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Scaling of cluster growth for coagulating active particles
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Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied
by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings
dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length
of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring
particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth
exponents for the scaling of the cluster size with time and, for certain conditions, even leads to “explosive”
cluster growth where the cluster becomes macroscopic in a finite amount of time.
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I. INTRODUCTION

Phase separation of a homogeneous state into two distinct
bulk phases is not only relevant for many technological
processes but also constitutes a classical problem of nonequi-
librium statistical mechanics [1–4]. For ordinary fluids and
solids, the separation process is usually triggered by an
initial fluctuation from which a critical nucleus arises. This
initial cluster grows and ripens according to different scaling
laws [5]. Typically, the extension of the cluster increases
with a power law R(t) ∼ tα of time, where the exponent
α depends on the growth process and the dimensionality
d of the system. For ordinary (passive) systems, α varies
in the range between 1/3 and 1 [6]. More recently, both
for mesoscopic colloidal suspensions [7] and for complex
plasmas [8], the phase separation process has been studied
by observing the individual particle trajectories, giving insight
into the microscopic (i.e., particle-resolved) mechanisms of
the separation process [9].

While the physics of the phase separation processes
is by now well-studied and understood for inert, passive
particles, there is recent work demonstrating that similar
separation and clustering processes occur for an ensem-
ble of microswimmers. The latter can be regarded as ac-
tive particles in a solvent (experiencing a Stokes drag)
with an internal propulsion mechanism. In fact, there are
widely different realizations of such active particles, ranging
from swimming bacteria to artificial self-propelled colloidal
particles [10–12].

Basically, two different separation processes in active
systems occur. First, clustering can be purely motility induced
[13], such that it vanishes if the self-propulsion is removed
as recently demonstrated [14–22]. The simplest variant is
a swarm of self-propelled particles resulting in an overall
moving cluster. Second, there is already phase separation in
the unpropelled, passive system, which is then altered due
to the drive. This was considered, e.g., for a self-propelled
Lennard-Jones system with attractive particle interactions
[23,24]. Attraction can hardly be avoided in metal-capped
colloidal swimmers due to the mutual van der Waals forces
[23]. However, for active particles, the dynamical evolution
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of cluster growth, as characterized by a nontrivial growth
exponent α, has only rarely been considered apart from very
recent studies [18,25–28].

In this paper, phase separation is investigated in a situation
where active particles irreversibly coagulate with each other
on contact, resulting in a compact aggregate. Irreversible
coagulation is well understood for passive particles [29–33]
and the scaling of cluster size with time has been studied as
well [34–36]. We show here that activity of particles enables
qualitatively different and novel cluster growth behavior. Due
to the self-propulsion, clusters perform a persistent random
walk [37] in contrast to the typical diffusive motion of passive
particles. This allows a cluster of active particles to effec-
tively “sweep up” smaller clusters, which self-accelerates and
amplifies cluster growth considerably further. Our theoretical
analysis and computer simulation show that the cluster growth
scaling exponent α cannot only be considerably larger for
active particles than the known values for passive particles, but
that there is even a scenario of “explosive” cluster growth. We
refer to the term “explosion” if the cluster reaches macroscopic
size in a finite amount of time. Such explosive behavior was
found earlier in the context of gelation kinetics (see, e.g.,
Refs. [38–41]) and in phase separation in external fields, like
gravity [42].

