
PHYSICAL REVIEW E 88, 062316 (2013)

Crystallization induced by multiple seeds: Dynamical density functional approach
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Using microscopic dynamical density functional theory, we calculate the dynamical formation of polycrystals
by following the crystal growth around multiple crystalline seeds imposed to an undercooled fluid. Depending
on the undercooling and the size ratio as well as the relative crystal orientation of two neighboring seeds,
three possibilities of the final state emerge, namely no crystallization at all, formation of a monocrystal, or two
crystallites separated by a curved grain boundary. Our results, which are obtained for two-dimensional hard disk
systems using a fundamental-measure density functional, shed new light on the particle-resolved structure and
growth of polycrystalline material in general.
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I. INTRODUCTION

Our quantitative understanding of crystallization processes
out of an undercooled melt dates back to the classical papers
by Kolmogorov [1], Johnson and Mehl [2], and Avrami [3],
for reviews see [4,5]. The underlying picture is that critical
nuclei are formed which are randomly distributed in space and
time. These nuclei then act as seeds for further crystal growth.
The emerging crystallites grow independently from each other
until they meet and form a grain boundary resulting in a
polycrystalline texture of different crystallites with different
orientations (see, e.g., [6–8]).

Experiments on colloids [6,9–11] and complex plasmas
[12] allow a determination of the resulting grain boundaries
on the particle scale [13,14] and have largely increased
our information about the microscopic processes underlying
crystallization in two and three spatial dimensions, often
supplemented by particle-resolved computer simulations [15].
However, as far as a microscopic theory is concerned, much
less has been done. Such a theory describing crystallization
is nontrivial since it requires a unifying description of both
the melt and the solid phase. Classical density functional
theory (DFT) of inhomogeneous liquids [16–18] provides
such an approach which can even be generalized towards
Brownian dynamics appropriate for colloids [19–21] such
that DFT is an ideal tool for crystallization [22]. DFT needs
an accurate equilibrium free energy density functional as
an input. Recently developed fundamental measure theory
provides accurate functionals for hard spheres [23] and hard
disks [24]. DFT can be coarse grained to obtain a more
approximative phase-field-crystal (PFC) model [25,26], which
has been extensively used to explore crystallization process
around imposed seeds, see, e.g., Refs. [27–29].

One of the key stages of crystallization is when two growing
crystallites meet and merge forming a grain boundary. This is
most cleanly seen in a setup of two single neighboring small
crystal seeds which are misoriented relative to each other such
that a grain boundary is likely to emerge and to persist. Such a
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setup with two seeds has never been studied in previous DFT
calculations although crystal growth around a single prescribed
crystalline seed is the standard starting configuration for most
of the calculations [30,31] and grain boundaries have been
largely generated by other setups or by PFC approaches
[32–39].

In this paper we close this gap and study systematically
a two-dimensional situation of two neighboring seeds around
which different crystallites grow until they meet forming a
grain boundary. We employ microscopic dynamical density
functional theory (DDFT) by using the fundamental-measure
theory for hard disks [24] to calculate the formation of
polycrystalline domains. Depending on the undercooling (or
overcompression), the size ratio, and the relative crystal
orientation of the two neighboring seeds, three possibilities of
the final state emerge: (i) no crystallization at all, (ii) formation
of a monocrystal, and (iii) two crystallites separated by a
curved grain boundary. Finally, we also consider three seeds
forming various grain boundaries. Our results shed new light
on the particle-resolved structure and growth of polycrystalline
material in general.

Our prediction can directly be verified in particle-resolved
experiments on colloidal suspensions [10,14]. Any setup for
an initial crystalline seed can be realized by fixing an arbitrary
number of individual particles to prescribed positions within
a solution of other particles, see [40] for an example of
two-dimensional colloids. As the dynamics of the colloids is
Brownian, which exactly matches the conditions of our DDFT,
a precise design of our setup is possible.

