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Institut für Theoretische Physik II: Weiche Materie,
Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,
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Abstract. Typically, in the description of active Brownian particles, a constant
effective propulsion force is assumed, which is then subjected to fluctuations
in orientation and translation, leading to a persistent random walk with an
enlarged long-time diffusion coefficient. Here, we generalize previous results
for the swimming path statistics to a time-dependent, and thus in many
situations more realistic, propulsion which is a prescribed input. We analytically
calculate both the noise-free and the noise-averaged trajectories for time-periodic
propulsion under the action of an additional torque. In the deterministic case,
such an oscillatory microswimmer moves on closed paths that can be much more
complicated than the commonly observed straight lines and circles. When exposed
to random fluctuations, the mean trajectories turn out to be self-similar curves
which bear the characteristics of their noise-free counterparts. Furthermore, we
consider a propulsion force which scales in time t as ∝tα (with α = 0, 1, 2, . . .) and
analyze the resulting superdiffusive behavior. Our predictions are verifiable for
diffusiophoretic artificial microswimmers with prescribed propulsion protocols.
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1. Introduction

The description of self-propelled particles and microswimmers is a rapidly growing domain
of statistical physics [1]–[3]. Even the motion of a single swimmer is non-trivial, since this
is already a non-equilibrium situation that requires new concepts of statistical mechanics.
Due to the micron size of the swimmers, inertial effects are negligible, so that the
Reynolds number is small, but there are Brownian fluctuations, as for passive colloidal
particles [4]–[7]. In its simplest form, one can generalize the Brownian dynamics of passive
colloidal particles to self-propelled particles by including an additional driving term which
leads to a constant propagation speed along the particle orientation. The orientation,
however, is subject to thermal fluctuations and therefore there is a non-trivial coupling
between particle orientation and translation. For such an active Brownian particle, low-
order moments of the time-dependent displacement distribution have been analytically
calculated recently [8, 9]. Moreover, the full displacement probability distribution has been
studied in experiment and simulation [10]. The established simple picture of a persistent
random walk with a persistence generated by the self-propulsion gives a strongly enhanced
long-time diffusion constant as compared to a passive particle. In the noise-free limit, the
swimmer moves deterministically with a speed v along its orientation on a straight line.
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These results have been generalized for swimmers that are subjected to an internal
additional torque. When fluctuations are neglected, this leads to motion on circles in two
dimensions [11, 12] and on helical paths in three dimensions [13]. The noise-averaged
trajectories are a spira mirabilis [11] in two and a concho-spiral in three dimensions [13].
The former was recently confirmed by experiments on asymmetric self-diffusiophoretic
swimmers [12].

In all of the previous work on active Brownian particles [14]–[20], the effective
propulsion was assumed to be independent of time. In this paper, we consider an explicit
time dependence of the propagation speed v(t), which serves as a given input for the
Brownian equations of motion. We calculate moments of the displacement probability
distribution analytically and thereby generalize results known from previous work
[8, 9, 11]. Our motivation to do so is threefold: first, real swimmers do not usually move
with a constant propagation speed. In particular, the swimming stroke itself induces
variations in time [21]. Even in the simple Golestanian three-sphere swimmer [22] the
net motion is time-dependent, as are the swimming strokes in real microorganisms
such as Chlamydomonas [23]–[25] or larger swimmers such as Daphnia [26]–[28]. A
time dependence on the time scale of the individual swimming stroke is typical rather
than an exception. In addition, time-dependent propagation can occur on much longer
time scales if bacteria are exposed to chemical or light gradients [29]. Therefore,
most importantly, the model considered in this paper generalizes the previous coarse-
grained models with constant self-propulsion towards a more realistic description of
the propulsion mechanism itself. Second, artificial diffusiophoretic microswimmers [30]–
[34] offer the fascinating possibility of tuning the propagation speed on demand
by varying the laser power externally [35] such that any prescribed form of v(t)
can be programmed and our model is realized. Third, an analytical solution is
interesting in itself, as it may serve as a simple test case for experimental and
simulation data.

We provide analytical solutions for both the noise-free and the noise-averaged
swimming paths for time-periodic propulsion under the action of an additional constant
torque. When fluctuations are neglected, such an oscillatory swimmer moves on closed
trajectories that can be much more complicated than the commonly observed straight lines
and circles. In the presence of translational and rotational Brownian random motion, the
mean swimming path turns out to be a self-similar curve that still bears the characteristics
of the noise-free case under very general periodicity assumptions. Self-similarity is known
from many other areas of statistical physics, such as fractals [36], growth processes [37],
networks [38], and critical phenomena [39]. Therefore our findings introduce the concept of
similarity into the world of mean microswimmer paths. As an example for a non-periodic
realization of the self-propulsion, we consider a power-law time dependence and show
that a propagation speed which scales in time t as ∝tα (with α = 0, 1, 2, . . .) induces
superdiffusive behavior characterized by an exponent 2α+ 1 in the time-dependent mean
square displacement.

The paper is organized as follows: in section 2 we describe the model equations of
active Brownian particles. Results are presented in sections 3 and 4, where in the latter
an additional constant torque is considered on top of the time-dependent self-propulsion.
Finally, we conclude in section 5.
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Figure 1. (a) Schematic view of a spherical self-propelled particle with
hydrodynamic radius R as considered in our model. The motion is restricted to
the two-dimensional x–y plane and characterized by the center-of-mass position
r(t) = [x(t), y(t)] and the angle φ(t) representing the orientation û = (cosφ, sinφ)
of the particle relative to the x direction. The propulsion speed is determined
by an effective time-dependent driving force F(t) = F (t)û and the particle
may additionally be exposed to a constant torque M = M êz (see section 4).
(b) Overview of the types of self-propulsion with square-wave, sinusoidal, and
power-law time dependence that are explicitly considered.