In detail, the growth exponent α depends on the scaling
of the total propulsion force of a cluster with its size, the
persistence of the cluster trajectory, and the dimension d. We
present several cases for the scaling of the total propulsion
force of a cluster, which is determined by the type of swimmer,
the fraction of particles contributing to the propulsion and the
alignment of particles. If the cluster is driven by aligned surface
particles only, in d = 3 dimensions we find up to exponential
growth. Uncorrelated contribution of all particles leads to
algebraic growth with up to α = 2. Finally, if all particles in
the cluster propel the cluster in the same direction, “explosive”
growth becomes possible. These results apply for the case that
clusters possess a compact structure. Additionally, we also
consider the case where the growing cluster is fractal and
discuss briefly the scaling implications on the growth laws. All
our predictions are verifiable in experiments for self-propelled
particles with very strong van der Waals attraction, e.g., as
prepared in Ref. [23], phoretic attraction [14], or dipolar
interaction [43].
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II. SCALING THEORY

We perform our scaling theory in a general d-dimensional
space (d = 2, 3) and assume that self-propelled particles
irreversibly coagulate and form clusters with N member
particles and radius RN such that RN ∝ N1/d . In the following,
we refer to N as the cluster size. The cluster formation process
is described in a simplified way insofar as we consider compact
clusters only and distinguish between different extreme cases.
Once the particles contribute to the cluster, they stay fixed and
their direction of self-propulsion (or orientation) is frozen.
One may therefore distinguish two basic cases, one, where all
orientations of cluster particles are completely uncorrelated
and another where all directions are perfectly aligned. The first
case occurs if the orientational reordering is frozen-in during
coagulation (as realized for rough spheres) while the latter case
arises if there is a considerable alignment interaction during
the coagulation process (as realised for example for rod-like
artificial swimmers or bacteria). The next basic distinction
concerns the particles that really contribute to the overall
self-propulsion of the cluster. Here we also discuss two
extreme cases: either all cluster particles contribute in the same
way or only particles at the cluster boundary contribute. The
first case is realized for two-dimensional catalytic swimmers
on a substrate that are embedded in a bulk liquid such that
there is enough fuel all over the cluster. It also occurs for
coagulation of passive colloidal particles in gravity [42].
The second case of cluster surface activity is realized for
three-dimensional catalytic swimmers where a fuel-depletion
zone is created inside the cluster that reduces the push of
inside particles [44–46]. Moreover, catalytic swimmers move
along the gradient of the chemical, which also results in
surface activity of the growing cluster [44–46]. Surface cluster
activity also occurs due to hydrodynamics for pushers and
pullers. When swimming in a tight formation, the propulsion of
particles can be canceled by the flow created by the swimmers
behind them. Consequently, only the particles in the rear of
the cluster contribute to the total propulsion force [47], which
again scales with the surface of the cluster.

A single swimmer is propagated formally by an internal
force [48], which is compensated by the Stokes drag at low
Reynolds number resulting in a constant propagation velocity
v(0). All these individual forces F(i) (i = 1, . . . ,N) add up
to give the total force FN acting on the cluster of size N

and putting it into motion with a velocity vN . This force FN

is balanced by the Stokes drag acting on the cluster, which
scales in both d = 3 and d = 2 [49] as FN ∝ vNRN . This
after all yields different scalings for FN ∝ Nβ with a nontrivial
exponent β such that

vN ∼ FN/RN ∼ Nβ−1/d . (1)

We now focus more on the individual forces F(i) that
constitute FN . As discussed before, a fraction of the particles
in a cluster can be rendered inactive, implying F(i) = 0 for all
inactive particles. Apart from this we assume an additional
overall reduction of the nonvanishing F(i) with the cluster
size. We describe this reduction by assuming a further scaling
law F(i) ∝ Nγ with a general exponent γ . The exponent γ

vanishes for pushers and pullers [47,50] and for surface-
tension-driven self-propelled droplets [51–52]. However, there

(a) β = 1 + γ (b) β = d−1
d

+ γ

(c) β = 1
2

+ γ (d) β = d−1
2d

+ γ

FIG. 1. (Color online) Four cases for the scaling exponent β

of the total propulsion force FN with cluster size N in d spatial
dimensions. The arrows denote the directions of single-particle
contribution forces.

