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Universitätsstraße 1, D-40225 Düsseldorf, Germany

2Department of Physics, Kyoto University, Kyoto 606-8502, Japan
3Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

(Received 18 November 2013; published 6 February 2014)

A recently introduced active phase field crystal model describes the formation of ordered resting and traveling
crystals in systems of self-propelled particles. Increasing the active drive, a resting crystal can be forced to
perform collectively ordered migration as a single traveling object. We demonstrate here that these ordered
migrating structures are linearly stable. In other words, during migration, the single-crystalline texture together
with the globally ordered collective motion is preserved even on large length scales. Furthermore, we consider
self-propelled particles on a substrate that are surrounded by a thin fluid film. We find that in this case the resulting
hydrodynamic interactions can destabilize the order.
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I. INTRODUCTION

Self-propelled particles convert chemical [1–4], magnetic
[5,6], or radiation energy [7–9] into directed motion. In
this way, kinetic energy is intrinsically introduced into the
corresponding system on the single-particle level and length
scale, in contrast to a process of macroscopic stirring or
shaking from outside. Far-reaching consequences on the
single-particle behavior as well as on their collective properties
emerge.

Single artificially generated Janus particles can start to
self-propel mostly due to phoretic effects when one of the
two sides is selectively heated by laser light [7–9] or catalyzes
a chemical reaction [2,4]. In a liquid environment, such single
colloidal particles obey rotational as well as translational
diffusion. On time scales that are short when compared to the
characteristic rotational diffusion time, self-propulsion shows
up as directed motion. On significantly longer time scales,
the overall diffusion coefficient is considerably enhanced
[2,8–10]. Also the consequences of a possible additional
particle deformability were studied extensively [11–19] as
it may occur, for example, for self-propelled droplets on
surfaces [20–25] or in a bulk fluid [3]. Another example
of artificial self-propelled particles is granular hoppers that
transform vertical vibration energy into directed horizontal
motion [26–28].

On the biological side, the conversion of chemical energy
into directed motion allows bacteria to individually search for
food [29] or to swim towards or away from illuminating light
[30]. Likewise, chemical energy is used by bacteria, amoebae,
or tissue cells to crawl on substrates [31–33]. Propulsion
mechanisms are manifold and reach from the beating of
a single flagellum [34] via twisting deformations of whole
filamental bacterial bodies [35] to the synchronization of the
motion of thousands of cilia [36–39].

When many self-propelled particles act together, collective
modes of migration emerge, such as swarms that move as
single entities [31–33], traveling density bands [40–43], or
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lanes of counterpropagating particles [16,44,45]. Even turbu-
lent states arise that are based on the energy conversion on the
single-particle length scale [45,46]. Already without adhesive
interactions and in the absence of alignment mechanisms,
clusters of self-propelled particles can form in high-density
systems [47–49]. These clusters appear when there is no
interaction that aligns the migration directions of different
particles so that they can mutually block their motion. For
monodisperse two-dimensional systems, hexagonal packing
can arise [50]. Confining walls can support a local clustering or
trapping of self-propelled particles at the boundaries [51–54].

If the particle interaction is strong enough compared to their
self-propulsion, then a formation of active crystals composed
of self-propelled particles is to be expected [55]. For this
scenario, particle simulations demonstrated the emergence
of crystal-like objects that collectively migrate as a single
structure [56–58]. In contrast, the approach that we recently in-
troduced [59] and analyze here in breadth is a complementary
continuum one. It combines the description of crystalline ma-
terials by the phase field crystal model [60–62] with ideas from
the Toner-Tu model [63,64] to characterize active crystalline
systems of self-propelling objects [16,50,56–58,65,66]. There
is a lack of field-theoretic approaches preceding Ref. [59]
that include the translational ordering in active crystals of
self-propelled particles.

The phase field crystal model is a microscopic field
approach introduced by Elder et al. to efficiently model
processes in crystalline materials with particle resolution, but
on diffusive time scales [60,61]. In this way it can reproduce
results from molecular dynamics simulations [67], yet in
a computationally much more efficient way. Motivated by
dynamical density functional theory [68–71], the phase field
crystal model can in principle be viewed as a microscopic the-
ory describing a manifold of solidification and crystallization
phenomena. Examples are defect motion in strained crystals
and multidomain structures [72–74], epitaxial growth [60,61],
crystal pinning [75], crystal growth of binary alloys [60,68],
branching in crystal growth [76], or even crack propagation
[61].

Quite contrarily, the Toner-Tu model is a macroscopic
hydrodynamiclike continuum description of systems of
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self-propelling objects [63,64]. Local spatial, i.e., translational,
order of the single particles is not resolved or explicitly
taken into account. The focus in this model is on the
orientational order of the migration directions and thus on the
macroscopic emergence of collective motion. It was argued
that, if locally the migration directions spontaneously order,
long-range orientational order of the migration directions and
therefore global collective motion into one single collective
direction emerges even in two spatial dimensions [63,64,77].

Our present work starts from an active phase field crystal
model that we recently introduced in a previous study [59].
It combines ideas from the two outlined theories, namely,
the equilibrium phase field crystal model and the Toner-Tu
approach. We extend our previous investigation by providing,
for example, more details about inverse active lattice structures
and the migration speeds of the collectively migrating textures.
Our main focus here is on the stability of traveling active
crystals. We therefore perform a linear stability analysis of
these structures and demonstrate linear stability even on large
length scales that are not accessible by direct numerical
simulations. Furthermore, for particles self-propelling on a
substrate and surrounded by a thin fluid film, we include the
influence of hydrodynamic interactions: They can disturb or
destroy the crystalline and orientational order.

II. ACTIVE PHASE FIELD CRYSTAL MODEL

As a first step we derive in this section our active phase field
crystal model on the basis of dynamical density functional
theory for Brownian systems [78,79]. We consider a system of
self-propelled particles in two spatial dimensions. Examples
would be amoebae or tissue cells crawling on a substrate
[31–33] or granular hoppers that move horizontally on a
vibrating plate and cannot jump over each other [26–28]. Such
systems can directly exchange momentum with the ground.
The same should also be true for low Reynolds number
swimmers in a thin film of fluid on a substrate [8,9].

We assume that each particle migrates with an effective
active drive of magnitude v into an individual direction that
is characterized by a unit vector û. The one-particle density
distribution function is therefore given by ρ(x,û,τ ), with x the
spatial coordinate and τ the time. In two spatial dimensions,
the orientation of û can be parametrized by a single angle
ϑ . Thus the dynamical equation for the one-particle density
follows as [51]

∂ρ(x,û,τ )

∂τ
= ∇ · D̃T ·

(
βρ(x,û,τ )∇ δF̃

δρ(x,û,τ )

)

+ D̃r∂ϕ

(
βρ(x,û,τ )∂ϕ

δF̃
δρ(x,û,τ )

)

−∇ · D̃T · [ρ(x,û,τ )vû/D̃‖]. (1)

In this equation β = (kBT )−1 sets the inverse thermal energy,
D̃T = D̃‖ûû + D̃⊥(I − ûû) is the translational diffusion ten-
sor, D̃r denotes the rotational diffusion constant, and F̃ is
an equilibrium energy functional that will be specified below.
The effect of self-propulsion enters through the last term on
the right-hand side via the magnitude of the active drive v.

