
to the hydronium ion diameter σH3O+ . The change in Gibbs
free energy in this step is equal to the change in Coulomb
(self-)energy of the electric charge density


G2 = 2(Z − 1)2e2

εσCol
− 2Z2e2

εσCol
+ 2e2

εσH3O+

= 2LB

σCol
(1 − 2Z)kBT + 2LB

σH3O+
kBT . (A2)

Step 2 leaves us with a colloidal sphere of charge (Z − 1)e
and |Z − 1| hydronium ions in pure solvent.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.99.64.185 On: Thu, 27 Mar 2014 14:29:30



124904-10 Heinen, Palberg, and Löwen J. Chem. Phys. 140, 124904 (2014)

3. Step 3 (colloidal sphere re-insertion)

Insert the colloidal sphere of charge (Z − 1)e and the
|Z − 1| hydronium ions from pure solvent into the five-
component PM suspension. The change in Gibbs free energy
in this step is


G3 = μdilCol + |Z − 1|μH3O+ , (A3)

where the index “dilCol” stands for the ultradilute species of
colloidal spheres with charge (Z − 1)e each.

Note that, in the thermodynamic limit, none of the five
ion number densities in the suspension is changed when steps
1−3 are applied. Therefore, the hydronium ion chemical po-
tentials in steps 1 and 3 are exactly equal, and we gain the
expression

β
G = β [
G1 + 
G2 + 
G3]

= βμdilCol − βμCol + 2LB

σCol
(1 − 2Z)

+βμH3O+ + 2LB

σH3O+
(A4)

for the total change in normalized Gibbs free energy. The sec-
ond and third row in Eq. (A4) account for the insertion of
a charged surface group and a hydronium ion, respectively.
Considering the excess part of all quantities in Eq. (A4), we
thus arrive at the expression

ln(γSg−) = βμexc
Sg− = βμexc

dilCol − βμexc
Col + 2LB

σCol
(1 − 2Z)

(A5)
for the charged surface group activity coefficient γSg− , which
is required as input to the Henderson-Hasselbalch Eq. (12) for
the colloidal surface charge.

APPENDIX B: ITERATIVE SELF-CONSISTENT
SOLUTION

Here, we present our iterative algorithm for solving
the set of Eqs. (9), (10), (12), and (19)–(23) for the eight
unknown quantities in Table I:

1. Initialization

Choose a colloidal sphere number density [Col], and a
fixed number, N, of acidic surface groups per colloidal sphere.
Choose [H2O] = 54.2 M and [CO2] = 1.52 × 10−5 M, and a
concentration [dilCol] � 10−6 × [Col]. Initialize the colloid
charge number by setting Z = −N, and initialize the thermo-
dynamic activity coefficients by choosing γ i = 1 for all ionic
species i.

2. Step 1

Calculate [H3O+] by solving Eq. (19) with input Z, [Col],
[CO2], [H2O], K, KCO2

a , γHCO−
3
, γOH− , and γH3O+ .

3. Step 2

Solve Eqs. (9) and (10) for [HCO−
3 ] and [OH−], respec-

tively, with input [H3O+], [CO2], [H2O], K, KCO2
a , γHCO−

3
,

γOH− , and γH3O+ .

4. Step 3

Calculate Z from Eq. (12), with input N, [H3O+], K
SgH
a ,

γSg− , and γH3O+ .

5. Step 4

Solve the HNC-scheme Eqs. (20)–(22) with input Z,
[Col], [dilCol], [H3O+], [HCO−

3 ], and [OH−], by means of
the algorithm from Ref. 13. Then, compute the activity coef-
ficients γH3O+ , γOH− , γHCO−

3
, and γSg− from Eqs. (23) and (A5).

Continue with step 1.
The iteration is stopped once that the relative change in

the obtained value of Z is less than 10−4 in two subsequent
loop iterations.

Improved numerical stability is achieved if Z is multi-
plied by a damping factor at early iteration stages. The damp-
ing factor should be picked from the interval (0, 1], and should
gradually approach unity during the first few iterations. Nu-
merical stability can be further increased if the new solution
for Z in step 3 is mixed with the previous value in proportions
α and (1 − α), with a mixing coefficient 0 < α < 1.
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