are other situations where the effective individual forces F(i)

of contributing particles depend on the cluster size N , such
that an overall reduction is relevant. Nontrivial values for γ

can be estimated by relating the scaling of the velocity v(0)

of an individual particle with its radius R(0) to the scaling
of vN with RN via Eq. (1). Phoretic particles in d = 3 are
propelled by a gradient generated on surface sites and their
velocity is usually independent of the particle radius in three
dimensions [46]. Ideally, the contributions of surface sites are
aligned parallel and add up. Hence, vN ∼ N (d−2)/d+γ should
not depend on RN ∼ N1/d in this situation, which yields
γ = −(d − 2)/d. Likewise, the velocity of phoretic particles
in a fuel-scarce environment is known to depend inversely
on the particle radius [45], implying vN ∼ N−1/d for aligned
surface contributions and thus γ = −(d − 1)/d.

Let us discuss the previously introduced four cases
(see Fig. 1) in more detail. For each of the four cases, one
can simply compute the exponent β for any prescribed γ as
follows: We define a further exponent λ, which measures the
particles contributing to the cluster propulsion such that FN ∼
NλF (i) ∼ NλNγ . Insertion into Eq. (1) yields β = λ + γ .
Contribution of all particles in case (a) means that λ = 1,
while the case (b) where only surface particles contribute
corresponds to λ = d−1

d
. Random alignment of the particles

imposes a factor 1/2 leading to λ = 1/2 in case (c) and
λ = d−1

2d
in case (d). These exponents are included in Fig. 1.

We now introduce a simple sweeping argument for active
particles leading to scaling laws for the cluster size as a
function of time t . Consider a typical cluster of size N traveling
through the system that has a uniform number density ρ̄ of
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particles on average, no matter whether they are members of
small clusters or noncoagulated, individual particles. There-
fore, any inhomogeneities and local fluctuations in the particle
and cluster distribution are neglected [53]. If V (t) denotes the
volume in d-dimensional space, which is covered by a cluster
of size RN moving with velocity vN during a time t , we assume
that all individual particles in this volume are irreversibly swept
by the cluster. Differentially in time this implies

dN

dt
= ρ̄

dV

dt
. (2)

Two limiting cases can be discriminated. In the so-called
ballistic regime, the persistence is so high that the cluster
trajectory appears straight on the length scale the cluster
possesses itself such that the rate of the swept volume is
dV
dt

∝ vNRN
d−1 ∼ N (d−2)/d+β . This will occur in any case

if the cluster becomes so large that rotational diffusion is
suppressed [54,55]. In the complementary case the cluster
moves diffusively. Then the effective diffusion constant of a
random walk with step velocity vN scales as DN ∼ vN

2 ∼
N2β−2/d , such that the volume swept out is given by [56]
dV
dt

∼ RN
d−2DN ∼ N (d−4)/d+2β . Insertion into Eq. (2) yields

ordinary differential equations for N (t) leading to our main
result:

N (t) =

⎧⎪⎪⎨
⎪⎪⎩

[
N0

2/d−β + C(2/d − β)t
] 1

2/d−β β < 2/d,

N0 exp(Ct) β = 2/d,

C(β − 2/d) (tc − t)
−1

β−2/d β > 2/d,

(3)

for the ballistic regime, and

N (t) =
{[

N0
4/d−2β + C(4/d − 2β)t

] 1
4/d−2β β < 2/d,

N0 exp(Ct) β = 2/d,
(4)

for the diffusive regime, where N0 = N (t = 0) is the initial
cluster size and C is a positive amplitude prefactor. The last
case of Eq. (3) corresponds to an explosive growth scenario,
where the cluster size diverges after a finite time tc = N0

2/d−β

C(β−2/d) .
Please note that β > 2/d is never realized in the diffusive
regime, as the cluster size would explode, which necessarily
puts the system into the ballistic regime. When measuring size
in terms of the cluster radius the algebraic growth exponents
of R(t) ∝ tα are given by α = 1

2−βd
in the ballistic regime and

α = 1
4−2βd

in the diffusive regime, which can be very large
when βd is close to but below 2.