Our next step is to derive dynamical equations for
the particle density and for the polar orientational order of the
self-propulsion directions. We denote the average value of the
one-particle density distribution function ρ(x,û,τ ) by ρ̄, i.e.,

ρ̄ = 1

V 	

∫
ρ(x,û,τ )dû dx, (2)

which is a conserved quantity in a closed system. Here V is the
spatial volume of the system and 	 is the surface area of the
unit sphere. The modulation of the particle density ρ̄φ̃1(x,τ )
around ρ̄ is obtained by integrating out the orientational
degrees of freedom from ρ(x,û,τ ) and subtracting ρ̄,

ρ̄φ̃1(x,τ ) = 1

	

∫
ρ(x,û,τ )dû − ρ̄. (3)

Furthermore, we take into account the first orientational
moment of ρ(x,û,τ ), which we define as

ρ̄P̃(x,τ ) = d

	

∫
ρ(x,û,τ )û dû, (4)

with d ∈ {2,3} the dimensionality of the system. From this
definition it becomes evident that the polarization field P̃(x,τ )
describes the local orientational order of the active driving
directions û of the self-propelled particles. Similarly to the
procedure in Refs. [80–82], we expand the one-particle density
with respect to its orientational dependence as

ρ(x,û,τ ) ≈ ρ̄ + ρ̄φ̃1(x,τ ) + ρ̄ û · P̃(x,τ ) + · · · . (5)

To proceed we insert this expansion into Eq. (1). From the
resulting equation, the different Fourier modes in terms of
the angle ϕ are calculated. In this way we obtain dynamical
equations for ρ̄φ̃1 and ρ̄P̃ similar to the ones in Refs. [80–82],
now, however, including the active drive. Applying the
approximation of constant mobility and assuming an isotropic
translational diffusion D̃‖ ≈ D̃⊥ ≈ D̃, the resulting expres-
sions are considerably simplified. We finally find

∂τ (ρ̄φ̃1) = βD̃ρ̄

2π
∇2 δF̃

δ(ρ̄φ̃1)
− v

2
∇ · (ρ̄P̃), (6)

∂τ (ρ̄P̃) = βD̃ρ̄

π
∇2 δF̃

δ(ρ̄P̃)
− βD̃r ρ̄

π

δF̃
δ(ρ̄P̃)

− v∇(ρ̄φ̃1). (7)

In the following we specify the free energy functional F̃ .
More precisely, we introduce

F̃ = F̃PFC + F̃P̃ (8)

as a sum of a translational part F̃PFC and an orientational part
F̃P̃.

On the one hand,

F̃PFC =
∫

d2x

{
1

2
φ
[
a�T + λ

(
q2

0 + ∇2
)2]

φ + u

4
φ4

}
(9)

is the free energy introduced as the phase field crystal model
[60,61]. Here the order parameter φ is related to the field φ̃1

in Eq. (5) via φ = φ̄ + φ1 and φ1 = ρ̄φ̃1. The parameters a, λ,
and u determine the magnitude of the energetic contributions,
whereas �T is a measure for the temperature. Minimizing
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this functional for an equilibrium system leads to fluidlike
states at higher temperatures or high values of |φ̄|, hexagonally
crystalline states at lower temperatures and intermediate values
of |φ̄|, and lamellar states at lower temperatures and low
values of |φ̄| [61]. The characteristic length scale of the
hexagonally crystalline and lamellar structures is determined
by the magnitude of q−1

0 in Eq. (9).
On the other hand, the orientational part is given by

F̃P̃ =
∫

d2x

{
1

2
C̃1(ρ̄P̃)2 + 1

4
C̃4[(ρ̄P̃)2]2

}
. (10)

The concept behind this free energy is similar to the original
approach by Toner and Tu [63,64]. We have C̃4 � 0 due to
thermodynamic stability. If C̃1 < 0 and C̃4 > 0, the system can
reduce its free energy by an orientational ordering of the self-
propulsion directions, given by a nonzero solution of ρ̄P̃. This
corresponds to an intrinsic tendency towards ordered collective
motion. If C̃1 > 0, orientational ordering of the self-propulsion
directions always costs orientational free energy. Consequently
there is a tendency to avoid collectively ordered motion. This
case shows a richer behavior than the other one and will mainly
be considered below.

Predominantly using the Ramakrishnan-Yussouff expan-
sion [83], the phase field crystal model could be connected to
density functional theory [68,69]; for a review see Ref. [62].
Expressions for the phenomenological parameters in terms
of microscopic correlation functions could be derived. After-
wards the procedure was extended to the case of an additional
orientational order [80–82,84]. Likewise microscopic expres-
sions for the corresponding phenomenological parameters
were listed in these references and we do not repeat them
here.

To finally obtain our dynamical equations, we introduce
Eqs. (8)–(10) into Eqs. (6) and (7). Moreover, we apply the
rescaling rules [61]

φ = (
λq4

0u−1)1/2
ψ, a�T = λq4

0ε, x = q−1
0 r. (11)

This rescales φ = φ̄ + φ1 to ψ = ψ̄ + ψ1. All lengths from
now on are measured in units of the characteristic length scale
q−1

0 of the phase field crystal structures.
An additional simplification of the notation follows from

the further rescaling according to Appendix A. Denoting the
rescaled time by t , we obtain our dynamical order parameter
equations in the final form [59]

∂tψ1 = ∇2
{
[ε + (1 + ∇2)2 + 3ψ̄2]ψ1 + 3ψ̄ψ2

1 + ψ3
1

}
− v0∇ · P, (12)

∂tP = ∇2(C1P + C4P2P) − Dr (C1P + C4P2P) − v0∇ψ1.

(13)

The field ψ1 is a measure for the local particle density,
whereas the field P measures the local orientational order of
the active driving directions of the self-propelled particles.
Here ε controls the temperature, ψ̄ the mean density, and
v0 the strength of the active drive of the individual particles.
The ordering behavior of the active driving directions of the
self-propelled particles is determined by C1 and C4, whereas
Dr describes the orientational diffusion of the active drive
directions.

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) Snapshots of the order parameter fields
illustrating the different phases that appear at (ε,C1,C4,Dr ) =
(−0.98,0.2,0,0.5) for increasing active drive v0. The mean density
is (a)–(d) ψ̄ = −0.4 and (e) and (f) ψ̄ = 0.4. In the first four
panels, the active drive v0 of the individual particles increases from
(a) v0 = 0.1 via (b) v0 = 0.5 and (c) v0 = 1 to (d) v0 = 1.9. In all
snapshots, brighter color corresponds to higher densities ψ1, whereas
the thin bright needles illustrate the polarization field P pointing
from the thick to the thin ends. Starting from (a) a resting hexagonal
structure, increasing the active drive first leads to (b) a traveling
hexagonal texture, then (c) a traveling quadratic structure, and
finally (d) traveling lamellae. (e) and (f) Inverse traveling structures
corresponding to (b) and (c), respectively, i.e., a traveling honeycomb
and a traveling inverted quadratic texture. The thick bright arrows
indicate the predominant direction of migration of the structures in
(b)–(f). Only a fraction of the numerical calculation box is shown.