This article is organized as follows: We introduce the
underlying setup in the following Sec. II and continue with
a brief introduction to dynamical density functional theory in
Sec. III. We then explore the long-time limit of two crystallites
in Sec. IV as well as the dynamics of the observed grain
boundaries in Sec. V. After this, we focus on the interplay of
three nuclei in Sec. VI and finally, we conclude our results in
Sec. VII.

II. THE SETUP

In our model systems, two crystalline nuclei containing
Ni (i = 1,2) hard disks with diameter σ are placed on a
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FIG. 1. (Color online) (a) Schematic view of the initial nuclei of hard spheres with diameter σ separated by a distance d and surrounded
by a homogeneous fluid, at area fraction η. Here the left nucleus consists of N1 = 61 particles, whereas the right nucleus is built of N2 = 37
particles and additionally rotated by an angle φ. (b)–(f) The Voronoi construction of an exemplary growth at times t = 0,0.24,1.35,1.9,2.5τB,
where blue (medium gray) cells have six neighboring particles and defects with more or less neighboring particles are coded in different colors
(light or dark gray) all surrounded by a fluid. A grain boundary grows, first on a straight and finally on a curved line between the two crystalline
regions. For a movie of the growth see Supplemental Material [41].

flat substrate. In Fig. 1(a) a schematic view of the nuclei is
displayed. Here the left nucleus consists of N1 = 61 and the
right of N2 = 37 particles. Note that both seeds as well as
all seeds that will be employed later in this article are larger
than the critical nuclei that is needed for crystallization. Both
possess hexagonal symmetry and exhibit at center-to-center
distance d. The right nucleus is rotated counterclockwise
by an angle φ. Furthermore, the nuclei are surrounded by a
homogeneous fluid such that the area fraction η of the system
remains constant. We employ periodic boundary conditions
with a simulation box that is chosen large enough such that
its boundaries are only reached late in the simulations. An
exemplary growth process is depicted in Figs. 1(b)–1(f) as
well as a movie in Supplemental Material [41]. Blue (medium
gray) colored Voronoi cells show crystalline regions with six
nearest neighbors in contrast to cells with any other number of
neighbors that are depicted with other colors (light and dark
gray). When the interfaces of the growing crystals coincide,
defects are caused by the incompatibility of the two crystal
lattices. Depending on the initial configuration, these defects
vanish or remain stable. In the case shown in Fig. 1, a stable
grain boundary is obtained. During the growth process, it shifts
towards the smaller nucleus and additionally tilts around it
resulting in a curved grain boundary. Radii of curvature will
be extracted later in this article for different distances d and size
ratios N1/N2. Furthermore, the occurrence of a grain boundary
is systematically studied depending on size ratio, area fraction
η, and angle of rotation φ.

III. DYNAMICAL DENSITY FUNCTIONAL THEORY

In order to calculate the dynamics of crystal growth,
we use DDFT which is based on classical DFT [16,23,42–
44] but recovers the motion of Brownian particles. It can
be derived from the exact Smoluchowski equation [19–21]
invoking an adiabatic approximation. The density profile
ρ(r,t) consequently depends on time and it is given by a

generalized diffusion equation

∂ρ(r,t)
∂t

= (kBT )−1D∇ ·
(

ρ(r,t)∇ δ	[T ,A,μ,ρ(r,t)]
δρ(r,t)

)
.

(1)

Here D indicates the short-time diffusion coefficient and kB is
Boltzmann’s constant. DDFT is based on the knowledge of the
equilibrium grand canonical free energy 	{T ,A,μ,[ρ(r,t)]}
which depends on temperature T , the accessible area A,
the chemical potential μ, and which is a functional of
the time-dependent density profile ρ(r,t). The chemical
potential μ is used as a Lagrangian multiplier in order to
fix the average particle number inside the system which
will be defined via the bulk area fraction η. 	[ρ(r,t)]
can be split into three terms: A first contribution given
by an ideal gas Fid[ρ(r)] = kBT

∫
drρ(r){ln[
2ρ(r)] − 1}

which contains the (irrelevant) thermal wavelength 
, a
second term resulting from the interactions with an exter-
nal potential Fext[ρ(r)] = ∫

drρ(r)[Vext(r) − μ], and a third
term which describes the interactions of particles Fexc[ρ(r)],
called the excess free energy. For the latter we use [24] a
recently developed fundamental measure approach for hard
disks.