III. SIMULATION

Using computer simulation, we investigate the cluster
growth for various values of β and different persistence lengths
of cluster trajectories. The scaling of the total cluster force
with an exponent β from Eq. (1) is an input in the simulation.
Nevertheless, the final scaling of the cluster size with time
as predicted by Eqs. (3) and (4) is not an input but an
output. Therefore, this final scaling behavior is tested by our
simulations. Moreover, the crossover to a possible ultimate
scaling for finite clusters can be addressed and computed in a
simulation.

In detail, the particles and compact clusters in these
simulations are modeled as spherical droplets with radius

RN = R(0)N1/d , so that the total volume of all member
particles is conserved. Initially, single particles start at random
positions in a periodic simulation box with velocity v(0) and
random direction. Particle collision events are predicted and on
contact, particles merge at their center of mass, forming larger
clusters, which again merge when colliding. The velocity of
clusters is assigned to vN = v(0)Nβ−1/d . To model changes in
the traveling direction of clusters in a general way, we use
the following approach. After a reorientation time step �t ,
a deviation from the current cluster direction is sampled for
each member particle and the new cluster direction is taken
as the average of all the member particle deviations. Then the
collision events for the new time step are predicted. When
two clusters merge, we weight each cluster with its number of
member particles in the direction of the merged cluster. Since
the averaging process is a biased random walk, the persistence
length of cluster trajectories increases with cluster size N . We
sample the direction deviations of each particle from a von
Mises-Fisher distribution [57] with concentration parameter
κ , which is used as an input parameter. This distribution plays
the role of the normal distribution on the d-dimensional unit
sphere and κ is similar to an inverse variance and determines
the persistence of the trajectories such that we refer to κ as the
persistence parameter in the following. Both the ballistic and
diffusive regime can be gained as extreme limits κ → ∞ or
κ = 0.

The single-particle radius R(0) defines the length scale
in the system, while the time τ = R(0)/v(0) a single-particle
requires to travel its own radius is used as time scale. We

(a) t = 0 (b) t = 71.6τ

(c) t = 143.2τ

200R(0)

(d) t = 214.8τ

FIG. 2. (Color online) Typical simulation snapshots at various
times, here in a two-dimensional simulation of N = 104 total
particles at packing fraction η = 0.02 with β = 1 and persistence
parameter κ = 100. Snapshot (d) shows the situation just before the
simulation is terminated.
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(e) β = 2/3, d = 3
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FIG. 3. (Color online) Cluster size evolution obtained from simulations in d = 2, 3 dimensions with various values of the persistence
parameter κ and the total propulsion force scaling exponent β. Algebraic growth in the diffusive regime [(a), (b)] as well as in the ballistic
regime [(c), (d)] occurs with the predicted exponents as indicated in the plots. Exponential growth (e) in the ballistic regime occurs faster than
in the diffusive regime as indicated by the much higher slope. For high persistence and high force scaling, explosive cluster growth occurs (f).
The dashed lines are fits using Eqs. (3) and (4), respectively.
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chose �t = 0.1τ , which is sufficiently small when using a
collision event prediction scheme. The packing fraction is
taken as η = 0.02 with N = 106 initial particles. We vary
the scaling exponent β of the total propulsion force as well
as the persistence parameter κ in d = 2, 3 dimensions. Since
at late times the system is depleted of particles and the
anticipated scaling laws clearly cannot be observed any more,
we terminate the simulation as soon as a cluster reaches a size
of RN > 0.05L, where L is the box length. Typical snapshots
from a simulation are shown in Fig. 2.