III. PREDICTIONS OF THE MODEL

As noted above, the equilibrium phase field crystal model
based on Eq. (9) shows hexagonally crystalline structures in a
certain range of temperature ε and mean density ψ̄ . Changing
the temperature or mean density, hexagonal textures can be
transformed into lamellar ones. In the nonequilibrium case
considered here, such a transition can also be achieved by
increasing the active drive v0 of the individual self-propelled
particles [59]. This scenario is depicted in the first four panels
of Fig. 1.
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The snapshots shown in the figure were obtained by
numerically solving Eqs. (12) and (13), starting from random
initial conditions. We start with a low value of the active drive
v0 and a hexagonal structure in Fig. 1(a). For the parameter
values listed in the figure caption, density peaks form that are
symmetrically located within +1 defects of the polarization
field. The overall structure remains at rest. This changes with
increasing v0, when the symmetry of the density peak positions
with respect to the +1 defects of the polarization field is
spontaneously broken. This spontaneous shift of the density
peaks out of the centers of the +1 defects of the polarization
field represents the symmetry breaking necessary for a net
active propulsion to emerge. As a whole, the structure starts
to migrate (travel) collectively [Fig. 1(b)]. Further increasing
v0 deforms the traveling hexagonal crystal to a traveling
rhombic crystal and then to a traveling quadratic crystal
[Fig. 1(c)]. Finally it leads to a transition to traveling lamellae
[Fig. 1(d)].

Typically, when thinking of crystalline textures in this
way, we would identify each density peak with one particle.
However, also the situation of cluster crystals is included by our
approach. In that case several particles occupy one lattice site
[85]. Such active cluster crystalline structures were observed
before in a system of deformable self-propelled particles
[16] and in a modified Vicsek model confined between two
parallel walls [66]. Furthermore, traveling crystalline textures
have been observed previously in three-component reaction-
diffusion systems [86–88].

When we thus identify each density peak in the first four
panels of Fig. 1 with a cloud of self-propelled particles, we can
similarly interpret the corresponding active inverted textures.
These inverted structures are obtained by noting a special
symmetry relation of Eqs. (12) and (13). The equations remain
invariant under the simultaneous transformations ψ̄ → −ψ̄ ,
ψ1 → −ψ1, and P → −P. Consequently, through inversion of
the patterns in Figs. 1(a)–1(d), we find with increasing active
drive a resting honeycomb texture, a traveling honeycomb
lattice, a traveling inverted squared texture, and again traveling
lamellae. For illustration, we show the traveling honeycomb
and the traveling inverted square textures in Figs. 1(e) and 1(f),
respectively. In the following, we will concentrate on the
characterization of hexagonal, rhombic, and quadratic crys-
talline textures. Nevertheless, the results apply equally for
the inverted structures due to the symmetry property of the
dynamical equations. Active honeycomb textures are formed,
for example, by flagellated marine bacteria [89,90].

To quantify the collective motion of the active crystals, we
tracked the migration of each individual density peak in the
sample. For this purpose, the center of each density peak was
determined at fixed time intervals. On the one hand, this time
interval was short enough so that identical density peaks could
be identified before and after each migration step. On the other
hand, it should be long enough so that the migration step is
larger than the mesh size of the calculation grid. It was shown
previously that, at least for the finite system sizes investigated,
a collectively traveling single crystal develops from the random
initial conditions via an intermediate multidomain structure
[59]. At the end of this coarsening process towards the active
single crystal, all density peaks migrate collectively in the
same direction.

FIG. 2. (Color online) Collective migration speed vm of the sin-
gle crystals as a function of the active drive v0 of the individual
particles at (ε,ψ̄,Dr ) = (−0.98, − 0.4,0.5). For C1 < 0 and C4 > 0
(squares) the directions of active drive of the individual particles order
spontaneously and the structures travel collectively with vm = v0.
A nonzero threshold appears for C1 = 0 and C4 > 0 (rhombi). At
C1 > 0 and C4 � 0 (circles) the directions of active drive of the
individual particles do not order spontaneously. Then the structures
are at rest (vm = 0) below a finite threshold value v0,c; they start to
travel collectively with nonzero vm < v0 above the threshold.

The migration speed vm of the resulting active single crystal
follows from a sample average of the peak velocity magnitudes
of all density peaks vm = ∑Np

i=1 ‖vi‖/Np. Here Np denotes the
total number of all density peaks in the sample. The velocities
vi of the individual density peaks, with i = 1, . . . ,Np, follow
from the tracking procedure described above. Corresponding
results are depicted in Fig. 2 for characteristic values of the
parameters C1 and C4. As mentioned above, these parameters
control the spontaneous orientational ordering of the migration
directions of the individual self-propelled particles. We plot in
Fig. 2 the collective migration speed vm of the single crystal as
a function of the active drive v0 of the individual self-propelled
particles.

For C1 > 0 the active driving directions of the individual
particles do not order spontaneously. At low values of the
active drive v0, the overall hexagonally crystalline structure
remains at rest, i.e., vm = 0. This corresponds to the situation
in Fig. 1(a). Only at a nonzero threshold value v0,c do the
crystals start to travel collectively; see also Fig. 1(b). Here the
nonzero value of C4 > 0 only plays a minor quantitative role
and a similar curve is obtained for C4 = 0.

In contrast, there is no threshold when the active driving
directions of the individual particles order spontaneously, i.e.,
C1 < 0 and C4 > 0. The whole crystalline structure migrates
at each nonzero value of the active drive v0 of the individual
particles. Even more, the whole crystal propels collectively at
the speed of the individual particles, i.e., vm = v0. In addition
to this curve of negative C1, we show in Fig. 2 an intermediate
case of C1 = 0 and C4 > 0. There the nonlinear C4 term leads
to a small residual threshold behavior at low values of v0.

During the remaining part of this paper we will be
concerned with the case of C1 > 0 and C4 = 0. It shows the
richer behavior due to the emergence of resting as well as
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traveling structures that are separated by the finite threshold
value v0,c.

IV. LINEAR STABILITY ANALYSIS

Introducing a hydrodynamiclike continuum theory, Toner
et al. studied the collective motion of flocks of self-propelling
objects [63,64,77]. Their focus was mainly on the orienta-
tional ordering of the self-propulsion directions and not on
a translational, possibly crystalline order of the individual
objects. The theory contains nonlinear convective terms due
to self-propulsion. Analyzing their model, Toner et al. found
that long-ranged orientational order of the self-propulsion
directions can arise in two spatial dimensions [63,64,77],
in contrast to what is known for orientational ordering in
equilibrium systems [91].

Such nonlinear convective terms that could lead to long-
range orientational order of the self-propulsion directions are
absent in our approach. Therefore the question arises whether a
very large crystal will still migrate as a single structure into one
direction or whether it will break up into domains of different
migration directions.

Instead of the nonlinear convective terms, however, our
approach contains a kind of elastic interaction. The phase
field crystal free energy functional FPFC of Eq. (9) acts in the
form of a chemical potential in the dynamical equation (12)
for the density. It enforces a locally spatially periodic arrange-
ment of the density peaks with a characteristic wave number.
Deviations from this order are energetically penalized.