2. The model

In our model we consider colloidal particles in a dilute solution where particle–particle
interactions can be neglected. The dynamics in the low-Reynolds-number regime is
governed by the Langevin equations for completely over-damped Brownian motion. We
assume that the motion of the particles is constrained to a two-dimensional plane. Such a
situation is often realized in experiments with microswimmers, where gravity keeps them
close to the substrate [10, 12, 40]. However, the generalization to three dimensions is
straightforward when following the procedure presented in [9] for self-propelled particles
with constant propagation speed.

The colloid itself is regarded as a sphere with a hydrodynamic radius R. Its swimming
path is determined by the center-of-mass position r(t) = [x(t), y(t)]. To account for the
detailed self-propulsion mechanism, we consider an effective time-dependent driving force
F(t) = F (t)û, where û = (cosφ, sinφ) is a particle-fixed orientation vector defined by the
angle φ between the x axis and the direction of propulsion (see figure 1(a)). Thus, the
corresponding translational and orientational Langevin equations are given by

dx(t)

dt
= βD [F (t) cos(φ(t)) + fx(t)] , (1)

dy(t)

dt
= βD [F (t) sin(φ(t)) + fy(t)] , (2)

dφ(t)

dt
= βDr g(t) (3)

doi:10.1088/1742-5468/2014/02/P02011 4

http://dx.doi.org/10.1088/1742-5468/2014/02/P02011


J.S
tat.M

ech.(2014)P
02011

Swimming path statistics of an active Brownian particle with time-dependent self-propulsion

with the inverse effective thermal energy β = 1/(kBT ). Brownian random fluctuations are
implemented in equations (1)–(3) by means of zero-mean Gaussian noise terms fx(t),
fy(t), and g(t). The respective variances are given by 〈fx(t)fx(t′)〉 = 〈fy(t)fy(t′)〉 =
2δ(t − t′)/(β2D) and 〈g(t)g(t′)〉 = 2δ(t − t′)/(β2Dr), where angular brackets denote a
noise average. The translational and rotational Brownian motion is characterized by
the respective short-time diffusion constants D and Dr fulfilling D/Dr = 4R2/3 for a
spherical particle. As equations (1) and (2) for the motion in x and y direction are
formally identical for changed initial conditions, we will only present the results for the x
component, but discuss trajectories in the full x–y plane. To solve the system of Langevin
equations (1)–(3), first the angular equation (3) is considered. As the noise term g(t) is
Gaussian, following Wick’s theorem the full angular probability distribution has to be
Gaussian as well and can be obtained by calculating the first two moments of φ(t) (for
more details see [41, 42]). Using the orientational probability distribution as an input
for the translational Langevin equations, analytical results for the mean position and the
mean square displacement can be derived.

To account for the variable propagation speed which is often observed in the motion
of real microswimmers, we study the influence of different types of time-dependent
driving forces F (t). Explicitly, we consider piecewise constant, sinusoidal, and power-law
realizations of the self-propulsion (see figure 1(b)). A piecewise constant or ‘square-wave’
self-propulsion force (see section 3.1) can mimic biological microorganisms which undergo
a run-and-tumble motion [23], [43]–[45], for example. When the swimming stroke itself
leads to periodic variations in the propagation speed, a continuous description such as the
sinusoidal driving force (see section 3.2) is the most appropriate one. Finally, a power-
law type of self-propulsion (see section 3.3) may be relevant for organisms that enhance
their swimming velocity by consuming food [46] or in situations where the velocity of
a predator is determined by the prey gradient [47]. Furthermore, growing clusters of
active particles [48] may require a power-law time dependence for the description of the
propulsion.

Whereas some realizations of the different self-propulsion types can be directly studied
experimentally with active particles in nature, such as the run-and-tumble motion of
biological microorganisms [43, 49], recent progress in the field of artificial colloidal
microswimmers makes it possible to tune man-made self-propelled objects in a way such
that all kinds of considered swimming behavior are realized. This can be accomplished
by an external magnetic field [50] or in systems where the self-propulsion mechanism
is triggered by a light source which can be switched on and off [51] or regulated in
a more sophisticated way [35, 52]. Thus, any propulsion protocol can be achieved for
diffusiophoretic artificial microswimmers.

3. Time-dependent self-propulsion

3.1. Square-wave self-propulsion force

First, we discuss the mean position and the mean square displacement of a particle
propelling through a liquid as governed by the square-wave self-propulsion force

F (t) =

{
F0 for nT < t ≤ (n+ 1

2
)T

0 for (n+ 1
2
)T < t ≤ (n+ 1)T

with n = 0, 1, 2, . . . , (4)
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Figure 2. Mean position of a self-propelled particle with a square-wave propulsion
force based on the analytical result in equation (5). Curves are shown for different
values of the period T and fixed parameters βRF0 = 10 and φ0 = 0. The stair-like
form is due to the lack of an active contribution during every second time interval
of length T/2 (as visualized in the sketch of the square-wave self-propulsion force
in the inset). For long times all curves approach a maximum value which depends
on the period length T .

where T is the cycle duration (see inset in figure 2). Active and passive time intervals
of equal length alternate. Here, we consider the case of a particle starting with the
active regime (constant self-propulsion force F0). Some of the statements below have to
be modified if the particle starts in the exclusively diffusive regime.