The initial nuclei are created by exposing an external
pinning potential with Gaussian shape at the intended particle
positions ri to a homogeneous fluid. This potential reads

Vp(r) =
∑

i

V (0)
p e−α(r−ri )2

, (2)

containing a width ασ 2 = 6 and a strong amplitude
V (0)

p /kBT = 4. After a short time of t = 0.07τB, where
τB = σ 2/D is the Brownian time, the nuclei are grown and
the pinning potential is switched off [31]. Then, the crystal
grows and the growth dynamics of multiple seeds can be
examined.

Note that DFT or DDFT does not contain noise (thermal
fluctuations) or capillary waves that might influence crystal
growth in particular concerning the shape of the critical
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crystalline nucleus [45]. Here we consider the growth of an
almost flat crystalline-fluid interface where capillary waves
enlarge the interfacial width but do not destroy the growth
mechanism. In fact, recent comparisons of DFT calculations
and simulations on surface tension suggest that the predictions
obtained by DFT are in reasonable agreement with the results
obtained from simulations [46,47].

IV. LONG-TIME LIMIT

In the following, the long-time limit of crystal growth will
be examined. At a distance d = 10σ , two nuclei are positioned
and the right nucleus is rotated by φ. Depending on the seed
sizes N1 and N2, the prescribed bulk area fraction η, and
the rotation angle φ, three different types of behavior can
be observed in the long-time limit. First, a homogeneous
metastable fluid phase can occur at low area fractions [see
Fig. 2(a)]. Due to the interaction of the two crystalline regions,
both crystals melt resulting in a fluid. At small rotation
angles but intermediate area fractions, the resulting phase
is a monocrystal as exemplary shown in Fig. 2(b). When
the crystal-fluid interfaces of the two crystals reach each
other, particles rearrange such that one crystalline region
adapts the orientation of the other. Hence, this crystal grows
unperturbed and fills the whole simulation box. If the rotation
angle is sufficiently large, two crystalline regions are observed
separated by a grain boundary [see Fig. 2(c)]. In this case, the
particles stay at their positions such that the two crystals do
not rearrange. The shape of the grain boundary depends on the
initial configuration. For two equally sized nuclei, as shown
in Fig. 2(c), the resulting grain boundary is a straight line. In
Fig. 2(c) the line is slightly tilted at the upper and lower edge
of the box resulting from periodic boundary conditions. Note
that in case of seeds with different sizes, the resulting grain
boundary usually moves in the direction of the smaller seed as
we will discuss in the next section. For the diagrams in Fig. 2
we only determined whether the grain boundary disappears
or prevails. Defects in the grain boundary consist of pairs of
particles, such that one particle has seven neighbors and the
other particle has only five neighbors.

The exact phase behavior additionally depends on the size
ratio of the initial nuclei N1/N2. In the case of both nuclei
being of the same size; N1 = N2 = 19 as shown in Fig. 2(d);
a fluid phase illustrated by blue triangles is observed which is
not seen for differently sized nuclei in the examined regime of
area fractions. In case of N1 = 61 and N2 = 37, as shown in
Fig. 2(e), the boundary between the monocrystalline phase
and the phase with grain boundary shifts towards smaller
area fractions, as the crystals have strongly peaked density
distributions. Hence, lower area fractions are sufficient for
the smaller nucleus to remain stable. If both nuclei are smaller
(N1 = 37 and N2 = 19), the phase boundary is strongly shifted
to higher area fractions. In this case, at low area fractions
the bigger nucleus forms a more stable crystal—with larger
density peaks—which modifies the smaller crystal such that it
finally fills the entire simulation box and no grain boundary or
melting is observed. The latter case is visualized in Fig. 2(f).
At large area fractions and large rotation angles, the grain
boundary remains stable in all cases, while at small rotation

