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Direct measurement of osmotic pressure via
adaptive confinement of quasi hard disc colloids
Ian Williams1,2,3, Erdal C. Oğuz4, Paul Bartlett2, Hartmut Löwen4 & C. Patrick Royall1,2,3

Confining a system in a small volume profoundly alters its behaviour. Hitherto, attention has

focused on static confinement where the confining wall is fixed such as in porous media.

However, adaptive confinement where the wall responds to the interior has clear relevance in

biological systems. Here we investigate this phenomenon with a colloidal system of quasi

hard discs confined by a ring of particles trapped in holographic optical tweezers, which form

a flexible elastic wall. This elasticity leads to quasi-isobaric conditions within the confined

region. By measuring the displacement of the tweezed particles, we obtain the radial osmotic

pressure. We further find a novel bistable state of a hexagonal structure and concentrically

layered fluid mimicking the shape of the confinement. The hexagonal configurations are found

at lower pressure than those of the fluid, thus the bistability is driven by the higher entropy of

disordered arrangements, unlike bulk hard systems.
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P
henomena induced by confinement include decoupled
dynamics parallel and perpendicular to boundaries, the
adoption of structures mimicking the confining geometry

and the formation of novel phases. Such behaviour is found in a
broad range of systems including simple1–4 and molecular5,6

liquids, colloidal and nanoparticle suspensions7–12 and granular
materials13. As a result, confinement offers new routes to self-
assembly and control of reaction rates and pathways4,14–16.

Underlying the impact of confinement upon a system, leading
to changes in structure, dynamics and phase behaviour, is its
effect upon the free energy17, which can be accurately determined
for model systems such as we employ here. Combined with direct
comparison to bulk behaviour18–20, such calculations enable an
understanding of the effects of confinement. By emphasizing
adaptive confinement, we open the possibility to use colloids as
basic models of biological systems such as cell walls.

Our system comprises a suspension of polystyrene colloids in a
water–ethanol mixture, in which 27 particles of diameter s¼ 5
mm are held by holographic optical tweezers (HOT)21 in a ring
configuration (Fig. 1). These ring particles thus form a flexible
‘membrane’ that can adapt to the interior. The colloids are
restricted to quasi-two-dimensions (2D) by gravity, thus the ring,
or corral, confines a population of up to N¼ 49 particles. We
express the interior population in terms of the effective area
fraction feff ¼ ðps2

eff Þ=ð4hAVoriÞ where seff is the Barker–
Henderson effective hard sphere diameter22 accounting for
electrostatic interactions between the colloids and /AVorS is
the average area accessible to an interior particle. Further details
are provided in the Methods. Coordinates of both interior and
membrane particles are obtained throughout the experiment. We
compare our experimental results with 2D Monte-Carlo
simulations of a hard disc system that is similarly confined. In
our study of quasi hard discs, adaptive confinement introduces
two main effects. First, by measuring displacements of the
membrane particles we directly obtain the osmotic pressure in the
interior. Thus, our system marks a departure from the constant-
volume ensemble characteristic of soft matter, as the fluctuating
membrane exerts a pressure on the interior creating instead a
quasi-isobaric ensemble. Second, the combined experimental and
simulation approach reveals that adaptive confinement enables
hexagonal ordering reminiscent of the bulk18–20, leading to a
bistability between this structure and a layered fluid characteristic
of similarly confined hard wall systems1,2,7.

Results
Phase behaviour and structure. The phase diagram of the system
is shown in Fig. 1b–d. By increasing the corral population a
qualitative change in structure is observed. At low density, the

interior structure is fluid-like (Fig. 1b), but upon increasing the
population, a concentrically layered structure consisting of rings
of particles mimicking the symmetry of the confining boundary
becomes evident (Fig. 1c).

