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The motion of a deformable active particle in linear shear flow is explored theoretically. Based on
symmetry considerations, we propose coupled nonlinear dynamical equations for the particle posi-
tion, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear
flow as well as active spinning motions, are taken into account. Our equations reduce to known mod-
els in the two limits of vanishing shear flow and vanishing particle deformability. For varied shear
rate and particle propulsion speed, we solve the equations numerically in two spatial dimensions and
obtain a manifold of different dynamical modes including active straight motion, periodic motions,
motions on undulated cycloids, winding motions, as well as quasi-periodic and chaotic motions in-
duced at high shear rates. The types of motion are distinguished by different characteristics in the
real-space trajectories and in the dynamical behavior of the particle orientation and its deformation.
Our predictions can be verified in experiments on self-propelled droplets exposed to a linear shear
flow. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820416]

I. INTRODUCTION

In the last decade, the motion and modeling of active par-
ticles has attracted much attention in the field of nonequi-
librium physics.1–5 A major part of active particles are arti-
ficial colloidal microswimmers with fixed stable shapes,6–8

but there are also cases in which the particles are deformable
and do change shape during their motion. Such deforma-
bility is of basic importance for active droplets9–11 but is
also relevant for living swimmers like protozoa and other
microorganisms.12–15 Therefore a basic theoretical descrip-
tion for active deformable self-propelled particles and mi-
croswimmers is needed.

In a quiescent solvent, dynamical equations of motion
were recently put forward which couple the particle posi-
tion and deformability.16–26 One of the unexpected results
was a spontaneous circling motion due to the coupling of de-
formability and self-propulsion.16–18 However, in most prac-
tical situations,27–29 various external fields are present to in-
fluence the particle motion. They are, for instance, induced
by a chemoattractant, phototaxis, and gravity,30–35 or exter-
nal walls.36–39 An important particular case is a solvent flow
field such as a Couette flow with a constant shear gradient or
a Poiseuille flow through tubes. There are several studies of
rigid self-propelled particles in various shear geometries.40–43

However, despite its practical relevance, the motion of a de-
formable self-propelled particle in a solvent flow has not been
considered theoretically yet. The corresponding modeling is

a)Electronic mail: tarama@scphys.kyoto-u.ac.jp

expected to be complex since already rigid (undeformable)
active particles have been shown to perform periodic motion
on cycloids (rather than on straight lines) once they are ex-
posed to a linear shear flow field.42

In this paper we close this gap and propose a theoretical
model for the motion of an active deformable particle in shear
flow. We use symmetry considerations to obtain coupled non-
linear dynamical equations for the particle position, velocity,
deformation, and its active rotations. In our model, a passive
rotation induced by the shear flow and an active spinning mo-
tion are both taken into account. On the one hand, for vanish-
ing shear flow, our equations reduce to previous models for
deformable particles.16, 19, 20 On the other hand, for vanishing
particle deformability, we obtain the cycloidal motion as em-
bodied in previous investigations.42 For varied shear rate and
particle propulsion speed, we solve the equations numerically
in two spatial dimensions and obtain a manifold of differ-
ent dynamical modes including active straight motion, peri-
odic motions, regular and undulated cycloidal motions, wind-
ing motions, as well as quasi-periodic and chaotic motions
induced at high shear rates. The types of motion are distin-
guished by different characteristics in the dynamical behavior
of the particle positions, velocity orientations, and its defor-
mations. We are not aware of any experiments of deformable
active particles in shear flow, but in principle these experi-
ments are conceivable building upon recent analysis of self-
propelled droplets10, 44 that can be subjected to an additional
shear flow.

The organization of this paper is as follows. In Sec. II, we
introduce time-evolution equations for an active deformable
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particle under an external flow. In Sec. III, we consider the
special case of a round disk-shaped non-deformable active
particle by eliminating the variable for deformation. We re-
late this case to previous work.42 Next, in Sec. IV, we present
numerical results for the dynamics of a deformable active par-
ticle under steady shear flow. In Sec. V, a spontaneous particle
rotation for the dynamics is additionally included and numer-
ical results are presented. Finally, Sec. VI is devoted to a sum-
mary and to conclusions.