FIG. 2. (Color online) Long-time situations of the interaction of
two nuclei at distance d = 10σ rotated with respect to each other
by an angle φ at area fraction η. The resulting cases are (a) a fluid,
(b) a monocrystal, and (c) a crystal with a grain boundary where
only cutouts of the full quadratic simulation box are shown.
(d)–(f) The phase diagrams for different nuclei sizes where blue
triangles indicate a fluid, red (gray) diamonds denote a monocrystal,
and dark green (dark gray) diamonds label the crystalline region with
a stable grain boundary. The nuclei consist of (d) N1 = N2 = 19, (e)
N1 = 61, N2 = 37, and (f) N1 = 37, N2 = 19 particles. For movies
of the situations (a)–(c) as well as a movie for N1 = N2 = 19, φ = 5◦,
and η = 0.754, see Supplemental Material [41].
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FIG. 3. (Color online) Analysis of the grain boundaries between
two grown crystalline regions after a time t = 4τB, where the
initial right nucleus is rotated by φ = 20◦ for different nuclei sizes:
(a) N1 = 61, N2 = 37, (b) N1 = 37, N2 = 19, and (c) N1 = 61,
N2 = 19. The area fractions are chosen such that grain boundaries
occur. The shown Voronoi cells are colored in dark blue (medium
gray) for six neighbors in contrast to defects depicted with other
colors (light or dark gray). Black circles indicate the spherically
modeled initial nuclei and the green (light gray) line displays the
analytically calculated interface. (d) The extracted radii of curvature
for cases (a)–(c) obtained at different distances d between the initial
nuclei. For movies of the growth, see Supplemental Material [41].

angles the adaption is minimal enough such that there is a
monocrystalline phase for any area fraction we examined.

V. DYNAMICS OF GRAIN BOUNDARIES

With the knowledge of the long-time limit, now the
dynamics of the grain boundary will be focused on. Again,
two nuclei are positioned at various distances d but at a fixed

FIG. 4. (Color online) Time series of the crystal growth dynam-
ics originated from three nuclei of 19 particles. Shown is a Voronoi
constructon of (a) the initial, (b) an intermediate (t = 0.3τB), and
(c) the configuration at t = 4τB. The outer nuclei are positioned
symmetrically around the center nucleus at distances d = 10σ , while
the center nucleus is displaced vertically by 1σ . In addition, the latter
is rotated by φ = 5◦.

rotation angle φ = 20◦. The area fraction of the system is
chosen such that two crystalline regions separated by a grain
boundary are obtained.

First, we determined the interface that one would expect
from an unperturbed growth [green (light gray) lines in
Figs. 3(a)–3(c)]. In order to obtain these lines, we determine
the growth of a single nucleus with size N1 or N2 separately,
and extract the distance the crystal has grown depending on
time. In a next step, the nucleus is approximated by a sphere
with a corresponding diameter and a geometric construction
is performed in order to obtain the positions where the
crystal-fluid interfaces of the two nuclei reach each other.
Therefore, the green line correspond to the boundaries where
the two crystals if grown unperturbed would first touch.

Second, we performed DDFT calculations of the corre-
sponding growth processes. After the two growing crystals
reach each other, a grain boundary develops that moves to-
wards the smaller nucleus. Additionally, the radius of curvature
r is smaller compared with the geometric construction. These
observations are independent of the system size.