In our experiments, we sometimes find hexagonal ordering for
effective area fraction feff\0.77 (Fig. 1d). The degree of local
hexagonal ordering is quantified using the bond-orientational
order parameter, c6 ¼ 1=zj

Pzj

m¼1 exp i6yj
m

� ��� �� where zj is the
co-ordination number as defined by a Voronoi construction and
yj

m is the angle made by the bond between particle j and its mth
neighbour and a reference axis. For perfect hexagonal ordering,
c6¼ 1, whereas totally disordered systems have c6¼ 0. We
consider c640.775 to represent a hexagonal structure. As the
hexatic transition in bulk hard discs has been identified in the
range 0.70rfr0.716 (ref. 20), we assume our system explores
the kind of configurations a bulk system at the same area fraction
would exhibit. Owing to curvature, hexagonal ordering is
suppressed in the layer of particles by the wall. However, upon
sufficient lowering of the spring constant in the optical traps by
reducing the laser power, the adaptivity of the corral is enhanced.
Under these conditions complete hexagonal ordering may be
possible. In simulation, hexagonal ordering is most strongly
suppressed at high spring constant, and is enhanced as the spring
constant is reduced (Supplementary Fig. S1). Thus, local
hexagonal ordering imposed by packing constraints competes
with concentric layering imposed by the boundary shape.

Such hexagonal structure has not, to the best of our knowledge,
been reported for systems of comparable size confined by hard
boundaries. We argue that this structure, which more closely
resembles the bulk than the confining geometry, is made
possible by the adaptive confinement. Wall roughness on the
particle lengthscale has been shown to inhibit particle layering2

and although the walls of this system are indeed rough, the
roughness is naturally commensurate with the particle size
and interparticle separation. If the circular boundary were
‘flattened’, removing the wall curvature, the regular spacing of
the optically trapped particles would promote hexagonal
ordering. However, the curvature of the boundary is
incommensurate with hexagonal order, suppressing c6 in its
immediate vicinity to cwall

6 � 0:5, (Supplementary Fig. S2)
indicating that wall roughness is not the source of the observed
locally hexagonal structure but that it is made possible by the
adaptive confinement that can be distorted.

We explore these competing structures further in Fig. 2a where
c6 is plotted as a function of packing fraction. There is a general
trend of increasing c6 with area fraction for feffo0.77.
Concentrically layered structures such as that shown in Fig. 1c
for N¼ 44 have c6 in the range 0.6oc6t0.75. In our
experiments, at high packing fractions, a distribution of
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Figure 1 | Colloidal corral system overview. (a) Schematic showing side view of experimental system defined by corral radius R. (b–d) Phase diagram as a

function of effective area fraction, feff, with images of fluid, layered fluid and hexagonal structures. Scale bars represent 10mm. Note that the images

of the layered fluid (c) and hexagonal structure (d) both have interior population N¼48. Pink circles in (b–d) indicate positions of optical traps.
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populations with high and low c6 are found. These correspond to
hexagonal and layered fluid structures respectively. For hard
systems in general, we associate entropically driven ordering with
an increase packing, and hard discs are no exception20.

Before turning to the cause of this apparent degeneracy in c6 at
high area fraction, we address its connection with ergodicity. To
investigate the dynamics, we calculate the self intermediate
scattering function (ISF) FS(q,t)¼/|eiq[r(tþ t0)—r(t0)]|S where the
angle brackets indicate averaging over particles and t0 and the
wavevector q � 2ps� 1

eff . The resulting ISFs are plotted in Fig. 2b.
For feff\0.75, the ISF does not decay on the experimental
timescale (2.03� 104 s or 290 Brownian diffusion times, tB),
indicating that the system does not reach equilibrium. Thus, it is
possible that the amorphous structures could be metastable to
hexagonal configurations or even vice versa. As we shall see
however, this degeneracy is in fact a manifestation of a bistable
state found at high density. By contrast, our simulations do reach
equilibrium, as shown in Supplementary Fig. S3. Thus we find
one value of c6 for each feff in Fig. 2a. In order to observe full
decay of the experimental ISFs at all area fractions considered,
much longer experiments would be required. We estimate that an
experimental duration of B200 h is required for full equilibration
of all experimental samples. Additionally, ergodicity may be
recovered through a reduction in boundary stiffness, via
reduction in feff, as a softer boundary allows the system to
expand. We estimate that if the trap stiffness falls to B0.45 of its
experimental value then the N¼ 49 particle system would relax
on the experimental timescale.