It has been demonstrated in particle simulations [57,58]
that solely elastic interactions between self-propelled particles,
without any explicit alignment interaction [92], can induce
global collective motion in one common migration direction.
There the elastic interactions guided the particles to find
a global mode of migration, even under the influence of
moderate stochastic noise. In this way, elasticity enforced
global collective motion. Due to the finiteness of the system
sizes it is difficult, however, to make a rigid statement about
what happens on very large length scales on the basis of the
particle simulations.

Our continuum field approach offers an advantage in
this respect. The explicit dynamical equations (12) and (13)
contain all length scales. In principle, their investigation is
not limited to a certain system size. An arbitrarily large
system can be analyzed. In reality, however, to get an explicit
solution, we have to solve the equations on a finite numerical

lattice. Nevertheless, we can extract from our equations the
information of whether an arbitrarily large single crystal with
a single migration direction is linearly stable. Our procedure
will be described in the following. As mentioned before, we
confine ourselves for this purpose to the case in which the self-
propulsion directions do not spontaneously order, i.e., C1 > 0
(C4 = 0).

As a first step we linearize the dynamical equations (12) and
(13) with respect to a small perturbation δψ1(r,t) and δP(r,t)
of the order parameter fields

ψ1(r,t) = ψ10(r,t) + δψ1(r,t), (14)

P(r,t) = P0(r,t) + δP(r,t). (15)

Here ψ10(r,t) and P0(r,t) correspond to the solutions
obtained from directly solving numerically the dynamical
equations (12) and (13). These solutions describe, on the finite
size of the numerical calculation grid, a single-crystalline
structure as illustrated, for example, in Fig. 1. In our case, the
converged steady-state solutions ψ10(r,t) and P0(r,t), around
which we perturb the system, are spatially inhomogeneous.
This significantly complicates the analysis, as will be shown
below.

From the linearization we obtain

∂tδψ1 = ∇2
{
[ε + (1 + ∇2)2 + 3ψ̄2]δψ1 + 6ψ̄ψ10δψ1

+ 3ψ2
10δψ1

} − v0∇ · δP, (16)

∂tδP = ∇2C1δP − DrC1δP − v0∇δψ1. (17)

Since the coefficients of the perturbations in the second equa-
tion are constant, the system of equations can be significantly
simplified in Fourier space. We apply the transformations in
the form

δψ1(q,ω) =
∫

d2r e−iq·r
∫

dt e−iωt δψ1(r,t), (18)

δP(q,ω) =
∫

d2r e−iq·r
∫

dt e−iωt δP(r,t). (19)

Equations (16) and (17) are transformed accordingly. Then the
second equation can be solved for δP(q,ω), which is inserted
into the first equation. In this way, the system of equations
(16) and (17) is reduced to a single equation on the scalar
order parameter field δψ1(q,ω), which reads

iωδψ1(q,ω) = −q2

(
[ε + (1 − q2)2 + 3ψ̄2]δψ1(q,ω) + 6ψ̄

(2π )3

∫
d2q ′

∫
dω′ψ10(q − q′,ω − ω′)δψ1(q′,ω′)

+ 3

(2π )3

∫
d2q ′

∫
dω′ψ2

10(q − q′,ω − ω′)δψ1(q′,ω′)
)

− q2v2
0

C1(Dr + q2) + iω
δψ1(q,ω). (20)

As we can see, the analysis becomes nonlocal in Fourier
space. The reason is the spatial modulation of the traveling
or resting unperturbed structures, as they are, for example,
depicted in Fig. 1. In principle, Eq. (20) represents an
infinite system of equations in which all modes δψ1(q,ω)

of different q and ω are coupled. A similar situation oc-
curs in the study of microphase-separated diblock copoly-
mer systems [93]. There, however, an equilibrium situation
is investigated, which allows a different treatment of the
problem.
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Fortunately the situation can be simplified by exploiting
the regular nature of the unperturbed states ψ10(r,t). First, the
structures form a steady state in the sense that they migrate as
a single object with a constant migration velocity vm. In the
comoving frame, the single crystals are at rest. Second, the
spatial modulation of the unperturbed structures is periodic.
Using these observations, Eq. (20) can be split into discrete
sets of equations in Fourier space, each of them still being
infinite however. A numerical evaluation is required to handle
the problem.

Since the unperturbed structures ψ10(r,t) form a steady
state, we can write them in the form

ψ10(r,t) = ψ10(r − vmt). (21)

This relation translates itself into Fourier space in the following
way:

ψ10(q,ω) = 2πδ(ω + q · vm)ψ10(q), (22)

ψ2
10(q,ω) = 2πδ(ω + q · vm)ψ2

10(q). (23)

Introducing these expressions into Eq. (20) decouples the
modes in the frequencies ω, which significantly simplifies the
problem.

For the second simplification, we use the fact that the
unperturbed structures are spatially periodic. They are resting
or traveling crystals. In Fourier space they are therefore
characterized by a reciprocal lattice of a discrete set of
wave vectors. Translating in reciprocal space the whole
structure by a reciprocal lattice vector maps the positions of
the reciprocal lattice points onto themselves. In this sense, the
reciprocal lattice is closed by itself under such translations. The
subtractions q − q′ in Eq. (20) correspond to these translations.
As a consequence, the set of equations (20) splits into different
decoupled discrete subsets of equations. Within one such set,
all modes are connected via addition or subtraction of the
reciprocal lattice vectors of the unperturbed structure. Still,
each set generally contains infinitely many modes, but the
discretization already implies a major reduction.

In the following we investigate three different structures:
a traveling hexagonal crystal, a traveling rhombic crystal,
and a traveling quadratic crystal. As mentioned above, the
textures are obtained in this sequence when increasing the
active drive v0. On the left-hand side, Fig. 3 shows snapshots
of the steady-state structures in real space, i.e., ψ10(r). On the
right-hand side, the corresponding power spectra |ψ10(q)| in
two-dimensional Fourier space are included.

The different textures—hexagonal, rhombic, and
quadratic—can be identified by eye from the real-space
plots. Also the spatial arrangements of the inner intensity
peaks on the right-hand side of Fig. 3 reflect these symmetries.
However, when we take into account the magnitude of the
intensities, we see that the collective migration breaks the
symmetry. Most obviously, there is no fourfold symmetry in
the intensity magnitudes of Fig. 3(f) for the quadratic texture.
Likewise, the single real-space density peaks in Fig. 3(c)
appear a little distorted. The direction of collective migration
marks the orientation of the remaining symmetry axis.