3.1.1. Mean position. As a result, the one-dimensional mean position of a particle with
the self-propulsion force as defined in equation (4) is given by

〈x(t)− x0〉 = 4
3
βF0R

2 cos(φ0)

×



[
eDrT − e−Dr(n−1)T

eDrT + eDr(T/2)
+ e−DrnT − e−Drt

]
for nT < t ≤ (n+ 1

2
)T

and n = 0, 1, 2, . . .
eDrT − e−DrnT

eDrT + eDr(T/2)
for (n+ 1

2
)T < t ≤ (n+ 1)T

and n = 0, 1, 2, . . . .

(5)

Obviously, the mean position increases during a time interval of length T/2 and stays
constant during the following time interval of the same length. This is also visualized in
figure 2, where the dimensionless mean position 〈x(t)−x0〉/R is shown for different values
of the scaled period DrT . In all cases the curves exhibit a stair-like form, where the steps
are smaller for larger times, and approach a constant value for long times t. This final
mean position depends on the period T and is obtained as the asymptotic solution from
equation (5):

lim
t,n→∞

〈x(t)− x0〉 =
4

3
βF0R

2 cos(φ0)
1

1 + e−(1/2)DrT
. (6)
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Explicitly, the limits t → ∞ for very short (T → 0) and very long (T → ∞) periods are
given by

lim
T→0

lim
t,n→∞

〈x(t)− x0〉 = 2
3
βF0R

2 cos(φ0) (7)

and

lim
T→∞

lim
t,n→∞

〈x(t)− x0〉 = 4
3
βF0R

2 cos(φ0), (8)

respectively. Clearly, the result in equation (7) equals the case of a constant self-propulsion

force F = F0/2 = 〈F (t)〉 = (1/T )
∫ T
0 F (t) dt and equation (8) corresponds to the case of

a constant self-propulsion force F0.

3.1.2. Mean square displacement. While the mean position already elucidates some of
the physics of microswimmers with time-dependent self-propulsion, usually the standard
quantity for characterizing the particle dynamics is the mean square displacement
〈(x(t)− x0)2〉.

Our analytical result is as follows:

〈(x(t)− x0)2〉 = 2Dt+
16

9
(βF0R

2)2
[
Dr

(
t− nT

2

)
− n ξ

(
1

2

)
− cos(2φ0)

12
ξ (2) ρn−1(4)

+
cos(2φ0)

3
ξ

(
1

2

)
ρn−1(4) + (n− 1) ξ

(
1

2

)
ρ−1/2(1)e−(1/2)DrT

+ ξ

(
1

2

)
ρ−1/2(1) ρ−n(1)e−Dr(n+1/2)T

+
cos (2φ0)

3
ξ

(
1

2

)
ρ−1/2(3)

(
ρn−1(1)− ρn−1(4)

)
− e−(1/2)DrT ξ

(
1

2

)
ρn−1(1)eDrnT ξ̃(1)− cos (2φ0)

3
ξ

(
3

2

)
ρn−1(3)ξ̃(1)

+ eDrnT ξ̃(1) +
cos (2φ0)

12
ξ̃(4)− cos (2φ0)

3
e−3Drntξ̃(1)

]
(9)

for nT < t ≤ (n+ 1
2
)T with n = 0, 1, 2, . . . and, correspondingly,

〈(x(t)− x0)2〉 = 2Dt+
16

9

(
βF0R

2
)2[DrT

2
(n+ 1)− ξ

(
1

2

)
(n+ 1)

− cos(2φ0)

12
ξ(2)ρn(4) +

cos(2φ0)

3
ξ

(
1

2

)
ρn(4) + nξ

(
1

2

)
ρ−1/2(1)e−(1/2)DrT

+ ξ

(
1

2

)
e−Dr(n+3/2)Tρ−1/2(1)ρ−(n+1)(1)

+
cos (2φ0)

3
ξ (1/2) ρ−1/2(3)

(
ρn(1)− ρn(4)

)]
(10)
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Figure 3. Analytically obtained mean square displacement of a self-propelled
particle with a square-wave propulsion force: (a) linear and (b) logarithmic
representation for the same situations as in figure 2. A longer period T leads to
larger values of the mean square displacement.

for (n+ 1
2
)T < t ≤ (n+ 1)T . Here, the notations

ρm(a) :=
eaDrT − e−aDrTm

eaDrT − 1
, (11)

ξ(a) := 1− e−aDrT , (12)

ξ̃(a) := e−aDrt − e−aDrTn (13)

are used.
Figure 3 visualizes the mean square displacement for the same parameter combinations

as in figure 2 for the mean position. The dominant feature is the stair-like pattern resulting
from the square-wave force. As shown by the linear representation in figure 3(a), the steps
are significantly more equally sized than with regard to the mean position, where the steps
become rapidly flatter with increasing time. The transition from the first active to the first
passive regime is most obvious in the logarithmic representation in figure 3(b). In general,
a longer period T leads to larger values of the mean square displacement for intermediate
and long times. The long-term diffusion coefficientDl for t� T is analytically calculated as

Dl = lim
t→∞

1

2t
〈(x(t)− x0)2〉

= D +
4

9

(
βF0R

2
)2
Dr +

8

9

(
βF0R

2
)2 1

T

e−(1/2)DrT − 1

1 + e−(1/2)DrT
. (14)

For a very short period T , equation (14) reduces to

lim
T→0

Dl = D + 2
9

(
βF0R

2
)2
Dr = Dl

∣∣∣
F=〈F (t)〉=F0/2=const.