Measurement of pressure. Owing to the elasticity of the con-
finement, densely populated corrals have a radius that is, on
average, larger than that of the unpopulated corral. The confining
boundary is ‘stretched’ by the interior population, displacing the
wall particles from their optically defined energy minima at
R0E4.32seff. For small deformations of the corral, we assume
each trap creates an identical Hookean restoring force around
each particle in the ring (see Methods and Supplementary Fig.
S4). By measuring the expansion of the corral with respect to its
unpopulated size, we directly obtain the osmotic pressure of our
system. The Hookean restoring force on each trapped particle is
F¼ �l(R–R0). We average over all 27 trapped particles when
calculating R. That the force experienced by each trapped particle
can be treated as identical is important—it indicates the system is

quasi-isobaric. The pressure is calculated as

p ¼ 27l
ðR�R0Þ

2pR
: ð1Þ

Figure 3 shows the dimensionless time-averaged radial pressure
calculated using Equation 1 for experimental and simulated corral
systems in the range 0.50rfeffr0.8. For state points where bulk
hard discs are fluid (feff r0.70), we find good agreement
between pressure measurements of our confined system and bulk
values23. The symbols are coloured based on the value of c6

plotted in Fig. 2, with red indicating low c6 (concentric layering)
and blue indicating high c6 (local hexagonal ordering). Figure 3
reveals the interplay between pressure and ordering: for a given
population, higher c6 samples in general exhibit lower pressures
and higher area fractions.

At high packings (f\0.77), the experimental system does not
reach equilibrium. As our measurements of pressure are
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Figure 2 | Structure and dynamics in adaptive confinement. (a) Average local hexagonal order parameter c6 as a function of effective area fraction.

Horizontal dashed line demarcates hexagonal structures (c640.775) from layered structures (c6r0.775). Circles are experimental data, open triangles

are simulation. Blue shaded region represents densities at which concentrically layered structures compete with locally hexagonal structures. Points are

coloured by corral population, N. Inset includes low-density data in the bulk fluid regime. Fluid-hexatic phase coexistence in the bulk20 is indicated by the

turquoise region. Line is to guide the eye. (b) Experimental self ISF, FS(q,t), at different effective area fractions, feff. Lines labelled with feff. The wavevector

q¼ 2p/seff is taken close to the main peak of the static structure factor.

28
25

15

5

0.60.5 0.7 0.8

20

1024

20

p 
�

2 ef
f/k

B
T

p 
�

2 ef
f/k

B
T

16

12

8

4
0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80

0.6200
0.6525

49

48

47

46

45
44

0.6850
0.7175
0.7500
0.7825
0.8150
0.8475
0.8800
0.9000

�eff

�6

�eff

Figure 3 | Pressure measurement. Dimensionless radial pressure as a

function of area fraction for both experiment (filled circles) and Monte-

Carlo simulation (open triangles). Symbols are grouped inside dashed lines

indicating the corral population, N, they represent and are coloured based

on the average value of c6 of particles non-adjacent to the corral wall with

red points indicating low c6 and blue points indicating high c6. Black

crosses joined by grey lines are data from bulk hard disc simulations24.

Inset includes low-density data in the bulk fluid regime. Fluid-hexatic phase

coexistence in the bulk20 is indicated by the turquoise region. Grey line

indicates bulk pressure for the fluid23 and the solid24. Shaded blue regions

denote area fractions for which bistable behaviour is observed.
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mechanical, we can measure p for such non-equilibrium state
points (Fig. 2b). However, because phase space is not fully
sampled, each experiment gives a different pressure value,
resulting in a range of observed pressure for a given interior
population. Conversely, because our simulations reach equili-
brium, a single value is found for the pressure. Our system
exhibits a departure from bulk behaviour24 for f\0.77, a similar
packing fraction to that at which the system starts to visit
hexagonal configurations. We assume that such a deviation is due
to confinement.