We can see that the magnitude of the peaks in the power
spectrum, coded by their brightness in Fig. 3, significantly

(a) (d)

(b) (e)

(c) (f)

FIG. 3. (Color online) The left column shows snapshots of crys-
talline structures at (ε,ψ̄,C1,C4,Dr ) = (−0.98,−0.4,0.2,0,0.5) and
(a) v0 = 0.5 for a traveling hexagonal crystal, (b) v0 = 0.7 for a
traveling rhombic crystal, and (c) v0 = 0.9 for a traveling quadratic
crystal. Only a fraction of the numerical calculation box is shown. The
right column shows corresponding power spectra in two-dimensional
Fourier space. A distorted hexagonal lattice structure is obtained in
Fourier space in (d) from the traveling hexagonal case. (e) Power
spectrum for the traveling rhombic crystal. (f) Finally, the square
pattern in real space transforms itself into a square pattern of the
two-dimensional power spectrum. The intensity of the peaks in the
power spectrum is represented by their brightness and was partially
rescaled for better visualization. Circles mark the directions of the
reciprocal lattice vectors of smallest magnitude G1. The examples of
linear stability analysis against linear dynamical instabilities that are
shown in Fig. 5 were performed in these directions.

decays with increasing wave number. As a consequence we
introduce a positive threshold value ψth. Here ψ10(r) is
approximated by only those modes that satisfy |ψ10(q)| > ψth.
The same procedure is applied to ψ2

10(q), i.e., the Fourier
transform of ψ2

10(r).
For each investigated structure, the above procedure must

be performed only once in practice. We numerically iterate
Eqs. (12) and (13) forward in time, starting from random
initial conditions. When the system has reached the steady
state, ψ1 is used as an input for the unperturbed states ψ10(r)
and ψ2

10(r). After performing the Fourier transform, the values
ψ10(q) and ψ2

10(q) that satisfy the above threshold criterion
together with their locations q in the reciprocal space are
stored in an ordered list structure for further analysis. We
also numerically measure vm during this initial numerical

022301-6



ACTIVE CRYSTALS AND THEIR STABILITY PHYSICAL REVIEW E 89, 022301 (2014)

iteration and use this value in our further evaluation. (It is a
challenging task to calculate the collective migration velocity
vm analytically. A corresponding attempt in one spatial dimen-
sion that is restricted to the threshold vicinity is included in
Appendix B.)

Our intention is to perform a linear stability analysis of
the traveling single crystal at long wavelengths, i.e., at small
wave numbers ‖q‖. Direct numerical solution of Eqs. (12)
and (13) showed that the structures are stable on the length
scale of the size of the numerical box; however, the question
of what happens on larger length scales has so far remained
unanswered. In other words, we are interested in the question
whether the single crystal will break up into a multidomain
texture for large system sizes.

Below we denote the reciprocal lattice vectors of the
unperturbed structure by Gi , with i a labeling index. They
localize the positions of the spectral points in the right column
of Fig. 3. The reciprocal lattice vector of smallest magnitude
is called G1. We probe a square region in reciprocal space
bordered at two opposing edges by −G1 and +G1. This region
covers the first Brillouin zone.

All wave vectors q lying in the first Brillouin zone belong
to a different discrete coupled subset of equations spanned
by the nonlocal terms in Eq. (20). We cannot connect two
different wave vectors in this region by adding or subtracting
reciprocal lattice vectors. Still, these subsets of equations are
infinite. We have seen, however, that the coupling strengths
|ψ10(q − q′)| and |ψ2

10(q − q′)| that are responsible for the
nonlocal coupling in Eq. (20) decay with increasing distance
‖q − q′‖. Therefore we introduce a cutoff distance qmax > 0
and only include modes that satisfy ‖q − q′‖ < qmax in the
subset of equations for each wave number q. In this way, the
discrete subsets of equations become finite and can be handled
numerically.

In practice, we sample the square region between −G1 and
+G1 in small wave vector steps. At each q in this region, we
build up the discrete set of equations described above. For this
purpose, we numerically search for all modes δψ1(q′,ω′) with
wave vectors q′ that can be obtained by iteratively adding or
subtracting the reciprocal lattice vectors that predominantly
contribute to ψ10 and ψ2

10 (those were previously stored in
a list when calculating the spectra; see above). Only modes
δψ1(q′,ω′) that satisfy the condition ‖q − q′‖ < qmax are
included.

Equation (20) leads for each wave vector q and frequency ω

to a linear system of equations for all modes δψ1(q′,ω′) that are
coupled to δψ1(q,ω). In practice, our cutoff values are chosen
such that the coupling to several hundred modes is included for
each wave vector q. The coefficients of this system of equations
are calculated and stored in matrix form. For practical reasons,
to obtain a matrix of real coefficients, we consider the
real and imaginary parts of the perturbations δψ1(q′,ω′) =
Re{δψ1(q′,ω′)} + i Im{δψ1(q′,ω′)} as independent variables.
Each equation in the system of equations (20) is split into
its real and imaginary parts, which doubles the number of
equations. Finally, the determinant D(q,ω) of the resulting
matrix is calculated by standard numerical procedures [94].
At the end of this procedure, a vanishing determinant D(q,ω)
signals a linear instability of the single crystal with respect to
the perturbation δψ1(q,ω).

Before continuing with the results, we add a technical
remark to explain the appearance of the plots included below.
Due to the many modes that are coupled in each case, the
number of multiplications during the process of obtaining
the determinant D(q,ω) is very large. In fact, D(q,ω) often
exceeds the size that can be processed on the computer. To
circumvent this problem, we rescale the factors in the final
multiplication by an adjusted constant positive number. Since
we are only interested in the question whetherD(q,ω) vanishes
(or changes sign), this is a legal procedure. Nevertheless,
the absolute values of D(q,ω) should not be interpreted any
more. Furthermore, we calculate and plot the logarithm of the
determinant ln[D(q,ω)].

In a first step, we consider static instabilities in the
comoving frame. That is, we set ω = −q · vm (and likewise
ω′ = −q′ · vm) in Eq. (20). Thus ω does not describe an
additional degree of freedom, but is determined by the wave
vector q.

The results corresponding to the three textures in Fig. 3 are
depicted in Fig. 4. The determinant naturally vanishes at q = 0
and at q = ±G1, which cannot be shown in the logarithmic
plot and leads to the white holes in the projected shadow plots
below each surface plot. We do not find any other position in the
first Brillouin zone where the determinant vanishes. The small
dips visible in the surfaces of ln[D(q)] were found to decrease
with increasing size of the numerical calculation box that was
used to obtain ψ10. They were not observed to indicate a linear
instability. We thus conclude that the investigated structures
are linearly stable against static instabilities in the comoving
frame.

After excluding static linear instabilities in the comoving
frame, we ask for dynamical linear instabilities. For example,
on larger length scales, there might appear domains migrating
in different directions. This question adds a further degree of
freedom to our analysis, namely, the frequency ω. Previously, it
was fixed by the relation ω = −q · vm in the comoving frame.
Now we can in principle choose any value independently of
the selected wave vector q.

Fortunately, for each perturbation δψ1(q,ω), the coupled
system of equations has the same size as above in the analysis
within the comoving frame. The additional degree of freedom
ω does not lead to further couplings. We can understand this
result from Eqs. (20), (22), and (23). On the one hand, Eq. (20)
implies that the modes δψ1 are coupled via the unperturbed
steady-state fields ψ10(q,ω) and ψ2

10(q,ω). On the other hand,
due to the steady-state form of ψ10(r,t) and ψ2

10(r,t), Eqs. (22)
and (23) contain a rigid relation between q and ω in the δ

functions. In this way, each coupling wave vector q − q′ in
Eq. (20) uniquely fixes one coupling frequency ω − ω′.