For longer times, a second grain boundary on the right
develops that is the result from periodic boundary conditions
used in our DDFT calculations. In principle this long-time
behavior can be seen as a growth process that is started with
an array of seeds. Figures 3(a)–3(c) show the configurations
obtained by DDFT after a time t = 4τB. The motion of
the grain boundaries was slowed down due to the periodic
boundary conditions. The radius of curvature can be extracted
and is plotted as a function of distance d in Fig. 3(d). We

FIG. 5. (Color online) Similar to Fig. 4 but for a rotation angle
φ = 20◦.
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FIG. 6. (Color online) Similar to Fig. 4 but with distance d =
15σ between the center and the outer nuclei.

compute three different size ratios N1/N2 [Figs. 3(b) and 3(c)]
and the corresponding radii of curvature at distance d for
all three cases. Due to the dependence on the system size
caused by the periodic boundary conditions and due to further
uncertainties when the radius is extracted through very few
points, we only give a qualitative statement: With increasing
distances, the radii also increase or in other words, the grain
boundaries are closer to a straight line which is in agreement
with the geometric construction. The further apart two nuclei
are displaced, the less is the effect of the local curvature of
each nucleus.

VI. THREE CRYSTAL NUCLEI

More than two nuclei can be studied as exemplary shown
in Figs. 4, 5, and 6. Interestingly, very different final states can
be obtained by employing different starting configurations.
Especially, it is not obvious which crystal wins for the cases
where the growth ends up in a monocrystal. In our example,
the center nucleus is positioned symmetrically at distance
d between two similar nuclei all with 19 particles, shifted
upwards by 1σ and rotated by an angle φ. We observe three
different configurations after a time t = 4τB depending on the
initial conditions. In the case of a smaller distance d = 10σ and
small rotation angle φ = 5◦ (Fig. 4), the resulting monocrystal
adapts the orientation of the center nucleus. During the growth,
the particles of the outer crystalline regions rearrange such
that the center crystal grows. For a movie of this growth
process, see Supplemental Material [41]. If this center nucleus
is rotated more (φ = 15◦), the orientation of the resulting
monocrystal follows that of the outer nuclei as it can be seen
in Fig. 5. By increasing the distance between the nuclei to
d = 15σ , a third case can be observed and visualized in Fig. 6.
Here we see two crystalline regions of different orientation—in
analogy to the initial configuration—separated by a grain
boundary. As the time each nucleus has to grow is larger
because of a larger distance, the resulting crystalline regions

are much more pronounced or in other words, the density dis-
tributions are stronger located. Consequently, none of the two
crystals rearranges and stable grain boundaries are observed.

VII. CONCLUSIONS

In this paper we have shown that DDFT is a suitable
tool to study crystal growth of hard disks on a microscopic
scale. There are three different cases when two nuclei with
incommensurate orientation grow—a fluid, a monocrystal, and
a crystal with a stable grain boundary. We have studied the
occurrence of these situations systematically depending on
area fraction and angle of rotation. In addition, we examined
the dynamics of the grain boundary while the two crystals
grow for different distances and size ratios of the nuclei. The
upper and lower end of the grain boundary tilts towards the
smaller nucleus. From this tilted boundary, we have extracted
the radii of curvature and compared the results with the
geometric construction of an unperturbed growth. In this ideal
model, the grain boundary results from the positions where
growth interfaces of two nuclei meet. Since the larger nucleus
dominates the growth process, the grain boundary obtained
with DDFT is shifted towards the smaller nucleus compared
with the geometric construction. Of course, even more nuclei
can be positioned with even random size or orientation and the
growth process can be studied.

Future work should concentrate on the following directions:
First, an array of seeds would be interesting to explore in order
to systematically study different distributions of seeds in space.
Second, the rotation or shrinking dynamics of circular grains
as observed with PFC models in [35,37,38] can also be studied
using DFT. Third, DFT provides an ideal framework for
crystallization in static external potentials such as gravity [48]
that further studies should consider, e.g., crystallites growing
in sedimentation [49]. Other interactions like soft spheres and
attractions can be explored using for example the fundamental
measure density functional for the Asakura-Oosawa model
[50,51]. Moreover, the influence of shear on crystallization
[6,52] and the resulting grain boundaries would be an inter-
esting playground to apply our calculation to. Finally, a global
arrangement of grain boundaries as induced by fluctuations
over free energy barriers which are not contained in our
density-functional theory needs to be looked at using more
refined approaches which go beyond the mean-field approach.
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