Structural bistability. Although the highly ordered hexagonal
structures feature a lowering in pressure, which in bulk systems
indicates a reduction in free energy, here we find these coexist
with higher pressure disordered layered fluid structures. We find
transitions between both structures, accompanied by changes in
area fraction and c6. Examples are given in Fig. 4, which shows
the time evolution of the instantaneous area fraction, pressure, c6

and mean-squared particle displacement for a sample of popu-
lation N¼ 47. The system initially undergoes a transition from
high to low area fraction and high to low c6. A structure similar
to the original is recovered between 140–170tB. These transitions
are indicated by the dashed lines in Fig. 4a–d and occur over a
time interval of B10tB and 30tB, respectively. Figure 5a shows
the particle rearrangements in the second transition time interval
(purple data in Fig. 4a–d at 140–170tB), resulting in this increase
in volume fraction and decrease in pressure. A cooperative
rearrangement of particles, strongly localized in time, results in a
structural change in the system, allowing the boundary to
contract.

On the experimental timescale, such cooperative rearrange-
ments are rare. Dynamically, the system is characterized by long
periods of low particle mobility at different area fraction (or
pressure) separated by short rearrangement intervals of higher
particle mobility (Dr240.3s2), during which a subset of the
system undergoes cooperative, neighbour-changing motion, as
shown in Fig. 4d. Such isolated events are the mechanism by
which the system relaxes. Thus we find temporal dynamic
heterogeneity. In other words, rearrangements correspond to
active periods interspersed with inactive periods. Such temporally
heterogeneous dynamics between inactive and active periods have
been related to the glass transition25. Plots such as that shown in
Fig. 5a allow the visualization of the size and shape of co-
operatively rearranging regions, which yields detailed information
about the nature of slow dynamics in confinement.

Data such as those in Fig. 4 indicate that the system undergoes
transitions between two structures, one of high order and low
pressure and one of high pressure and low order. To test this
hypothesis, we plot the probability distribution of c6 as obtained
from Monte-Carlo simulation in Fig. 5b. Indeed the behaviour is
consistent with structural bistability in that two peaks, one
corresponding to each structure, are found. A similar plot
obtained from experimental data is shown in Supplementary Fig.
S5, although our experiments do not reach full equilibrium at
these high area fractions. Figure 5b provides strong evidence that
the adaptive confinement induces a bistability in these assemblies
of hard discs between a layered fluid (with high pressure and low
order) and a hexagonal system (with low pressure and high
order). This contrasts strongly with phase coexistence in bulk
systems, where coexistence of a fluid and a crystal occurs at a
single pressure but at different volumes (or equivalently, areas).
Pressure and area are coupled in our system and therefore the two
coexisting structures have distinct areas and pressures.

Discussion
At first sight, the emergence of a hexagonal structure at high
density seems reminiscent of bulk hard discs. However, our
adaptive confinement introduces a potential energy to the system.
Indeed, that the hexagonal structure resides at lower pressure and
higher order would suggest that it should be strongly favoured.
That we find the system in layered fluid configurations at all
indicates that more is at play than energy. This leaves entropy,
and in fact there are fewer configurations accessible to the
hexagonal structure. This is because free volume is expended in
the ‘voids’ close to the walls in Fig. 1d. Thus, because the layered
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fluid fits the cavity better than the hexagonal configuration, it is
entropically favored, in contrast to the case of bulk hard discs.
Further evidence for this scenario is provided by the suppression
of hexatic ordering relative to the bulk, where it is found for
fZ0.716 (ref. 20). Here we find hexatic ordering only for feff

Z0.77. This suppression results from the entropic loss associated
with the hexatic ordering. The prescence of voids adjacent to the
boundary in hexagonally ordered systems is also indicated in
Supplementary Fig. S6, where the local area fraction is found to
decrease towards the boundary of the corral for both concen-
trically layered and locally hexagonal configurations. This effect is
stronger in the case of the hexagonally ordered system, where the
local area fraction adjacent to the boundary is suppressed by
B3% relative to the average. In the layered fluid this suppression
is only half as strong, with local area fraction B1.5% lower than
the average.