II. COUPLED DYNAMICAL EQUATIONS

Based on symmetry considerations, we now derive a set
of coupled nonlinear dynamical equations to describe the
motion of a deformable active particle under an externally
imposed flow field. These equations are first listed for the
general case of three spatial dimensions and an unspecified
flow field. Afterward, we will confine ourselves to a two-
dimensional geometry and consider a simple shear flow. As
a first approach, we only investigate the influence of the shear
flow on the particle dynamics and do not consider the inverse
effect.

In the following, we denote the prescribed externally im-
posed flow field that the particle is exposed to as u. It is a
given function of space. To proceed as normal,45, 46 the elon-
gational part of the fluid flow is extracted by the symmetric
second-rank tensor A with components

Aij = 1

2
(∂iuj + ∂jui). (1)

Similarly, the rotational part is extracted via the anti-
symmetric second-rank tensor W with components

Wij = 1

2
(∂iuj − ∂jui). (2)

We denote the center-of-mass position of the particle at
time t as x(t). In general, the total particle velocity dx/dt has
two contributions. On the one hand, the particle is “passively”
advected by the externally imposed prescribed flow field u.
On the other hand, the particle can “actively” self-propel with
respect to the surrounding fluid. The corresponding “active”
velocity measured relatively to the surrounding fluid flow is
denoted as v. Altogether, we obtain the equation of motion

dxi

dt
= ui + vi, (3)

where the index i = 1, 2, 3 labels the Cartesian coordinates.
In our description, the active velocity v is one of our ma-

jor dynamical variables describing the behavior of the parti-
cle. The other ones are its deformation that we characterize by
the second-rank traceless symmetric tensor S, and an “active”
particle rotation described by the second-rank antisymmetric
tensor �. Both of these tensors are briefly introduced in the
following.

For simplicity, we only include elongational and flat-
tening deformations of the particle. The tensor S repre-
sents these deformations.47, 48 We first consider the two-
dimensional case, where orientations in the two-dimensional
plane can be parameterized by a single angle � .

This angle � is now used to measure directions from the
particle center of mass. The distance from the particle cen-
ter to its boundary in the direction � at time t is denoted as
R(� , t). Large deformations are not taken into account, so
that R(� , t) is single-valued with respect to the angle � .

For a steady circular shape we have R(� , t) = R0,
with R0 as the particle radius. We now consider deviations
δR(� , t) from the circular shape, such that the distance from
the particle center to its boundary becomes R(� , t) = R0

+ δR(� , t). Next, the deviation from the circular shape δR(� ,
t) is expanded into a Fourier series

δR(�, t) =
∞∑

m=2

(zm(t)eim� + z−m(t)e−im� ). (4)

In this expansion, the zeroth mode is excluded by assuming
that the area of the particle is conserved. The first Fourier
mode would represent a translation of the center of mass,
which we already took into account by the velocity variable
v. Therefore, the lowest mode describing deformations is the
second one, which actually represents an elliptical deforma-
tion. In two dimensions, we can define a symmetric tensor
as S11 = −S22 = z2 + z−2 = s cos 2θ and S12 = S21 = i(z2

− z−2) = s sin 2θ , where we have defined z±2 = (s/2)e∓2iθ .
So the searched-for tensor S can be written in the form

S =
(

S11 S12

S12 −S11

)
= s

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (5)

Here, s corresponds to the degree of deformation, and θ to
the orientation of the long axis of deformation. Then, the dis-
tance from the particle center to its boundary for an elliptical
deformation is given by

R(�, t) = R0 + s(t) cos 2 [� − θ (t)]

= R0 + S11(t) cos 2� + S12(t) sin 2�. (6)

In the case of three spatial dimensions, the deviation δR
must be expanded into spherical harmonics Y�m(�̃ ) with co-
efficients c�m(t) and �̃ the solid angle. Likewise, the mini-
mum mode of the deformation, � = 2, represents an ellip-
soidal deformation. See Ref. 18 for the relations between c�m

and S in three spatial dimensions.
Finally, our last dynamic variable � characterizes an “ac-

tive” rotational motion of the particle around its center of
mass. We call this a spinning motion.19, 20 This antisymmetric
second-rank tensor � can be obtained from the corresponding
vector of angular velocity ω via20

�ij = εijkωk, (7)

where εijk denotes the components of the Levi-Civita tensor.
Summation over repeated indices is implied, as throughout
the remaining part of this paper.

