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Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape
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We synthesize colloidal particles with various anisotropic shapes and track their orientationally resolved Brow-
nian trajectories using confocal microscopy. An analysis of appropriate short-time correlation functions provides
direct access to the hydrodynamic friction tensor of the particles revealing nontrivial couplings between the
translational and rotational degrees of freedom. The results are consistent with calculations of the hydrodynamic
friction tensor in the low-Reynolds-number regime for the experimentally determined particle shapes.
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Spherical colloidal particles have served as a model system
for investigating Brownian motion since the pioneering studies
of Einstein [1] and Perrin [2]. Such particles are characterized
by a translational diffusion coefficient that is linked to the
Stokes friction coefficient through the well-known Stokes-
Einstein relation [1]. Particles encountered in nature and
industry usually have complex nonspherical shapes, and de-
scribing their Brownian motion raises fundamental questions
about how translational and rotational diffusion are coupled.
However, in most studies, translational and rotational diffusion
are considered separately, which is valid only for certain highly
symmetrical particle shapes.

Recently, model colloids with well-characterized but com-
plex shapes have become available [3,4], which permits the
quantitative study of the hydrodynamic coupling between
translational and rotational diffusion for nontrivial particle
shapes for the first time.

In general, the dynamics of a colloidal particle suspended
in a liquid is described by a Langevin equation that equates the
Stokes friction forces and torques with random thermal forces
and torques on a particle. For an arbitrary colloidal particle
suspended in a liquid, the friction forces and torques are
described by a symmetric second-rank hydrodynamic friction
tensor H [5,6], which includes off-diagonal terms coupling the
three translational and three rotational degrees of freedom. In
all, H has 21 independent elements. For spherical particles,
H is diagonal, with two distinct entries corresponding to the
inverse translational and rotational friction coefficients [7]. For
rodlike particles, both the translational and rotational entries
involve two different coefficients, corresponding to parallel
and perpendicular particle orientation, butH remains diagonal,
meaning that translation and rotation remain decoupled [8].

For a general biaxial particle, H involves nonzero off-
diagonal elements that couple translational and rotational mo-
tion. The corresponding Langevin equation involves intricate
multiplicative noise terms due to this coupling, which makes
a description of the Brownian dynamics much more difficult.
Although a first theoretical treatment dates back to Perrin [9],
it was not reconsidered until much later, and only by a few
authors [5,10] who never explicitly applied it to experiments
for biaxial nonorthotropic particle shapes [11].
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In this Rapid Communication, we report experimental
measurements and theoretical calculations of the hydrody-
namic friction tensor for various anisotropic colloidal particles,
including a general irregular biaxial shape with three fused
spheres of different diameters. The particle shape and size
are determined by confocal as well as scanning electron
microscopy (SEM). We track the Brownian trajectories of
these anisotropic colloidal particles with full orientational
resolution in real space by confocal microscopy. This three-
dimensional (3D) real-space technique allows for tracking
the motion of arbitrarily complex colloidal particles, even
in crowded environments. Based on the generalized Stokes-
Einstein relation, we then propose a theoretical framework
to extract all independent hydrodynamic friction coefficients
from the short-time limit of appropriate correlation functions.
Our results are consistent with low-Reynolds-number hydro-
dynamic calculations of the friction tensor assuming stick
boundary conditions of the solvent at the particle surface,
where the experimentally determined particle shapes are taken
as an input. Since the full orientational resolution of the
individual particle trajectories reveals the couplings between
different degrees of freedom of Brownian motion, the informa-
tion obtained by our analysis is much more basic and detailed
than averaged quantities derived from dynamic light scattering
[12] or sedimentation [13] experiments of biaxial colloidal
particles. Our method can be used to analyze the Brownian
dynamics of any rigid irregularly shaped colloidal particles.

For our experiments, we have prepared anisotropic colloidal
particles from fluorescently labeled, cross-linked PMMA
[poly(methyl methacrylate)] spheres [14] using an emulsion-
evaporation method [3]. The resulting cluster shapes are
uniquely set by minimization of the second moment of
the mass distribution [3] as confirmed by SEM. We have
specifically chosen regular trimers and tetramers as well
as an irregular trimer shown in Fig. 1 for their different
symmetry properties. We idealized the particle cluster shapes
as a composition of fused spheres and measured only the radii
and relative distances between the spheres.