The complete q-ω space is too large to be systematically
tested. We therefore particularly focused on the represen-
tative directions given by the reciprocal wave vectors of
each structure and the directions perpendicular to these. In
neither case did we find a vanishing determinant that would
indicate a dynamical linear instability. This provides evidence
that the investigated traveling active single crystals are also
dynamically linearly stable. A few examples of our results are
depicted in Fig. 5.

One might argue that there are sources of uncertainty in our
analysis. For example, we obtain our initial reciprocal lattice
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FIG. 4. (Color online) Linear stability of the structures presented
in Fig. 3 against instabilities of small wave numbers in the comoving
frame. The analyzed regions in q space contain the first Brillouin
zones of the textures in Fig. 3, respectively. Surface plots show
the logarithm of the determinant D(q) of the stability matrix in the
analyzed q regions. It has been rescaled for technical reasons in
each panel, so the absolute values should not be interpreted. Below
the surfaces, the shadow plots represent colored projections of the
surfaces into the plane. Here G1 = ‖G1‖, q‖ is the component of q
parallel to G1, and q⊥ is its component in the perpendicular direction,
where G1 is the reciprocal lattice vector of smallest magnitude. A
linear instability would be indicated by a vanishingD(q), however, we
observe nonzero values in all probed instances (and no sign changes).
We thus conclude that the structures are linearly stable against static
instabilities in the comoving frame.
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FIG. 5. (Color online) Examples for the linear stability of the
structures presented in Fig. 3 against linear dynamical instabilities.
The panels show stability probes performed in q space along the
direction of the reciprocal lattice vector of smallest magnitude G1. In
addition, the frequency ω was varied in an interval centered around
−q · vm at each wave vector q, with vm the collective migration
velocity. We define q = ‖q‖, G1 = ‖G1‖, and ω̃ = ω/|G1 · vm|.
Surface plots show the logarithm of the determinant D(q,ω̃) of the
stability matrix in the analyzed q-ω̃ regions. It has been rescaled for
technical reasons in each panel, so the absolute values should not be
interpreted. Below the surfaces, the shadow plots represent colored
projections of the surfaces into the plane. Our examples correspond to
the directions indicated by the circles in the power spectra of Fig. 3 for
(a) v0 = 0.5, (b) v0 = 0.7, and (c) v0 = 0.9. A linear instability would
be indicated by a vanishing D(q,ω̃) (or a sign change). Apparently,
the structures are linearly stable against linear dynamical instabilities.

vectors from a numerical calculation on a grid of finite size.
However, if this approximation were problematic, it would
rather show up as an instability of the unperturbed state.
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In contrast to that, we here find that the system is linearly
stable despite such approximations. We are therefore confident
that our analysis reflects the real behavior of the structures
and that the active single crystals are linearly stable against
perturbations.

V. DESTABILIZATION VIA HYDRODYNAMIC
INTERACTIONS

In the previous section, we have seen that the active single
crystals are linearly stable even at very large system sizes.
The underlying stabilization mechanism is provided by the
effective elastic interactions between the density peaks. It is
introduced by the phase field crystal free energy functional
that acts like a chemical potential for the density peaks
in our dynamical equations (12) and (13). This picture is
further supported by an analysis of related particle simulations
[57,58].

On the contrary, the question arises whether in real exper-
imental systems there might be a counteracting mechanism
that could destroy this long-range order. A natural candidate
is given by hydrodynamic interactions [95]. It turns out that
hydrodynamic interactions can destabilize the system already
at relatively small system sizes. This can be studied by
direct numerical simulation of our dynamical equations, so a
complicated analysis as in the previous section is not necessary.

In the situation that we investigate, the self-propelled
particles can still directly exchange momentum with the
ground. This requirement is satisfied by particles that directly
migrate on a substrate or approximately by swimmers that
propel in a low Reynolds number environment close to a
surface with no-slip boundary conditions. However, we assume
that the density peaks can additionally interact with each other
through a surrounding background fluid film.

Our goal in the following is a simple qualitative estimate
of the effect of hydrodynamic interactions. We assume that
the particles and the fluid have the same mass density and
that the system is incompressible. In this way the dynamical
equation of mass continuity is trivially satisfied and does not
need to be considered explicitly in the following. The location
of the particles is described by the concentration or density
field ψ1(r).

We introduce a velocity field u(r) to parametrize the fluid
flow that is induced by the particle motion. On the one hand,
additional convective terms appear in the dynamical equations
(12) and (13) that now read

∂tψ1 = ∇2 δF
δψ1

− v0∇ · P − u · ∇ψ1, (24)

∂tP = ∇2 δF
δP

− Dr

δF
δP

− v0∇ψ1 − u · ∇P + � · P. (25)

Here the tensor � with components 	ij = (∇iuj − ∇jui)/2
describes rotations due to convection. We do not consider flow
alignment of the polarization field in this qualitative picture
[96,97].

On the other hand, the additional dynamical equation for
the velocity field u(r) in the rescaled form reads

∂tu = −u · ∇u + F + ∇ · ν{ψ1}∇u − αu. (26)

It is supplemented by the incompressibility condition
∇ · u = 0, so an explicit pressure term is not necessary. We
can neglect the convective term on the right-hand side in the
low Reynolds number regime.

When the self-propelled particles migrate on the substrate,
they push the surrounding fluid and set it into motion. This
effect is included by the force term F that we introduce as

F = γ

Np∑
i=1

(vi − u)δ(r − Ri) (27)

with a sufficiently large coefficient γ > 0. Again Np is the
number of density peaks in the sample. In addition Ri and
vi denote, respectively, the current positions and velocities
of the density peaks for i = 1, . . . ,Np. In practice we track
the positions and motion of the centers of the density peaks
as described above. At each peak center Ri , the fluid flow
velocity u is then adjusted to the peak velocity vi . To mimic
the presence of the particles in the fluid, the viscosity ν varies
with the density ψ1. We set ν = 10 at positions of lowest
density ψ1 and let it linearly increase by a factor of 2–3
when moving to the regions of high density ψ1. Due to the
smooth density profiles in our numerical samples the effect of
the contribution (∇ν{ψ1}) · ∇u is mostly negligible. Overall,
the volume elements of high density ψ1, which represent the
presence of the self-propelled particles, are considered as part
of the fluid flow. This approach is similar to the fluid particle
dynamics introduced by Tanaka and Araki [98].

The last term −αu in Eq. (26) represents a simple
way to model the friction of the thin fluid film with its
environment, with α > 0 the friction constant. This term was
used previously to investigate the complex flow behavior in
quasi-two-dimensional systems of fluid films [99]. Two limits
for the magnitude of α are obvious. On the one hand, if α is
small, the friction between the fluid film and its surfaces is low
and the migrating particles can easily set the surrounding fluid
into motion. On the other hand, if α is very large, we see from
Eq. (26) that the fluid remains practically at rest with u(r) ≈ 0.
Then the convective terms in Eqs. (24) and (25) are negligible
and we reobtain the previous equations (12) and (13). Thus
hydrodynamic interactions are not important in the regime of
large α.