The spinning motion � occurs in addition to the rota-
tional motion prescribed by the external flow field u, see
Eq. (2). In other words, the anti-symmetric tensor � repre-
sents the relative rotation with respect to the rotational motion
W of the surrounding fluid flow. Therefore, W + � describes
the total angular velocity with respect to the laboratory frame
from which the flow field is parameterized.
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In total, we have introduced three central dynamical vari-
ables to characterize the state of a deformable active particle:
v for the active propulsion velocity, S for the particle deforma-
tion, and � for the active rotational motion. Based on symme-
try arguments, our model for the dynamic evolution of these
variables is derived. We consider the following set of coupled
nonlinear equations:

dvi

dt
+ a2 (Wik + �ik) vk

= αvi − (vkvk)vi − a1Sikvk, (8)

dSij

dt
− b2[Sik(Wkj + �kj ) − (Wik + �ik)Skj ]

= −κSij + b1

[
vivj − δij

d
(vkvk)

]
+ b3�ikSk���j

+ b4�k��k�Sij + ν1

[
Aij − δij

d
Akk

]

+ ν2

[
AikSkj + SikAkj − 2δij

d
Sk�A�k

]
, (9)

d�ij

dt
= ζ�ij + �ik�k���j

+ c1(Sik�kj + �ikSkj ) + c2Sik�k�S�j . (10)

Here δij denotes the Kronecker delta, and d is the dimension
of space. The coefficients α, κ , ζ , a1, a2, b1, b2, b3, b4, c1,
c2, ν1, and ν2 are phenomenological coupling parameters. We
now comment on each of the terms in this set of equations for
the time evolution, Eqs. (8)–(10). In principle, more terms and
higher-order couplings can be included, but the current model
covers the main physical aspects that we intend to describe.

We start with the first two terms on the right-hand side of
Eq. (8). They can be rewritten as

− ∂F

∂vi

with F = −α

2
(vkvk) + 1

4
(vkvk)2 , (11)

where F is a Lyapunov function controlling the spontaneous
self-propulsion. With increasing α, F describes a bifurcation
at α = 0 corresponding to the onset of active motion with
v �= 0. In the same way, the first two terms on the right-hand
side of Eq. (10) can be rewritten as

− ∂G

∂�ij

with G = ζ

2
tr �2 + 1

4
tr �4, (12)

introducing another Lyapunov function G. Likewise, this
function characterizes the onset of the spontaneous rotation
of the particle around its center of mass when ζ becomes
positive. Together, the coefficients α and ζ characterize the
strength of activity, for self-propulsion and for active rota-
tion, respectively. In contrast to that, an active deformation
of the particle is not considered. The first term on the right-
hand side of Eq. (9) with κ > 0 always induces a relaxation of
the deformation back to a spherical (circular) shape, at least
when the coupling to v, �, and to the surrounding flow field u
allow it.

Next, we consider the terms with the coefficients a2 in
Eq. (8) and b2 in Eq. (9). They have similar origin and include

reorientations of the particle velocity and elongation axes due
to the shear flow and due to the active spinning motion. In the
passive case, they would contain the advective reorientation
of the particle axes due to the fluid flow. Since an active par-
ticle can follow a prescribed rule on how to react to external
rotational flow fields, the numerical values of the coefficients
cannot be generally fixed at this point. We assume a2 > 0. In
principle, this contribution with a2 > 0 can describe a sort of
Magnus effect, with a force acting onto the particle in the di-
rection perpendicular to its velocity and angular velocity. For
a rigid particle – i.e., an undeformable particle – of spheri-
cal or ellipsoidal shape, rotational and translational motions
do not couple to each other to linear order.49 Accordingly, the
coupling between the velocity v and the rotational part of the
flow field W is nonlinear in the a2-term.