, (15)

which corresponds to the case of a constant self-propulsion force F = F0/2. On the other
hand, the limit for a very long period is

lim
T→∞

Dl = D + 4
9
(βF0R

2)2Dr. (16)
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Figure 4. Mean position of a self-propelled particle with sinusoidal driving force
for different values of the frequency ω. The offset is c = 0 in (a) and c = 1 in (b)
for fixed values of the scaled amplitude βRF0 = 10 and the initial orientation
φ0 = 0. Inset: characterization of the sinusoidal self-propulsion force.

This result exhibits a factor 1/2 in the second term as compared to the solution for a
constant propulsion force F0, which originates from the linear time dependence of the mean
square displacement. During every second time interval of length T/2 the particle motion
is completely passive, so that no contribution resulting from the self-propulsion arises.

3.2. Sinusoidal self-propulsion force

To account for the effect of a continuous time-periodic propulsion, as often induced by
the detailed swimming mechanism of biological microorganisms, we solve the Langevin
equations (1)–(3) for a sinusoidal self-propulsion force

F (t) = F0(sin(ωt) + c). (17)

It is characterized by the amplitude F0, the frequency ω, and the offset cF0 (see inset in
figure 4(a)).

3.2.1. Mean position. We obtain

〈x(t)− x0〉 =
4

3
βF0R

2Dr cos(φ0)

[
e−Drt

D2
r + ω2

(−Dr sin(ωt)− ω cos(ωt))

+
ω

D2
r + ω2

+
c

Dr

(
1− e−Drt

)]
(18)

for the particle’s mean position. The periodicity resulting from the driving force is washed
out for long times. The last term in equation (18) vanishes if no constant contribution is
considered in equation (17), i.e., if c = 0. In the limit ω → 0, as well as for ω → ∞, the
mean position equals the solution obtained for a constant self-propulsion force F = cF0.
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Figure 5. Mean square displacement of a self-propelled particle with sinusoidal
driving force for different values of the frequency ω. The parameters are βRF0 =
10, φ0 = 0, and c = 0. (a) Curves for low values of ω between 0.5 and 2.
(b) For larger ω, a transition from a slowly oscillating initial regime to a regular
periodicity with double frequency is observed.

The analytical expression for the mean position (equation (18)) is visualized in figure 4.
The curves initially increase and reach a constant final value for long times, after a
transient regime where the effect of the specific periodic type of the self-propulsion is
visible. The existence and the position of one or more local maxima for intermediate
times depend on the value of ω. For large ω the first maximum occurs earlier in time and
is more distinct. At short times, higher values of ω lead in general to higher values of
the mean position than observed for smaller ω. The final value for long times, which is
analytically given by

lim
t→∞
〈x(t)− x0〉 =

4

3
βF0R

2Dr cos(φ0)

(
ω

D2
r + ω2

+
c

Dr

)
, (19)

is maximal for ω = Dr. For ω = κDr with an arbitrary value of κ it is the same as for
ω = Dr/κ.

3.2.2. Mean square displacement. The mean square displacement of an active particle
with sinusoidal self-propulsion force is

〈(x(t)− x0)2〉 = 2Dt+
16

9

(
βF0R

2
)2
D2

r

[
1

D2
r + ω2

(
Drt

2
− Dr sin (2ωt)

4ω
− 1

2
sin2 (ωt)

)
− ω

D2
r + ω2

η− (1, 1, 1) +
cos (2φ0)

9D2
r + ω2

(
3

2
sin (ωt)Dr η

0 (2, 1, 4)

+
3

2

ω2

16D2
r + 4ω2

(
e−4Drt − 1

)
+
ω

4
η−2 (2, 1, 4)− ω η− (1, 1, 1)

)
+

c

Dr

(
1− cos (ωt)

ω
+ η− (1, 1, 1)
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Figure 6. Same curves as in figures 5(a) and (b), but now in a logarithmic
representation.

+ 1
3

cos (2φ0)
(
η− (4, 1, 4)− η− (1, 1, 1)

))
+

c

D2
r + ω2

(
Dr

ω
(1− cos (ωt))− sin (ωt) +

ω

Dr

(
1− e−Drt

))
+
c cos (2φ0)

ω2 + 9D2
r

(
3Dr η

− (4, 1, 4)− ω η̃ (−4, 1, 4)
)

+
c cos (2φ0)

ω2 + 9D2
r

ω

Dr

(
1− e−Drt

)
+
c2t

Dr

+
c2

D2
r

(
e−Drt − 1

)
+
c2 cos (2φ0)

3D2
r

(
1− e−Drt +

1

4

(
e−4Drt − 1

))]
(20)

with the short notations

η−a (b, c, d) :=
(bDr sin (aωt) + cω cos (aωt)) e−dDrt − cω

(cω2) + (bDr)
2 , (21)

η0a (b, c, d) :=
(bDr sin (aωt) + cω cos (aωt)) e−dDrt

(cω2) + (bDr)
2 , (22)

η̃a(b, c, d) :=
(bDr cos (aωt) + cω sin (aωt)) e−dDrt − bDr

(cω)2 + (bDr)
2 , (23)