For the regular clusters, RITC-labeled (rhodamine-B-
isothiocyanate-labeled) PMMA spheres 2.1 ± 0.1 μm (trimer)
and 2.4 ± 0.1 μm (tetramer) in diameter are employed.
For the irregular trimer, 2.1 ± 0.1 μm and 1.3 ± 0.1 μm
RITC-dyed spheres are combined with 1.7 ± 0.1 μm
spheres labeled with NBD-MAEM (4-methylaminoethyl
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FIG. 1. (Color online) SEM images (gray) and images obtained by confocal microscopy (colored insets) of three different colloidal particles
(regular trimer, regular tetramer, and irregular trimer) and the corresponding hydrodynamic friction tensors H determined in experiments
and predicted for idealized particle shapes by hydrodynamic calculations using HYDROSUB. The tensors shown are given in dimensions
[Hi,j=1,2,3] = μm, [Hi=1,2,3

j=4,5,6] = [Hi=4,5,6
j=1,2,3] = μm2, and [Hi,j=4,5,6] = μm3. The four 3 × 3 submatrices of H contain the translational friction

coefficients (upper left), the rotational friction coefficients (lower right), and the translational-rotational friction coefficients for the coupling of
translational and rotational motion (upper right and lower left). Since H depends on the center-of-mass position and orientation of the particles,
the coordinate systems used are illustrated. For the diagonal elements ofH, the statistical error of the experimental data is 3% for the regular trimer
and tetramer and 10% for the irregular trimer. The absolute statistical error of the off-diagonal elements is 1 and 5, respectively, in the given units.

methacrylate-7-nitrobenzo-2-oxa-1,3-diazol), which allows us
to easily distinguish the different spheres with a confocal
microscope. All sphere diameters are measured by static light
scattering. The clusters are dispersed in a tetrabutylammo-
nium bromide saturated ∼78/22 (weight/weight) cyclohexyl
bromide/cis-decalin (CHB/decalin) mixture, which nearly
matches the particles’ density and index of refraction, and has
a dynamic (shear) viscosity η = 2.22 mPa s. The dispersion
is then put into rectangular glass capillaries (Vitrotubes,
100 μm × 5 mm × 50 mm) and the ends are sealed with
optical adhesive (Norland, NOA81).

The three-dimensional motion of the anisotropic particles
is observed using a Leica TCS SP5 confocal microscope
equipped with an argon laser (λ1 = 488 nm and λ2 = 543 nm)
and an oil-immersion objective (Leica, 63×, 1.4 NA) [15].
The imaging speed is typically 70 stacks in z direction
per approximately 0.8 s. All experiments are conducted at
room temperature T = 294 K. The positions of the individual
spheres of each cluster are tracked using IDL routines (see
Ref. [16]). From these sphere positions we calculate the
center-of-mass positions, orientations, and bond lengths of
the clusters. For the regular trimer the bond length is 1.5 μm,
for the regular tetramer the centers of any two spheres are
separated by 2.3 μm, and for the irregular trimer the bond
lengths are 2.2 μm between the big and the medium sphere
as well as between the big and the small sphere, and 1.7 μm
between the medium and the small sphere.

Apart from temperature T and solvent viscosity η, the
Brownian dynamics of a single rigid colloidal particle depends

only on its shape and size, which enter in the 6×6-dimensional
symmetric hydrodynamic friction tensor H [5,6]. The latter
relates the translational velocity �v and the angular velocity �ω of
the particle to the hydrodynamic drag force �F and torque �T that
the particle experiences in the viscous solvent: �K = −ηH �v
with �K = ( �F, �T ) and �v = (�v, �ω).

There are two possibilities for determining H for a given
particle. It can either be obtained from its shape and size by
a hydrodynamic calculation that involves solving the Stokes
equation with stick boundary conditions for the solvent at
the particle surface [6], or it can be extracted from appropriate
equilibrium short-time correlation functions. We have used the
software HYDROSUB [17] to follow the first route, where we
used the experimentally determined particle shape, idealized
by fused spheres, as input [18]. For a trimer and a tetramer
of equal spheres as well as for an irregular trimer, results
are shown in Fig. 1 [19]. For convenience, we have chosen
the coordinate systems in such a way that the center of
mass of a particle coincides with the origin of coordinates
and the particle’s planes of symmetry coincide with the
coordinate planes, whenever this is possible. This choice
of particle-fixed coordinate systems leads to a particularly
simple structure of the hydrodynamic friction tensor with
many vanishing nondiagonal elements [6]. The remaining
nonvanishing elements are highlighted in Fig. 1.