Figures 3(a) and 3(b) show the evolution of the mean cluster
size N (t) in two- and three-dimensional simulations in the
diffusive regime (κ = 0) for various values of β < 2/d. Fits
of N (t) with Eq. (4) possess the predicted algebraic scaling.
Data in the ballistic regime are shown in Figs. 3(c) and 3(d).
The predicted scaling exponent for the algebraic growth is
verified for all values of β.

For the case of β = 2/d, the predicted exponential growth
in both regimes is reproduced by the simulations, and the
prefactor C in the ballistic regime is significantly larger than
in the diffusive regime; see the slope of the semilogarithmic
plots in Fig. 3(e). The slope of the plot for κ = 1 steadily
increases until it reaches the level for κ = 100 as clusters in this
system need to grow first to enter the ballistic regime. Finally,
for β > 2/3 in three dimensions explosive cluster growth is
documented in Fig. 3(f), which confirms the predicted scaling
∼(tc − t)−3.

IV. FRACTAL AGGREGATES

Our results can be further extended to clusters that lack the
reorganization mechanism leading to a compact shape. When
particles and clusters simply stick to each other on the first
point of contact, the resulting shapes possess a ramified and
fractal structure [29,32].

The size of such aggregates can be conveniently described
by the radius of gyration R

(g)
N , which replaces RN and is

approximately proportional to the hydrodynamic radius R
(h)
N

[58,59]. A structure with fractal dimension dF (1 � dF � d)
then implies the scaling R

(g)
N ∼ N1/dF . Therefore, the analog

to Eq. (1) for fractal clusters is

vN ∼ FN

/
R

(h)
N ∼ FN

/
R

(g)
N ∼ Nβ−1/dF . (5)

We have performed additional simulations implementing
irreversible sticking of particles at the point of contact.
Equation (5) is taken into account by assigning the cluster ve-
locity to vN = v(0)Nβ/R

(g)
N . Therefore, the radius of gyration

of each cluster has to be tracked throughout the simulation.
Apart from this, the simulation follows the same procedure
as in Sec. III. Figure 4 shows typical snapshots confirming
the ramified structure of the aggregates. We have determined
the fractal dimension dF from the simulation data for the
cluster structure. Results for dF are presented in the legends of
Fig. 5.

In addition to the drag, the radius of gyration also
determines the collision cross-section of the cluster. Applying
the same simple sweeping argument used in Sec. II, we

obtain dV
dt

∝ vNR
(g)
N

d−1 ∼ N (d−2)/dF +β for the rate of the

(a) t = 0 (b) t = 40τ

(c) t = 80τ

100R(0)

(d) t = 121τ

FIG. 4. (Color online) Typical snapshots of a two-dimensional
simulation of fractal clustering using the same parameters as
described in the legend of Fig. 2, except for the persistence parameter
κ , which is now chosen to be κ = 10.

swept volume in the ballistic regime and dV
dt

∼ R
(g)
N

d−2
DN ∼

N (d−4)/dF +2β in the diffusive regime. Obviously, the sweeping
volumes of compact clusters are recovered when setting
dF = d. Insertion into Eq. (2) then yields the scaling relations

N (t) =

⎧⎪⎪⎨
⎪⎪⎩

[
N0

ξb−β + C(ξb − β)t
] 1

ξb−β β < ξb,

N0 exp(Ct) β = ξb,

C(β − ξb) (tc − t)
−1

ξb−β β > ξb,

(6)

for the ballistic regime where the abbreviation ξb = (2 − d)/
dF + 1 is used. The critical time for explosive growth is
tc = N0

ξb−β

C(β−ξb) here. Note that for d = 2 these results are
indistinguishable from Eq. (3) as ξb does not depend on dF

for d = 2.
For the diffusive regime we obtain the scaling law

N (t) =
{[

N0
ξd−2β + C(ξd − 2β)t

] 1
ξd −2β β < ξd/2,

N0 exp(Ct) β = ξd/2,
(7)

with ξd = (4 − d)/dF + 1. Contrary to the behavior in the
ballistic regime, the threshold value for β corresponding to
exponential growth is raised as compared to compact clusters.
Similarly, the algebraic growth exponents are lower for the
same value of β.