η− (b, c, d) ≡ η−1 (b, c, d), (24)

η0 (b, c, d) ≡ η01(b, c, d), (25)

η̃(b, c, d) ≡ η̃1(b, c, d). (26)

The result in equation (20) is illustrated in figure 5. Obviously, for φ0 = 0 and c= 0, smaller
values of ω lead to a slower but longer initial increase due to the sine in equation (17).
Consequently, for short times one obtains a larger mean square displacement for larger ω
while for longer times more significant displacements result for smaller values of ω (see
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figure 5(a)). The curves for ω/Dr = 5 and 10 in figure 5(b) yield some irregularities at
short times: the first maximum of the oscillation is particularly large whereas the second
one is much smaller than expected. This behavior is induced by the sign changes of the
sine in equation (17). As the particle still has some memory of its initial orientation, the
mean square displacement is significantly reduced when the propagation direction reverses.
For long times, the rotational diffusion eliminates all orientation-dependent effects. Thus,
a periodic behavior with double frequency occurs. It is no longer possible to distinguish
between sign changes of the propulsion force from + to− and from− to +. The logarithmic
plots in figure 6 represent the particularly large first oscillation even more clearly. It is
most obvious for larger values of ω and is followed by a leveled second peak.

By neglecting the exponentially decreasing terms, the long-time behavior of the mean
square displacement is obtained as

〈(x(t)− x0)2〉 = 2Dt+
16

9

(
βF0R

2
)2
D2

r

[
t

2

Dr

D2
r + ω2

+
tc2

Dr

+ const. (ω, φ0, c)

− sin (2ωt)

(
Dr

4ω

1

D2
r + ω2

)
− sin2 (ωt)

(
1

2

1

D2
r + ω2

)
− sin (ωt)

c

D2
r + ω2

− cos (ωt)

(
c

Drω
+
c Dr

ω

1

D2
r + ω2

)]
. (27)

In the limit ω → 0 the solutions for a constant self-propulsion force are recovered.
Otherwise, for ω 6= 0 the result for the long-time diffusion coefficient Dl is

Dl =
1

2t
lim
t→∞
〈(x(t)− x0)2〉 = D +

(
βF0R

2
)2
D2

r

(
4

9

Dr

D2
r + ω2

+
8

9

c2

Dr

)
, (28)

corresponding to a situation with a constant force F = cF0 if ω →∞.

3.3. Power-law self-propulsion force

Finally, we consider a power-law time dependence

F (t) = F0 (Drt)
α with α = 0, 1, 2, . . . (29)

and an arbitrary but constant prefactor F0. In principle, on large time scales the
proportionality of the driving force to tα with α > 0 corresponds to a random walk with
continuously increasing step size.

3.3.1. Mean position. Solving equations (1)–(3) for a self-propulsion according to
equation (29) gives the mean position

〈x(t)− x0〉 =
4

3
βF0R

2 cos (φ0)

[
α!−

α∑
k=0

(Drt)
α−k e−Drt

α!

(α− k)!

]
(30)

with the long-time limit

lim
t→∞
〈x(t)− x0〉 = 4

3
βF0R

2 cos (φ0)α!. (31)
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Figure 7. Analytically calculated mean position of a self-propelled particle
with a power-law self-propulsion force for different exponents α. The constant
parameters are βRF0 = 10 and φ0 = 0. All curves approach a maximum value
determined by equation (31).

For α = 1, 2, 3 the mean position is visualized in figure 7. For short and intermediate times
the curves increase until they reach a constant final value which depends on the specific
exponent α. The larger the value of α the longer lasts the initial stage and the higher is
the final mean displacement.

3.3.2. Mean square displacement. The one-dimensional mean square displacement for a
power-law self-propulsion force is

〈(x(t)− x0)2〉 = 2Dt+
16

9

(
βF0R

2
)2( α∑

k=0

(−1)k
α!

(α− k)!

1

2α− k + 1
(Drt)

2α−k+1

+ (−1)αα!

[
α∑
k=0

(Drt)
α−ke−Drt

α!

(α− k)!
− α!

]

+ cos (2φ0)

[
α∑
k=0

1

3k+1

α!

(α− k)!

(
2α−k∑
j=0

1

4
(Drt)

2α−k−je−4Drt
(2α− k)!

(2α− k − j)!

− 1

4
(2α− k)!

)
− α!

3α+1

[
α∑
k=0

(Drt)
α−ke−Drt

α!

(α− k)!
− α!

]])
. (32)

While equation (32) depends on the initial orientation φ0 of the particle, the mean square
displacement can also be given in the two-dimensional version

〈(r(t)− r0)
2〉 = 4Dt+

32

9

(
βF0R

2
)2( α∑

k=0

(−1)k
α!

(α− k)! (2α− k + 1)
(Drt)

2α−k+1

+ (−1)αα!

[
α∑
k=0

(Drt)
α−ke−Drt

α!

(α− k)!
− α!