We illustrate the flow behavior at different values of the
friction parameter α in Fig. 6. For high α, corresponding to
strong fluid friction, most parts of the fluid film cannot be set
into motion as illustrated in Figs. 6(a) and 6(d). The fluid
flow remains very localized around the density peaks and
does not extend between different peaks. Consequently the
hydrodynamic interactions between the density peaks are low.
Around the density peaks some backflow of the fluid opposite
to the peak migration directions occurs. This is stressed in a
rescaled version of Fig. 6(d), included as Fig. 6(e); a zoom
into the region around one single density peak is provided
for illustration. With decreasing fluid friction α, the backflow
vanishes and the fluid flow more and more extends between
the density peaks, as depicted in Figs. 6(b) and 6(f). At very
low friction parameters α, the whole fluid can be set into
motion nearly homogeneously, as shown in Figs. 6(c) and 6(g).
Since the fluid flow here extends between the density peaks,
hydrodynamic interactions are strong in this case.
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(a) (b) (c)

(d) (e) (f) (g)

FIG. 6. (Color online) Hydrodynamic interactions for the two-dimensional self-propelled motion on or close to a surface in a surrounding
fluid film at (ψ̄,ε,C1,C4,v0) = (−0.4,−0.98,0.2,0,0.7). The top panels (a)–(c) show the density field ψ1 and the polarization field P in the
same way as in Fig. 1. We illustrate the corresponding fluid flow fields u in the bottom panels (d), (f), and (g) by needles pointing from the
thick to the thin white ends. The friction parameter α of the fluid film decreases from the left to the right column: (a), (d), and (e) α = 300;
(b) and (f) α = 10; and (c) and (g) α = 1.5. (a) and (d) Hydrodynamic interactions are weak at high fluid friction, where the flow remains
mostly localized around the density peaks. (c) and (g) On the contrary, hydrodynamic interactions are strong at low fluid friction, where the
whole fluid can be set into motion nearly homogeneously and the fluid flow extends between the density peaks. Panel (e) highlights the backflow
regions occurring in (d) around the density peaks by rescaling the magnitude of the depicted flow vectors. A zoom into the region around one
single-density peak is included for illustration. Only a fraction of the numerical calculation box is shown in each case.

As for Fig. 2, we measured again the collective migration
speed vm in the form of the sample-averaged peak velocity
magnitude vm = ∑Np

i=1 ‖vi‖/Np, with Np the number of the
density peaks and vi the velocity of the single density peaks,
i = 1, . . . ,Np. A result of vm as a function of the active drive
v0 of the individual self-propelled particles is plotted in Fig. 7
for two different values of the fluid friction parameter α. In
this case C1 > 0, i.e., there is no alignment mechanism that
would lead to a spontaneous orientational ordering of the self-
propulsion directions.

As a first result, we found that, within our numerical
resolution, the critical self-propulsion velocity v0,c, at which
collective motion of the active crystal sets in, remains
unchanged by the hydrodynamic interactions. Second, the
hydrodynamic interactions speed up the collective motion
of the active single crystal. We can see this from the two
data curves plotted in Fig. 7. At high values of α the fluid
friction is large and the self-propelling particles cannot set the
surrounding fluid into motion. However, at low fluid friction
for low values of α, the particles can set the whole surrounding
fluid film into motion, as was also demonstrated in Fig. 6. In
this way, one density peak can push the preceding peak via
the fluid between them. The density peaks support each other
in migration via hydrodynamic interactions. At fixed active
drive v0 of the individual self-propelled particles, the collective

FIG. 7. (Color online) Collective migration speed vm of the
single crystals as a function of the active drive v0 of the indi-
vidual particles in the presence of hydrodynamic interactions at
(ψ̄,ε,C1,C4) = (−0.4,−0.98,0.2,0). For low hydrodynamic interac-
tions, corresponding to a large fluid friction parameter α, the collective
migration speed is lower. For strong hydrodynamic interactions,
corresponding to a low fluid friction parameter α, the collective
migration speed is enhanced. In the latter case the particles can push
each other by setting the fluid between them into motion. The critical
value of the self-propulsion velocity v0,c remains unchanged by the
presence of the hydrodynamic interactions.
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(a) (b)

FIG. 8. (Color online) Hydrodynamic interactions can destabi-
lize a collectively migrating active single crystal at (ψ̄,ε,C1,C4,v0) =
(−0.4,−0.98,0.2,0,1). (a) Negligible hydrodynamic interactions at
strong fluid friction (α = 300) allow the emergence of a perfect
traveling active single crystal. (b) Strong hydrodynamic interactions
at low fluid friction (α = 1.5) destabilize this texture.

migration speed vm increases with decreasing fluid friction α

and increasing hydrodynamic interactions.
However, the hydrodynamic interactions disturb the order

of the active single crystals. This is illustrated in Fig. 8.
The figure includes two identical systems that only differ
by the fluid friction parameter α. At high α and therefore
little hydrodynamic interaction [Fig. 8(a)], the sample shows a
perfect active single crystal that migrates collectively into one
direction. On the contrary, the crystal is broken up into different
domains at low α corresponding to strong hydrodynamic inter-
actions [Fig. 8(b)]. Also a partial transition to lamellar textures
is induced by the hydrodynamic interactions. In the case with-
out hydrodynamic interactions this transition would typically
occur only at higher magnitudes of the active drive v0 [59].

In summary, we can say that, at least within the qualitative
picture presented, hydrodynamic interactions have a desta-
bilizing effect on the active crystalline structures considered
here.

VI. CONCLUSION

In this paper we focused on the stability of traveling
active single crystals. An active phase field crystal model
was introduced for this purpose. We outlined its derivation
via dynamical density functional theory from a microscopic
consideration of self-propelled particles that feature an active
drive. Besides resting hexagonal crystals, traveling hexagonal,
rhombic, and quadratic crystals as well as traveling lamellar
textures were obtained from this description. Also the inverted
structures such as resting and traveling honeycomb textures
as well as inverted traveling rhombic and quadratic lattices
were covered. A linear stability analysis did not indicate a
linear instability of the collectively migrating single crystals.
In particular, long-wavelength instabilities beyond the size of
the numerical calculation grids did not show up, indicating
linear stability also for large system sizes. We found, however,
that hydrodynamic interactions can destabilize the single-
crystalline textures.

The linear stability analysis was significantly complicated
by the spatial modulation of the unperturbed steady state.
As a consequence of this spatial modulation, our equations
became nonlocal in Fourier space. We could reduce the
problem to manageable size by exploiting the periodicity of

the unperturbed state and its steady-state migration. This made
the linear stability analysis possible. The problem of a spatial
modulation of the unperturbed state occurred already in a
previous equilibrium stability study of microphase-separated
diblock copolymer melts [93]. There, however, the equilibrium
conditions allowed a different strategy to perform the analysis.