The third term on the right-hand side of Eq. (8) with the
coefficient a1 and the second term on the right-hand side of
Eq. (9) with the coefficient b1 are the leading-order coupling
terms between the velocity v and the deformation S. Their
influence was already extensively studied in previous inves-
tigations of deformable self-propelled particles.16, 18 On the
one hand, deformations can reorient the particle velocity and
change its speed via the a1-term. Bended particle trajecto-
ries can result from this contribution. On the other hand, via
the b1-term, deformations can be induced when the particle
self-propels.

In addition to that, we include further coupling contri-
butions between the deformation S and the active rotation
�.19, 20 These are the terms with the coefficients b3 and b4

on the right-hand side of Eq. (9), and the terms with the co-
efficients c1 and c2 on the right-hand side of Eq. (10). For
b3 > 0 and b4 > 0, the self-driven active rotation in a two-
dimensional space enhances the degree of deformation, while
it reduces it for b3 < 0 and b4 < 0. When we confine ourselves
to two spatial dimensions in Secs. VI and V, these two terms
are equivalent for b3 = 2b4. We remark that, in three spatial
dimensions, the term with the coefficient b3 has an additional
effect to rotate the particle, in contrast to the b4-term. The
third and fourth terms on the right-hand side of Eq. (10) in-
clude the analogous effects on the rotations � induced by the
deformation S. Here, note that the c1 term vanishes in two di-
mensions. Again, since different sorts of active particles may
feature different coupling properties between their deforma-
tions and rotations, the values of these coefficients depend on
the system under consideration.

Finally, the elongational part of the externally imposed
flow field can lead to a deformation of the particle. This effect
is included by the last two contributions on the right-hand side
of Eq. (9). The corresponding coefficients ν1 and ν2 describe
how the active particle reacts to the straining part of the flow
field. Our terms are consistent with those of a previous study
on the dynamics of a non-active liquid droplet in a fluid flow,
where also elliptical shape deformations were considered.46, 50

We note that the contribution with the coefficient ν2 vanishes
for a two-dimensional geometry of incompressible flow. Such
a case is studied below.

In contrast to Eq. (9), the tensor A containing the elon-
gational part of the fluid flow does not enter Eq. (8) for
the velocity v. This is because v is defined as the relative
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velocity with respect to the fluid flow u, see Eq. (3). Like-
wise, the rotational part of the fluid flow characterized by the
tensor W is absent in Eq. (10): � describes the relative rota-
tion with respect to the surrounding flow field. In principle,
coupling terms between � and the tensor A are possible. This
would mean that the active particle features a way of react-
ing to an elongational flow by adjusting its spinning motion.
However, we do not consider such a process.

Generally our equations apply to a three-dimensional set-
up. For simplicity, however, we confine ourselves to two spa-
tial dimensions for the remaining part of this paper. Further-
more, we from now on specify the externally imposed flow
field u to a linear steady shear flow,

u = (γ̇ y, 0), (13)

with γ̇ as the shear rate.

III. DYNAMICS WITHOUT DEFORMATION

The full set of dynamic equations (3) and (8)–(10) is very
complex. To get a first overview, we start by studying a re-
duced model. More precisely, we neglect deformability, i.e.,
we set S = 0, and consider a circularly shaped rigid particle.
Under certain assumptions, an analytical solution can be ob-
tained in this case.