Computer simulation results verifying the growth behavior
for d = 2 in the ballistic regime are shown in Fig. 5(a) for the
case of algebraic growth as well as in Fig. 5(b) for exponential
growth. In fact, for d = 2, the algebraic growth exponents
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FIG. 5. (Color online) Fractal cluster-size evolution obtained from simulations in d = 2, 3 dimensions with various values of the persistence
parameter κ and the total propulsion force scaling exponent β. For d = 2 in the ballistic regime (a), the same scaling laws hold as in the
compact case. Accordingly, the threshold for exponential growth in the ballistic regime (b) remains at β = 1. In the diffusive regime for d = 2
(c) the fractal dimension dF enters the scaling laws and leads to slower growth as compared to the compact case. Thresholds in β for explosive
growth are lower for dF < d so that such growth behavior occurs already for β = 2/3 when d = 3 (d). The dashed lines are fits using Eqs. (6)
and (7), respectively.

and the threshold for exponential growth are the same as in the
compact case. Conversely, for d = 3, Fig. 5(d) shows explosive
growth at high persistence not only for β = 1 but also for β =
2/3, confirming the reduced threshold. Finally, the prediction
that the algebraic growth exponents in the diffusive regime
are lower than in the compact case due to the influence of the
fractal dimension is confirmed in Fig. 5(c), where results for
algebraic scaling in the diffusive regime for d = 2 are shown.

V. CONCLUSIONS

In conclusion, we have investigated the scaling of cluster
size with time for active particles in a solvent that irreversibly
coagulate on collision by using theory and simulation. The
scaling laws heavily depend on the scaling exponent β of
the total propulsion force of clusters. We identify four main
scenarios for the total propulsion force scaling. If all particles
in a cluster are aligned and able to contribute, the fastest
growth is possible. Completely uncorrelated directions of

particles lead to a significantly weaker scaling. Furthermore,
hydrodynamics, fuel scarcity, or lack of a field gradient
required for propulsion can lead to the situation that only
particles on the surface of a cluster can contribute. These
contributing particles can again be completely aligned or their
directions can be completely uncorrelated. The scaling of the
total propulsion force is then further modified by the details
of the propulsion mechanism and the thereby implied scaling
exponent γ of the single-particle contribution force with the
size of the cluster.

Another crucial ingredient is the persistence length of
cluster trajectories. In the diffusive regime, the persistence
length is much smaller than the extension of clusters. Clusters
explore the system volume and encounter each other on a
diffusive time scale. More efficient growth occurs in the
ballistic regime applying for a persistence length much larger
than the cluster extension, where clusters sweep through the
system volume on their semiballistic trajectories. The ballistic
regime should be more relevant for active particle clusters
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since the persistence length of trajectories of active particles is
usually rather large and tends to increase with aggregate size.

We have verified these predictions in a simulation of
compact clusters modeled as droplets that merge on contact
in d = 2, 3 dimensions. The simulation data shows good
agreement with the model scaling laws and gives the correct
algebraic growth exponents or exponential growth correspond-
ing to the various values of β in both regimes.

Additionally, we extended our model to fractal clusters
that show a different growth behavior due to increased drag
(hampering growth) and increased collision cross-section
(enhancing growth). In the ballistic regime, the increased
collision cross-section dominates the increased drag, leading to
faster growth. However, in the diffusive regime, the increased
drag dominates, resulting in a comparatively slower growth.

Given a sufficiently strong attraction between particles
leading to irreversible coagulation, our findings are verifiable
in experiments [14,23,43]. Usually it is attempted to avoid
attractions like van der Waals attraction appearing in metal-
capped active particles. However, by intentionally enhancing
the attraction to a level where particles cluster irreversibly the
prerequisites of our theory can be met.
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