Our results on the stability of the traveling crystals are
important when we think of the design of new active materials.
It is expected that, for example, features of traveling crystals
such as phononic properties are different from their passive
counterparts. We have seen that the structure of the migrating
crystals, i.e., their hexagonal, rhombic, or quadratic form,
can be tuned by the activity of the constituent self-propelled
particles. It will be interesting to test whether other features
of active crystals, such as their phononic behavior, can be
similarly tuned by the properties of the individual active
components. The investigation of this interesting question is
left for future study.
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APPENDIX A: RESCALING OF
THE DYNAMICAL EQUATIONS

The final form of our dynamical order parameter equations
(12) and (13) is obtained through the following rescaling:

τ = 2π

βD̃ρ̄

1

λq6
0

t, (A1)

v = βD̃ρ̄

21/2π
λq5

0v0, (A2)

P̃ = 1

ρ̄
q2

0

(
2
λ

u

)1/2

P, (A3)

C̃1 = λq4
0

2
C1, (A4)

C̃4 = u

4
C4, (A5)

D̃r = D̃q2
0Dr. (A6)

APPENDIX B: ONE-DIMENSIONAL ANALYTICAL
APPROACH TO THE ONSET OF COLLECTIVE MOTION

In this appendix we briefly analytically address the onset of
collective migration. Our goal is to derive an expression for the
collective migration speed vm. This is a challenging task. We
confine ourselves to one spatial dimension that we denote as
the z direction. Furthermore, we consider the case of C1 > 0
and C4 = 0. Still our results remain restricted to the very close
vicinity of the threshold for the onset of collective motion.

Under these circumstances and using the fact that the
structures collectively migrate in a steady-state solution with
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speed vm [see Eq. (21)], we can rewrite Eqs. (12) and (13) as

−vm∂zψ1 = ∂2
z

{[
ε + (

1 + ∂2
z

)2 + 3ψ̄2
]
ψ1

+ 3ψ̄ψ2
1 + ψ3

1

} − v0∂zP, (B1)

−vm∂zP = C1
(
∂2
z − Dr

)
P − v0∂zψ1. (B2)

Introducing the abbreviations v̄0 = v0/C1 and v̄m = vm/C1,
we can write the formal solution of Eq. (B2) as

P = −v̄0
(−∂2

z + Dr − v̄m∂z

)−1
∂zψ1

= −v̄0
(
� + v̄m�2∂z + v̄2

m�3∂2
z + v̄3

m�4∂3
z + · · · )∂zψ1

= −v̄0∂z

(
� + v̄m�2∂z + v̄2

m�3∂2
z + v̄3

m�4∂3
z + · · · )ψ1,

(B3)

where we have defined � via(−∂2
z + Dr

)
� = δ(z − z′) (B4)

with the abbreviation

�X(z) =
∫

dz′�(z − z′)X(z′) (B5)

when the operator � is applied to an arbitrary function X(z).
We have further used the relation∫

dz′�(z − z′)∂z′ψ(z′) = −
∫

dz′[∂z′�(z − z′)]ψ(z′)

= ∂z

∫
dz′�(z − z′)ψ(z′) (B6)

in the last step of Eq. (B3).
Equation (B3) is now inserted into Eq. (B1) to obtain a

closed equation for ψ1:

− vm∂zψ1 = ∂2
z

{[
ε + (

1 + ∂2
z

)2 + 3ψ̄2
]
ψ1 + 3ψ̄ψ2

1 + ψ3
1

}
+ v0v̄0∂

2
z

(
� + v̄m�2∂z

+ v̄2
m�3∂2

z + v̄3
m�4∂3

z + · · · )ψ1. (B7)

We rewrite this expression in the form

vmG∂zψ1 = {[
ε + (

1 + ∂2
z

)2 + 3ψ̄2
]
ψ1 + 3ψ̄ψ2

1 + ψ3
1

}
+ v0v̄0

(
� + v̄m�2∂z

+ v̄2
m�3∂2

z + v̄3
m�4∂3

z + · · · )ψ1, (B8)

where we have defined

− ∂2
z G = δ(z − z′) (B9)

with an abbreviation analogous to Eq. (B5).
Next we multiply Eq. (B8) by ∂zψ1 and carry out the integral

over z:

vm

∫
dz(∂zψ1)G∂zψ1 =

∫
dz(∂zψ1)

(
2∂2

z + ∂4
z

)
ψ1

+ v0v̄0

∫
dz(∂zψ1)

(
� + v̄m�2∂z

+ v̄2
m�3∂2

z + v̄3
m�4∂3

z + · · · )ψ1.

(B10)

Here the integrals are taken over the whole domain of size L.
The periodic boundary conditions at the domain boundaries
imply∫

dz(∂zψ1)W (ψ1) =
∫

dz ∂z

∫ ψ1(z)

dξ W (ξ ) = 0 (B11)

for any integrable functional W .
Our last step consists of expanding the operator � on the

right-hand side of Eq. (B10) into powers of ∂2
z . On the one

hand, we have∫
dz

(
∂2n+1
z ψ1

)(
∂2m
z ψ1

)

= (−1)n+m+1

2

∫
dz ∂z

(
∂n+m
z ψ1

)2 = 0 (B12)

and on the other hand,∫
dz

(
∂2n+1
z ψ1

)(
∂2m+1
z ψ1

)

= (−1)n+m

∫
dz

(
∂n+m+1
z ψ1

)2 	= 0, (B13)

with integers n � 0 and m � 0. Using these relations, we
finally obtain from Eq. (B10) an expression for the collective
migration speed at the onset of collective motion:

(B0 − B1)vm + B3v
3
m = 0, (B14)

where

B0 =
∫

dz

∫
dz′[∂zψ1(z)]G(z − z′)∂z′ψ1(z′), (B15)

B1 = v2
0

C2
1

∫
dz

∫
dz′

∫
dz′′[∂zψ1(z)]

×�(z − z′)�(z′ − z′′)∂z′′ψ1(z′′), (B16)

B3 = v2
0

C4
1

∫
dz

∫
dz′

∫
dz′′

∫
dz′′′

∫
dz′′′′

×[
∂2
z ψ1(z)

]
�(z − z′)�(z′ − z′′)

×�(z′′ − z′′′)�(z′′′ − z′′′′)∂2
z′′′′ψ1(z′′′′). (B17)

From the symmetry of the integrands in these expressions and
since G and � are positive operators, we expect all coefficients
B0, B1, and B3 to be positive. This implies a supercritical
bifurcation of the collective migration speed at the onset of
collective motion, which is in line with our simulations in two
spatial dimensions. However, since ψ1(z) generally depends
on vm, the coefficient B3 might be renormalized from the vm

dependence of B0 and B1.
Directly at the threshold for the onset of collective motion,

we may assume a harmonic functional dependence of the form
ψ1(z) ∼ sin(q0z). When we calculate the coefficients B0, B1,
and B3 from Eqs. (B15)–(B17), we obtain from Eq. (B14) for
the collective migration speed directly above onset

|vm| =
[
C2

1

q2
0

(
Dr + q2

0

)2 − C4
1

v2
0q

4
0

(
Dr + q2

0

)4
]1/2

. (B18)

However, higher harmonics in the expression for ψ1(z) and its
vm dependence will affect this result.
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[45] H. H. Wensink and H. Löwen, J. Phys.: Condens. Matter 24,

464130 (2012).
[46] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.
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[76] G. Tegze, G. I. Tóth, and L. Gránásy, Phys. Rev. Lett. 106,
195502 (2011).

[77] J. Toner, Y. Tu, and S. Ramaswamy, Ann. Phys. (NY) 318, 170
(2005).

[78] U. M. B. Marconi and P. Tarazona, J. Chem. Phys. 110, 8032
(1999).

[79] A. J. Archer and R. Evans, J. Chem. Phys. 121, 4246 (2004).
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