As the observed structural bistability is dependent upon the
adaptivity of the boundary, it is feasible that controlled
modification of the wall can induce transitions between layered
and hexagonal structures. The corral wall is defined by its size,
shape and stiffness. Altering any one of these in situ can
potentially drive the confined system from one structure to
another. For instance, a hexagonal configuration can be ‘melted’
by increasing the diameter of the confining ring. Similarly,
hexagonal configurations can be favoured by altering the shape of
the confining boundary—the extreme case of this being
confinement by a hexagonal wall (Supplementary Fig. S7).
Furthermore, as noted above, stiffer boundaries inhibit hexagonal
ordering (Supplementary Fig. S1), which indicates that increasing
optical trap strength is capable of driving a locally hexagonal
configuration into a concentrically layered configuration and
vice versa.

A confined model experimental system of quasi hard discs is
introduced with a ring of particles held in HOT. Monte-Carlo
computer simulations show that the system is well described as
hard discs confined by particles in harmonic potentials. We
demonstrate that measuring the expansion of the optically
defined confining boundary due to interior particles enables
direct measurement of the radial osmotic pressure of the confined
system. As the confining wall adapts to the interior, many more
configurations can be accessed than in conventional static
confinement. In particular, we find hexagonal ordering reminis-
cent of the bulk, which competes with concentric layering
echoing the ring of trapped particles. Furthermore, for a given
number of interior particles, the system is quasi-isobaric, enabling
transitions between these two structures—a bistable state. Unlike
the case for bulk systems, here the configurational entropy of the
hexagonal structure is lower than that of the fluid, because it is
incommensurate with the circular boundary. It would be
interesting to carry out microscopic density functional calcula-
tions for hard disks in order to predict the structural and
dynamical collective behaviour of the confined systems26.

Our system is ideal for studying the basic properties of adaptive
confinement and can readily be generalized to three dimensions
(3D). This would enable the osmotic pressure measurements to
be applied to other systems, including active matter such as
driven colloids27 and bacteria. By constructing a corral around a
cell and varying the salt concentration, our technique might even
enable the turgor pressure to be directly determined. Moreover, as
ensembles of rigid non-spherical particles are used as an
approximation to the cytoplasm28, our approach could even
model some properties of cells. Finally, with a suitable choice of
geometry, for example a fixed cylinder with a 2D tweezed array,
realization of nanoscale Brownian pistons is now feasible, which
would enable direct tests of basic thermodynamic behaviour such
as compression.

Methods
Sample details. The experimental system consists of polystyrene colloids of dia-
meter s¼ 5.0 mm with a polydispersity of 2%, suspended in a water–ethanol
mixture at a ratio of 3:1 by weight. The Debye length in our experimental samples
is estimated by matching the Barker–Henderson effective hard sphere diameter22

to the simulated hard disc diameter that best reproduces experimental behaviour.
This results in a Debye length of k� 1E25 nm, which is consistent with the
experimental conditions. We assume the effective colloid charge Zeff is given by
ZefflB/sB6. This leads to a Barker–Henderson effective hard sphere diameter
seff¼ 5.08 mm.

The density mismatch between the particles and the solvent is such that their
gravitational length is lg/seff¼ 0.015(1), which results in fast sedimentation of
suspended particles and the formation of a quasi-2D monolayer adjacent to a glass
coverslip substrate. This coverslip is made hydrophobic by treatment with Gelest
Glassclad 18 to prevent particle adhesion.

The Brownian time, tB, is determined empirically by measuring the mean-
squared displacement in a dilute system. We define Brownian time as the average
time needed to diffuse a distance of one particle radius. For our experimental
conditions we measure a Brownian time of tBE70.2 s.

Holographic optical tweezers. The HOT apparatus consists of an ytterbium fibre
laser of wavelength 1,064 nm modulated by a computer-addressed liquid crystal on
a silicon spatial light modulator (Holoeye PLUTO-NIR) capable of applying
phase shifts of up to 2p to laser light reflected from each of its 1,920� 1,080 pixels.
The application of superposed phase gratings to the SLM modulates the
incident beam such that it can form arbitrary arrays of optical traps21. The HOT
apparatus is controlled using LabVIEW software adapted from that developed by
the Glasgow University Optics Group29.