Prescribing S = 0, Eq. (9) is dropped from our system of
equations. Eqs. (3), (8), and (10) reduce to

dxi

dt
= vi + ui, (14)

dvi

dt
= αvi − (vkvk) vi − a2 (Wik + �ik) vk, (15)

d�ij

dt
= ζ�ij + �ik�kl�lj . (16)

We parameterize the vectors and tensors by x = (x, y),

v = (v cos φ, v sin φ), (17)

�11 = �22 = 0, as well as �12 = −�21 = ω, and insert W
using Eqs. (2) and (13). Then Eqs. (14)–(16) become

dx

dt
= v cos φ + γ̇ y, (18)

dy

dt
= v sin φ, (19)

dv

dt
= αv − v3, (20)

dφ

dt
= a2

(
− γ̇

2
+ ω

)
, (21)

dω

dt
= ζω − ω3. (22)

Next, we assume that the magnitudes of the velocity v

and of the relative rotation ω relax quickly, so that they are
given by the steady state solutions of Eqs. (20) and (22), re-
spectively. In this situation, together with α > 0 and ζ > 0

implying self-propulsion and active spinning, we have

v = √
α, (23)

ω = ±
√

ζ , (24)

where the positive and negative signs in Eq. (24) correspond
to counter-clockwise and clockwise rotations, respectively.
Using these solutions, Eq. (21) reads

dφ

dt
= a2

(
− γ̇

2
±

√
ζ

)
. (25)

From Eqs. (18), (19), (23), and (25), the trajectory of the cen-
ter of mass can be calculated as

x(t) =
√

α
{
a2

(− γ̇

2 ± √
ζ
) − γ̇

}
a2

2

(− γ̇

2 ± √
ζ
)2

{sin[φ(t)] − sin φ0}

+ γ̇

( √
α

a2
(− γ̇

2 ± √
ζ
) cos φ0 + y0

)
t + x0, (26)

y(t) = −√
α

a2
(− γ̇

2 ± √
ζ
) {cos[φ(t)] − cos φ0} + y0, (27)

φ(t) = a2

(
− γ̇

2
±

√
ζ

)
t + φ0. (28)

Here, (x0, y0) and φ0 are the position of the center of mass and
the direction of the velocity vector at t = 0, respectively. This
set of solutions represents a cycloidal trajectory.

A similar cycloidal trajectory has previously been ob-
tained for an active rigid circularly shaped particle by some
of the present authors.42 In that case, the dynamics of the par-
ticle features a polarity axis,51 the orientation of which in the
two-dimensional plane can be characterized by the angle φ. It
marks the direction of the self-propulsion that generates a rel-
ative velocity with respect to the surrounding flow field. The
equations of motion introduced in Ref. 42 can be written in
the form

dx

dt
= γ̇ y + α̃[cos φ + fx], (29)

dy

dt
= α̃[sin φ + fy], (30)

dφ

dt
= − γ̇

2
+ μ̃(1 + g), (31)

where α̃ is a normalized effective self-propulsion force that
is proportional to the self-propulsion velocity v in the over-
damped regime considered in Ref. 42. μ̃ accounts for an ad-
ditional self-induced52 or externally imposed53 torque on the
particle. Equations (29)–(31) contain Gaussian white noise
terms fx, fy, and g, which are not included in the present
approach. Our Eqs. (18), (19), and (25), together with the
asymptotic steady-state magnitudes of the translational and
angular velocities in Eqs. (23) and (24), respectively, are con-
sistent with Eqs. (29)–(31) when the noise terms are ne-
glected. By solving this zero temperature limit for α̃ = α1/2
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and μ̃ = ±ζ 1/2, one recovers the results presented in
Eqs. (26)–(28) for a2 = 1.

For the special case of (γ̇ /2) = ±√
ζ , the solutions of

Eqs. (18), (19), and (25), together with Eq. (23), read

x(t) =
(

γ̇

2

√
α sin φ0

)
t2

+ (
√

α cos φ0 + γ̇ y0)t + x0, (32)

y(t) = (
√

α sin φ0)t + y0, (33)

φ(t) = φ0. (34)

The physical meaning of this limit is that the spontaneous
rotation compensates the rotation due to the surrounding
flow field, i.e., (γ̇ /2) = ±√

ζ in Eq. (25) or correspondingly
(γ̇ /2) = μ̃ in Eq. (31). Also Eqs. (32) and (33) are consistent
with the ones correspondingly obtained in Ref. 42.