])
, (33)

doi:10.1088/1742-5468/2014/02/P02011 13

http://dx.doi.org/10.1088/1742-5468/2014/02/P02011


J.S
tat.M

ech.(2014)P
02011

Swimming path statistics of an active Brownian particle with time-dependent self-propulsion

Figure 8. Mean square displacement of a self-propelled particle with a power-law
driving force in a logarithmic representation. The strength of the self-propulsion
is given by βRF0 = 100. Three different regimes ∝t, ∝t2α+2, and ∝t2α+1 are
identified and explicitly indicated for the exponent α = 3.

which is independent of the initial conditions. The visualization of equation (33) in figure 8
exhibits three qualitatively different time regimes. A diffusive regime at short times is
followed by a superdiffusive ∝t2α+2 regime. Finally, for t > 1/Dr, which corresponds to
the characteristic time scale for the rotational Brownian motion, the curves enter another
superdiffusive regime, where the scaling is ∝t2α+1. Whereas the time for this last transition
does not depend on the exponent α of the self-propulsion force, the crossover from the
diffusive to the first superdiffusive regime occurs at the time

Drt
∗(α) =

[
2

3
(βF0R)2

(
α∑
k=0

(−1)k
(α!)2

(α− k)!(α + k + 2)!

)]−1/(2α+1)

, (34)

which is determined by the specific type of power law and the propulsion strength. For
the various curves in figure 8 the transition time according to equation (34) is indicated
by vertical lines.

4. Results for an additional constant torque

For many experimental systems it is possible to describe the motion of the respective
natural or artificial microswimmers by implementing only an effective self-propulsion force
corresponding to a translational swimming velocity [8, 10, 53] in the Langevin equations.
However, a more detailed investigation often yields that either particle imperfections or
asymmetric shapes [12], [54]–[56] induce a deterministic rotational motion of the swimming
object. To account for this, an additional torque M = M êz (see figure 1) has to be
considered in the orientational Langevin equation, while equations (1) and (2) stay the
same. The updated version of equation (3) is given by

dφ

dt
= βDr [M + g(t)] , (35)
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Figure 9. Noise-free trajectories of a self-propelled particle with sinusoidal
self-propulsion and an additional constant torque. The plots are based on
equation (37). Curves are shown for βRF0 = 100, φ0 = 0, c = 0, and different
values of ω and ν: (a) ω = 10Dr and ν = 5Dr; (b) ω = 7Dr and ν = 13Dr. For
the case c = 0, closed trajectories are obtained as long as ω 6= ν.

which leads to 〈φ(t)〉 = φ0 +βDrMt and 〈(φ(t)−〈φ(t)〉)2〉 = 2Drt for the first and second
moments of the angular displacement distribution. As a constant torque does not destroy
the Gaussianity of the orientational distribution [9], the Langevin equations can be solved
similarly to the torque-free case discussed in section 3. In the following, this is done
exemplarily for the sinusoidal self-propulsion force (see section 3.2).

4.1. Trajectories for vanishing noise

To gain a better understanding of the interplay between the oscillating driving force and an
additional constant torque, we first consider the noise-free case by neglecting the random
terms in equations (1), (2), and (35). With ν = βDrM this leads to

φ(t) = φ0 + νt (36)

for the rotational motion and

x(t)− x0 = βDF0

[
cos (φ0)

[
−1

2

(
cos(t(ω − ν))

ω − ν
+

cos(t(ω + ν))

ω + ν

)
+

ω

ω2 − ν2

]
− sin (φ0)

[
1

2

(
sin (t(ω − ν))

ω − ν
− sin (t(ω + ν))

ω + ν

)]
+
c

ν
(sin (φ0 + νt)− sin (φ0))

]
(37)

for the translational particle displacement.
As illustrated in figure 9, for c = 0 the particle moves on closed trajectories which

display a certain number of vertices in a regular pattern. They occur whenever the sign of
the propulsion force changes, i.e., in time steps of π/ω. If ω > ν, the vertices face outward;
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Figure 10. Same as in figure 9 but now for ω = ν = 5Dr. The special case ω = ν
is the only situation for which the trajectories are not closed.

for ω < ν they face inward. The number N of vertices per closed loop depends on the
frequencies ω and ν according to

N = 2ω lcm

(
1

ω + ν
,

1

|ω − ν|

)
=

2ω

(ω + ν)|ω − ν|
lcm (|ω − ν|, ω + ν). (38)

Here, lcm denotes the least common multiple as the product of the highest order of each
prime factor. It is generalized to fractions by also allowing negative exponents.

Closed trajectories are always obtained as long as ω 6= ν. However, for the special
case ω = ν the propulsion direction reverses just at the moment when the orientation has
changed by 180◦. Thus, a trajectory with a continuously increasing displacement in one
direction is established (see figure 10).

4.2. Mean position

For non-zero noise, the mean position of an active particle with self-propulsion as defined
in equation (17) is a linear superposition of the contributions originating from a purely
sinusoidal force F (t) = F0 sin(ωt) on the one hand and a constant force F = cF0 on the
other hand. As the latter case has already been considered in [42], here we present only
the result for c = 0:

〈x(t)− x0〉 = βDF0

[
e−Drt

2

(
−Dr sin (t(ω − ν)− φ0) + (ω − ν) cos (t(ω − ν)− φ0)

(ω − ν)2 +D2
r

− Dr sin (t(ω + ν) + φ0) + (ω + ν) cos (t(ω + ν) + φ0)

(ω + ν)2 +D2
r

)

+
1

2

(ω − ν) cos (φ0)−Dr sin(φ0)

(ω − ν)2 +D2
r

+
1

2

(ω + ν) cos (φ0) +Dr sin(φ0)