Optical trapping is integrated into an inverted microscope (Zeiss Axiovert 200)
and facilitated by a high numerical aperture objective (Zeiss Plan-Neofluar � 100
magnification). This same objective images the sample to a charged coupled
device camera (Allied Vision Technologies Dolphin F-145B), which relays sample
images to the computer.

The colloidal corral. As shown in Fig. 1, 27 particles are positioned using HOT
forming the adaptive corral boundary. These traps are well-approximated by
parabolae with spring constant l¼ 302(2) kBTs� 2

eff . This spring constant is
determined by measuring the probability distribution of radial coordinates for
particles forming the boundary in the absence of a confined population. By
assuming this radius is Boltzmann-distributed the optical potential is extracted and
fit with the parabolic form characteristic of a Hookean spring (see Supplementary
Fig. S2). As we find a good degree of uniformity in the strength of our optical traps,
we consider an effective corral potential described by a single spring constant,
rather than extracting individual spring constants for each of our 27 optical traps.
Variations in the radial spring constant for individual optical traps are a few
percent of the value of the effective spring constant.

It is integral to this work that the confined particles are unaffected by the light
field used to create the circular boundary. The light field due to the 27 optical traps
is assessed by imaging the laser light reflected from a glass–air interface at
maximum camera gain. Supplementary Fig. S8a shows a single image of the light
field in which the 27 optical traps are clearly visible. If the intensity of each pixel is
summed over a sequence of images one obtains the composite image in
Supplementary Fig. S8b, in which background noise is suppressed. It is clear from
these high-gain images of the light field that the interior region is free from
unwanted optical influence.

Experimental data are acquired for up to 6 h at 0.5 frames per second. Particle
trajectories are extracted30 for corral populations Nr49 corresponding to area
fractions feffo0.8. Area fraction is estimated from experimental data by
considering the Voronoi decomposition of the particle coordinates for each frame.
The particles forming the confining boundary are neglected—only the Voronoi
cells of the interior population are considered. In a given frame, the instantaneous
area fraction is defined using the circular cross-sectional area of a particle
(assuming particles are monodisperse) and the average Voronoi cell area (or the
average area per particle). For densely populated corrals this gives a good estimate
of the area fraction; however, at low densities, as the Voronoi polygons of the
particles forming the confining walls penetrate further into the corral interior, this
method may over-estimate the area fraction. Unless a distinct transition is observed
in the course of an experiment, the area fraction is taken to be the time average of
the instantaneous area fraction. Data exhibiting a transition is split into pre- and
post-transition sequences and thereafter treated as distinct experiments.

Monte-Carlo simulation. Monte-Carlo simulations reproduce the experiments.
N hard discs are placed in a circular region enclosed by 27 additional discs. To
reproduce the confining effect of the optical tweezers, each of these 27 discs lies in a
parabolic potential energy well of stiffness l¼ 302 kBTs� 2

eff as found by fitting
experimental data. The experimental system is quasi-2D and the electrostatic
charge leads to some softness in the interparticle interactions. Even without these
considerations, in 2D the accuracy to which feff can be determined is \4%
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(ref. 31). The effect of interactions complicates the situation32. Here we treat R0 as a
fit parameter, with 4.30rR0r4.44 and find best agreement with R0¼ 4.32.

We perform five independent runs for each N using 107 Monte Carlo sweeps to
equilibrate the system. Although considerable fluctuations are seen between
different configurations, at a given state point no significant changes in f, c6 or
pressure are observed between any of our runs, so we assume that the system is
equilibrated. Supplementary Fig. S3 presents further evidence of ergodicity in
simulation. Confirmation that the simulations of 2D hard discs are a good
approximation to our experimental system is provided in Supplementary Fig. S9,
where we explicitly include the effect of gravity to form a quasi-monolayer in a 3D
system and model electrostatic interactions via a Yukawa potential.
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2. Németh, Z. T. & Löwen, H. Freezing and glass transition of hard spheres in

cavities. Phys. Rev. E 59, 6824–6829 (1999).
3. Deb, D. et al. Hard sphere fluids at a soft repulsive wall: A comparative study

using Monte Carlo and density functional methods. J. Chem. Phys. 134, 214706
(2011).