The second route to access H is to measure the trajectory of
the Brownian particle with full orientational resolution, i. e.,
the combined knowledge of the center-of-mass position �x(t)
and the three mutually perpendicular normalized orientation
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FIG. 2. (Color online) Time evolution of ten representative correlation functions Cij (t) for the irregular trimer determined in experiments
(upper row) and predicted from a simulation (lower row) based on the idealized hydrodynamic friction tensor (see Fig. 1). The insets in the
lower left plot show the same quantities on linear scales.

vectors ûi(t) with i = 1,2,3 in dependence of time t . The
key idea is now to consider a set of appropriate dynamical
cross-correlation functions

Cij (t) = 〈Xi(t)Xj (t)〉 (1)

with i,j ∈ {1, . . . ,6}, where 〈·〉 denotes a noise average
and the six-dimensional positional-orientational displacement
vector �X(t) = (��x(t),�û(t)) is defined by ��x(t) = �x(t) −
�x(0) and �û(t) = 1

2

∑3
i=1 ûi(0) × ûi(t), where the latter is the

appropriate expression for orientational displacements. The
short-time limit of this set of cross-correlation functions gives
access to the hydrodynamic friction tensor H via

D = 1

2
lim
t→0

dC(t)

dt
, H = kBT

η
D−1, (2)

where D denotes the (generalized) diffusion tensor and kB

Boltzmann’s constant. A larger value for an element of H
therefore means a higher hydrodynamic friction and thus
a slower diffusion. From this second route, based on the
experimentally determined trajectories, we obtain the results
presented in Fig. 1. The experimental results for H are in good
agreement with our hydrodynamic calculations; deviations are
due to an idealization of the particle shape in the hydrodynamic
calculations and due to the statistical error originating from the
limited length of the measured trajectories.

In reality, the particles are not compositions of perfect
spheres, but have rough surfaces and deformations near the
overlap areas of the spheres. Additionally, the spheres that
make up the clusters have a polydispersity of about 5%.
While uncertainties in the size of the particles only lead to
small deviations in the translational-translational elements
Hi,j=1,2,3 ∝ l with the length scale l, these deviations are
of greater relevance for the translational-rotational coupling

elements Hi=1,2,3
j=4,5,6 ∝ l2 and lead to large deviations in the

rotational-rotational elements Hi,j=4,5,6 ∝ l3. Nondiagonal
tensor elements, which should vanish by symmetry consider-
ations (not highlighted in Fig. 1), indeed have nonzero values
in the experimentally determined friction tensor due to both
irregularities in the actual particle shape and the statistical
error because of the finite length of the trajectories.

We finally address the full time dependence of the basic
cross-correlation functions Cij (t). Results for Cij (t) obtained
from our measured trajectories of the irregular trimer particle
are presented in Fig. 2. Figure 2(a) shows the translational
mean-square displacements for the different Cartesian com-
ponents, which increase linearly for short times with the slope
governed by the anisotropic short-time diffusion coefficients.
At long times, there is another linear function in time, which
is the same for all coordinates [20], since it is governed by the
orientationally averaged long-time diffusion coefficient [see
insets in the lower plot in Fig. 2(a)]. Several cross-correlations
between translational and rotational displacements are shown
in Fig. 2(b). The absolute values of these nontrivial correlations
are initially increasing with time, but decorrelate for longer
times. Finally, the rotational-rotational correlations shown in
Fig. 2(c) are clearly positive and build up continuously as
functions of time until they decay again and approach the same
constant value for very long times. Here, we restrict the presen-
tation of correlation functions to this irregular particle, since it
is the only particle with nonzero translational-rotational cou-
pling elements and thus provides the most nontrivial dynamics.

An idealized time evolution of the correlation functions
Cij (t) can be obtained from a given hydrodynamic friction
tensor H. With this tensor as an input, the Brownian motion of
a colloidal particle can be simulated by solving its Langevin
equation (see Ref. [10]) numerically using a stochastic
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integrator of strong order 1.5 [21]. Our results for the predicted
correlation functions are presented in Fig. 2 as well. A
comparison with the experimental results for Cij (t) reveals
again good agreement with deviations resulting from choos-
ing the idealized instead of the experimentally determined
hydrodynamic friction tensor and from the statistical error.
Note that the statistical error is obvious for the experimentally
determined correlation functions, while it is extremely small
for the simulated correlation functions, where trajectories with
106 time steps have been calculated.

In this work, we track the Brownian dynamics of individual
colloidal particles with various anisotropic shapes and extract
the hydrodynamic friction tensor from an analysis of appro-
priate short-time correlation functions. The framework of our
analysis can in principle be applied to any rigid particle with
an arbitrary shape and therefore to a broad range of relevant
suspensions. Using confocal microscopy we obtain real-space
3D measurements of any complex particles, even in crowded
environments.

Future work should address the effect of aligning external
fields such as gravity or magnetic fields [22] that gain
major importance in the context of directed self-assembly

[23]. Moreover, nondilute colloidal suspensions would be
interesting, where direct particle-particle interactions [24] and
solvent-flow mediated hydrodynamic interactions [25] will
lead to even more intricate translational-rotational couplings.
This would provide a basis to understand the rheological
properties of concentrated dispersions of irregularly shaped
colloidal particles such as clay [26] and asphalt [27].
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