(ω + ν)2 +D2
r

]
. (39)
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The corresponding mean trajectories are similar to the noise-free ones (see figures 11
and 12 as compared to figures 9 and 10, respectively). However, when taking the Brownian
random terms into account, we do not obtain closed mean swimming paths. Instead of that,
the size of the curves reduces exponentially. As can be seen clearly in figures 11 and 12, the
mean trajectories are self-similar. This characteristic feature also follows directly from the
analytical expression in equation (39). The scaling factor for the self-similarity is e−Drt. All
other terms are periodic in time t, with a period of either T1 = 2π/(ω+ν) or T2 = 2π/|ω−ν|.
Thus, after

T = 2πlcm

(
1

ω + ν
,

1

|ω − ν|

)
(40)

the scaled trajectory overlaps with itself.
The self-similarity is an important property of mean microswimmer trajectories, also

in the context of a comparison with the situation of a constant force, where the mean
swimming path was shown to be a logarithmic spiral [11]. While the latter is one of the
simplest realizations of a self-similar curve, it is not intuitive that this feature also survives
when a sinusoidal self-propulsion force is considered.

4.3. Mean square displacement

The analytical expression for the mean square displacement of a self-propelled particle with
sinusoidal self-propulsion and an additional constant torque is given in equation (A.1)
in the appendix. Figure 13 shows the corresponding curves for different values of the
frequencies ω and ν. At long times, the special case ω = ν induces much larger values for
the mean square displacement than obtained for ω 6= ν. This can easily be explained by
comparing the mean trajectories in figure 11 with figure 12. Only the situation ω = ν,
where the sign of the self-propulsion changes exactly after half a revolution of the particle,
generates a motion primarily in one specific direction. This results in a much higher value
for the mean square displacement.

The long-term diffusion coefficient is analytically given by

Dl = D +
Dr

8
β2D2F 2

0

[
1

(ω − ν)2 +D2
r

+
1

(ω + ν)2 +D2
r

+
4c2

D2
r + ν2

]
. (41)

For ω = ν the first term inside the square brackets in equation (41) becomes maximal
because only the squared rotational diffusion coefficient remains in the denominator. In
contrast, a strong torque significantly reduces the mean square displacement, as illustrated
by the solid curve in figure 13.

5. Conclusion

In conclusion, we have studied the influence of a time-dependent self-propulsion on the
Brownian dynamics of an active colloidal particle. Our model based on the coupled
translational and rotational Langevin equations provides analytical solutions for the
mean position and the mean square displacement of swimmers with either time-periodic
or continuously increasing propagation speed. Thus, previous coarse-grained models
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Figure 11. Mean trajectories of a self-propelled particle with sinusoidal self-
propulsion and an additional constant torque for βRF0 = 100, φ0 = 0, c = 0,
and different values of ω and ν: (a) ω = 10Dr and ν = 5Dr; (b) ω = 7Dr and
ν = 13Dr. The curves are self-similar, as illustrated by the closeups of the framed
regions, and bear the same characteristics as their noise-free counterparts (see
figure 9).
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Figure 12. Noise-averaged trajectory of a self-propelled particle with sinusoidal
self-propulsion and an additional constant torque for ω = ν = 5Dr, βRF0 = 100,
φ0 = 0, and c = 0. Similar to the noise-free counterpart (see figure 10), one obtains
a trajectory with a preferred direction of translation. The curve is self-similar, as
visualized in the closeup of the framed area in the plot.

Figure 13. Mean square displacement of a self-propelled particle with sinusoidal
self-propulsion force and an additional constant torque for different values of ω
and ν. The fixed parameters are given by βRF0 = 10, φ0 = 0, and c = 0. At long
times, the mean square displacement is much larger for the special case ω = ν
than for ω 6= ν.

with constant self-propulsion are generalized towards a more realistic description of the
propulsion mechanism, also on the time scale of an individual swimming stroke. The
analysis yields that the noise-free path of a time-dependent swimmer can be quite complex,
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involving trajectories much more complicated than the commonly observed straight lines
and circles. Moreover, we have analytically calculated the noise-averaged trajectories for
time-periodic propulsion under the action of an additional torque. Interestingly, such an
oscillatory microswimmer moves on average on a self-similar curve. If the effective self-
propulsion force scales in time as ∝tα, superdiffusive behavior is found in the long-time
regime where the mean square displacement reveals a ∝t2α+1 time dependence after an
intermediate regime with a scaling ∝t2α+2. These new exponents are expected to also
affect the non-Gaussian behavior of self-propelled particles [10, 42].

An interesting next step would be to include a time dependence not only with regard
to the self-propulsion force but also for the additional torque. Such a variation in time can
either be externally prescribed by a magnetic field [50, 57], for example, or it can be of
stochastic nature, as observed for slightly curved rods which undergo fluctuation-induced
flipping leading to two equivalent stable states with an opposite sign of the torque [58].

Acknowledgment

This work was supported by the ERC Advanced Grant INTERCOCOS (Grant
No. 267499).