4. Curk, T. et al. Layering, freezing, and re-entrant melting of hard spheres in soft
confinement. Phys. Rev. E 85, 021502 (2012).

5. Teboul, V. & Simionesco, C. A. Properties of a confined molecular glass-
forming liquid. J. Phys. Condens. Matter 14, 5699–5709 (2002).

6. Scheidler, P., Kob, W. & Binder, K. Static and dynamical properties of a
supercooled liquid confined in a pore. J. Phys. IV France 10, Pr7-33–Pr7-36
(2000).

7. Bubeck, R., Bechinger, C., Neser, S. & Leiderer, P. Melting and reentrant
freezing of two-dimensional colloidal crystals in confined geometry. Phys. Rev.
Lett. 82, 3364–3367 (1999).

8. Bechinger, C. Colloidal suspensions in confined geometries. Curr. Opin. Colloid
Interface Sci. 7, 204–209 (2002).

9. Nugent, C. R., Edmond, K. V., Patel, H. V. & Weeks, E. R. Colloidal glass
transition observed in confinement. Phys. Rev. Lett. 99, 025702 (2007).

10. Eral, H. B., van den Ende, D., Mugele, F. & Duits, M. H. G. Influence of
confinement by smooth and rough walls on particle dynamics in dense hard-
sphere suspensions. Phys. Rev. E 80, 061403 (2009).

11. Wang, Z., Alsayed, A., Yodh, A. & Han, Y. Two-dimensional freezing criteria
for crystallizing colloidal monolayers. J. Chem. Phys. 132, 154501 (2010).

12. Edmond, K. V., Nugent, C. R. & Weeks, E. R. Influence of confinement on
dynamical heterogeneities in dense colloidal samples. Phys. Rev. E 85, 041401
(2012).

13. Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow
dynamics near a wall in glass-forming systems. Nat. Mater. 10, 512–520 (2011).

14. Zhou, H.-X., Rivas, G. & Minton, A. P. Macromolecular crowding and
confinement: biochemical, biophysical, and potential physiological
consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

15. Hamilton, B. D., Ha, J.-M., Hillmyer, M. A. & Ward, M. D. Manipulating
Crystal Growth and Polymorphism by Confinement in Nanoscale
Crystallization Chambers. Acc. Chem. Res. 45, 414–423 (2012).

16. Chen, C., Cook, O., Nicholson, C. E. & Cooper, S. J. Leapfrogging Ostwald’s
rule of stages: Crystallization of stable g-glycine directly from microemulsions.
Cryst. Growth Des. 11, 2228–2237 (2011).

17. Alba-Simionesco, C. et al. Effects of confinement on freezing and melting.
J. Phys. Condens. Matter. 18, R15–R68 (2006).

18. Marcus, A. H. & Rice, S. A. Phase transitions in a confined quasi-two-
dimensional colloid suspension. Phys. Rev. E. 55, 637–656 (1997).

19. Zahn, K., Lenke, R. & Maret, G. Two-stage melting of paramagnetic colloidal
crystals in two dimensions. Phys. Rev. Lett. 89, 2721–2724 (1999).

20. Bernard, E. P. & Krauth, W. Two-step melting in two dimensions: first-order
liquid-hexatic transition. Phys. Rev. Lett. 107, 155704 (2011).

21. Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. J. Multi-functional optical
tweezers using computer-generated holograms. Opt. Commun. 185, 77–82
(2000).

22. Barker, J. A. & Henderson, D. What is ‘liquid’? Understanding the states of
matter. Rev. Mod. Phys. 48, 587–671 (1976).

23. Kolafa, J. & Rottner, M. Simulation-based equation of state of the hard disk
fluid and prediction of higher-order virial coefficients. Mol. Phys. 104,
3435–3441 (2006).

24. Alder, B. J., Hoover, W. G. & Young, D. A. Studies in molecular dynamics.
V. High-Density equation of state and entropy for hard disks and spheres.
J. Chem. Phys. 49, 3688–3696 (1968).

25. Hedges, L. O., Jack, R. L., Garrahan, J. P. & Chandler, D. Dynamic order-
disorder in atomistic models of structural glass formers. Science 323, 1309–1313
(2009).

26. Tarazona, P. & Rosenfeld, Y. From zero-dimension cavities to free-energy
functionals for hard disks and hard spheres. Phys. Rev. E 55, R4873–R4876
(1997).

27. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living
crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

28. Elcock, A. H. Models of macromolecular crowding effects and the need for
quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 20,
196–206 (2010).

29. Preece, D. et al. Increasing trap stiffness with position clamping in holographic
optical tweezers. Opt. Express 17, 22718–22725 (2009).

30. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal
studies. J. Colloid Interface Sci. 179, 298–310 (1996).

31. Poon, W. C. K., Weeks, E. R. & Royall, C. P. On measuring coloidal volume
fractions. Soft Matter 8, 21–30 (2012).

32. Royall, C. P., Poon, W. C. K. & Weeks, E. R. In search of colloidal hard spheres.
Soft Matter 9, 17–27 (2013).

Acknowledgements
C.P.R. and I.W. gratefully acknowledge the Royal Society for funding. I.W. was supported
by the EPSRC. Financial support from the European Research Council (ERC Advanced
grant INTERCOCOS, project number 267499) is acknowledged. We thank David Car-
berry and Richard Bowman for assistance in setting up the HOT hardware and software
respectively. We express our gratitude to Bob Evans and Dave Phillips for useful
discussions.

Author contributions
C.P.R., I.W. and P.B. conceived the experiments. I.W. built the experimental apparatus
and performed the experiments. H.L., E.C.O. and C.P.R. conceived the simulations and
E.C.O. carried out the simulations. All authors analysed data and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Williams, I. et al. Direct measurement of osmotic pressure
via adaptive confinement of quasi hard disc colloids. Nat. Commun. 4:2555
doi: 10.1038/ncomms3555 (2013).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3555

6 NATURE COMMUNICATIONS | 4:2555 | DOI: 10.1038/ncomms3555 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	title_link
	Results
	Phase behaviour and structure

	Figure™1Colloidal corral system overview.(a) Schematic showing side view of experimental system defined by corral radius R. (b-d) Phase diagram as a function of effective area fraction, phieff, with images of fluid, layered fluid and hexagonal structures
	Measurement of pressure

	Figure™2Structure and dynamics in adaptive confinement.(a) Average local hexagonal order parameter psgr6 as a function of effective area fraction. Horizontal dashed line demarcates hexagonal structures (psgr6gt0.775) from layered structures (psgr6le0.775)
	Figure™3Pressure measurement.Dimensionless radial pressure as a function of area fraction for both experiment (filled circles) and Monte-Carlo simulation (open triangles). Symbols are grouped inside dashed lines indicating the corral population, N, they r
	Structural bistability

	Discussion
	Figure™4Experimentally observed structural transitions.Time evolution of (a) instantaneous effective area fraction (b) pressure (c) psgr6 and (d) mean squared particle displacement over a timescale of 6tauB for a single sample of population N=47. Transiti
	Figure™5Dynamical heterogeneity and structural bistability.(a) Displacement of particles in transition period around 140-170tauB in Fig.™4. Magnitude of displacement is indicated by the length and colour of each arrow. Arrows in grey ring correspond to pa
	Methods
	Sample details
	Holographic optical tweezers
	The colloidal corral
	Monte-Carlo simulation

	NémethZ. T.LöwenH.Freezing in finite systems: hard discs in circular cavitiesJ. Phys. Condens. Matter10618962041998NémethZ. T.LöwenH.Freezing and glass transition of hard spheres in cavitiesPhys. Rev. E59682468291999DebD.Hard sphere fluids at a soft repul
	C.P.R. and I.W. gratefully acknowledge the Royal Society for funding. I.W. was supported by the EPSRC. Financial support from the European Research Council (ERC Advanced grant INTERCOCOS, project number 267499) is acknowledged. We thank David Carberry and
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