Appendix

Here, we present the analytical result for the mean square displacement of a self-propelled
particle with sinusoidal self-propulsion under the action of an additional constant torque.
It is given by

〈(x(t)− x0)2〉 = 2Dt+ β2D2F 2
0

[
Dr

2
ω+
1

(
t

2
− sin(2ωt)

4ω
+
c

ω
(1− cos (ωt))

)
− 1

2
ω̃+
1

(
sin2 (ωt)

2ω
+
c

ω
sin (ωt)

)
+

c Dr

D2
r + ν2

(
1

ω
(1− cos (ωt)) + ct

)
+

(
1

2
ω̃+
1 −

c Dr

D2
r + ν2

)
(A1 + cB1) +

(
1

2
Drω

−
1 +

c ν

D2
r + ν2

)
(A2 + cB2)

+
1

2

∑
k=±1

1

(ω − kν)2 + 9D2
r

[
−3Dr

(
Z2(4Dr,−2φ0, ω − 2kν)

+ c Y1(−4Dr,−2φ0, ω − 2kν)
)

− (ω − kν)
(
Z1(4Dr,−2φ0, ω − 2kν) + cY2(−4Dr,−2φ0, ω − 2kν)

)]
+ 1

2
ω̃+
3

(
Z1(Dr, 2φ0, ν) + c Y2(−Dr, 2φ0, ν)

)
+ 3

2
Dr ω

−
3

(
Z2(Dr, 2φ0, ν) + c Y1(−Dr, 2φ0, ν)

)
+

c

9D2
r + ν2

[
−3Dr

(
Z1(4Dr, 2φ0, 2ν) + c Y2(−4Dr, 2φ0, 2ν)

−Z1(Dr, 2φ0, ν)− c Y2(−Dr, 2φ0, ν)
)

+ ν
(
Z2(4Dr, 2φ0, 2ν) + c Y1(−4Dr, 2φ0, 2ν)

−Z2(Dr, 2φ0, ν)− c Y1(−Dr, 2φ0, ν)
)]]

(A.1)
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where

ω+
a =

1

(ω + ν)2 + (aDr)2
+

1

(ω − ν)2 + (aDr)2
, (A.2)

ω̃+
a =

ω + ν

(ω + ν)2 + (aDr)2
+

ω − ν
(ω − ν)2 + (aDr)2

, (A.3)

ω−a =
1

(ω + ν)2 + (aDr)2
− 1

(ω − ν)2 + (aDr)2
, (A.4)

A1 =
e−Drt

2

[
− Dr sin (t (ω − ν))

(ω − ν)2 +D2
r

− (ω − ν) cos (t(ω − ν))

(ω − ν)2 +D2
r

− Dr sin (t (ω + ν))

(ω + ν)2 +D2
r

− (ω + ν) cos (t(ω + ν))

(ω + ν)2 +D2
r

]

+
1

2

ω − ν
(ω − ν)2 +D2

r

+
1

2

ω + ν

(ω + ν)2 +D2
r

, (A.5)

A2 =
e−Drt

2

[
(ω − ν) sin (t (ω − ν))

(ω − ν)2 +D2
r

− Dr cos (t(ω − ν))

(ω − ν)2 +D2
r

− (ω + ν) sin (t (ω + ν))

(ω + ν)2 +D2
r

+
Dr cos (t(ω + ν))

(ω + ν)2 +D2
r

]
+

1

2

Dr

(ω − ν)2 +D2
r

− 1

2

Dr

(ω + ν)2 +D2
r

, (A.6)

B1 =
e−Drt

D2
r + ν2

(
ν sin (νt)−Dr cos (νt)

)
+

Dr

D2
r + ν2

, (A.7)

B2 =
e−Drt

D2
r + ν2

(
−Dr sin (νt)− ν cos (νt)

)
+

ν

D2
r + ν2

, (A.8)

Y1(a, b, c) =
eat

a2 + c2
(a sin(ct+ b)− c cos(ct+ b))− a sin(b)− c cos(b)

a2 + c2
, (A.9)

Y2(a, b, c) =
eat

a2 + c2
(a cos(ct+ b) + c sin(ct+ b))− a cos(b) + c sin(b)

a2 + c2
, (A.10)

Z1(a, b, c) =
e−at

2

[
−a sin (t(ω − c)− b)

(ω − c)2 + a2
− (ω − c) cos (t(ω − c)− b)

(ω − c)2 + a2

− a sin (t(ω + c) + b)

(ω + c)2 + a2
− (ω + c) cos (t(ω + c) + b)

(ω + c)2 + a2

]

+
1

2

(ω − c) cos (b)

(ω − c)2 + a2
+

1

2

(ω + c) cos (b)

(ω + c)2 + a2

− 1

2

a sin (b)

(ω − c)2 + a2
+

1

2

a sin (b)

(ω + c)2 + a2
, (A.11)

Z2(a, b, c) =
e−at

2

[
−a cos (t(ω − c)− b)

(ω − c)2 + a2
+

(ω − c) sin (t(ω − c)− b)
(ω − c)2 + a2

+
a cos (t(ω + c) + b)

(ω + c)2 + a2
− (ω + c) sin (t(ω + c) + b)

(ω + c)2 + a2

]
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+
1

2

(ω − c) sin (b)

(ω − c)2 + a2
+

1

2

(ω + c) sin (b)

(ω + c)2 + a2

+
1

2

a cos (b)

(ω − c)2 + a2
− 1

2

a cos (b)

(ω + c)2 + a2
. (A.12)
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[16] Kaiser A and Löwen H, Vortex arrays as emergent collective phenomena for circle swimmers, 2013 Phys.

Rev. E 87 032712
[17] Redner G S, Hagan M F and Baskaran A, Structure and dynamics of a phase-separating active colloidal

fluid , 2013 Phys. Rev. Lett. 110 055701
[18] Cates M E and Tailleur J, When are active Brownian particles and run-and-tumble particles equivalent?

Consequences for motility-induced phase separation, 2013 Europhys. Lett. 101 20010
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