IV. DYNAMICS WITHOUT ACTIVE ROTATION

In Sec. III, we studied a rigid non-deformable particle as
a first step. We now include deformability, but do not con-
sider an active spinning motion of the particle. Although var-
ious different dynamic states can be found in this situation,
the dynamics is still much simpler than with active rotations
included, as is shown later. The dynamic equations must be
solved numerically.

Choosing ζ < 0 hinders active spinning. To solve
Eqs. (3) and (8)–(10), we use a fourth-order Runge-Kutta
method. We checked the numerical accuracy by comparing
results obtained for different time increments.

The full parameter space is far too complex to be exhaus-
tively explored. We therefore concentrate on the impact of
only two parameters that we consider central to the current
problem. One of them is the strength of the self-propulsion of
the particle characterized by the parameter α. The other one
is the strength of the imposed shear flow determined by the
shear rate γ̇ .

All coupling parameters are fixed at similar magnitude to
allow an equal impact of the corresponding effects on the sys-
tem behavior. We set a1 = b1 = −1, a2 = b2 = c2 = ν1 = 1,
and b3 + 2b4 = 1 (as noted in Sec. II the terms with the coef-
ficients b3 and b4 coincide in two spatial dimensions, and the
terms with the coefficients c1 and ν2 vanish in our geometry).
Intermediate damping rates are used for the deformations and
for the spinning motion by imposing κ = 0.5 and ζ = −0.1,
respectively. We obtained our results by directly numerically
integrating Eqs. (3) and (8)–(10). After that we reparameter-
ized them for illustrative purposes using Eqs. (5) and (17).

Our results are summarized in Fig. 1. We present in
Fig. 1(a) a phase diagram in the parameter plane of the self-
propulsion strength α and the shear rate γ̇ . Various qualita-
tively different types of dynamical states are found and ex-
plained in more detail below. They are indicated in the phase
diagram by the different symbols. At the position included
as γ̇ = 0, we describe in words the type of motion observed

at zero shear rate for the different self-propulsion strengths
α. Increasing the shear rate toward the right boundary of the
phase diagram, we can see how the shear flow influences the
dynamic behavior of the particle.

Each of the observed dynamic states is characterized sep-
arately in the rows of Figs. 1(b)–1(f). The location in the
phase diagram is indicated by the corresponding symbol be-
low the panel number. We present typical real-space trajec-
tories by the black dotted lines in the first column. Black ar-
rows indicate the direction of migration. The trajectories are
drawn from the laboratory frame. Therefore their appearance
strongly depends on the initial y-coordinate: the advective
flow velocity increases in y-direction due to the shear geome-
try and leads to a stretching of the trajectories in x-direction.
In particular, the direction of motion also depends on the y-
coordinate: the flow field points to the right for y > 0, whereas
it points to the left for y < 0. To avoid confusion, we remark
again that the dynamics that is described by Eqs. (8)–(10) it-
self is not affected in this way, because only the relative ve-
locity v with respect to the shear flow is considered and only
gradients of the flow velocity enter via the tensors A and W.

In order to illustrate the current state of deformation and
orientation along the trajectories that are drawn in the first col-
umn of Figs. 1(b)–1(f), representative snapshots of the parti-
cle are superimposed in red. For the purpose of best visualiza-
tion, the size of the particle is adjusted and the deformations
are not drawn as pure ellipsoids. To further characterize the
modes of migration, return maps of the corresponding motion
in real space are included in the second column of Figs. 1(b)–
1(f). We extract the local maximum and minimum values of y
along each real-space trajectory for several thousand up-down
oscillations. The maximum and minimum values are labeled
as yn (n = 1, 2, . . . ) and plotted as blue and red points, respec-
tively, in a return map yn + 1 vs. yn. In other words, we calcu-
lated the return maps at the Poincaré sections where vy = 0
for dvy/dt < 0 and dvy/dt > 0, respectively. The diagonal
line in the return maps is included for illustration and does
not represent any data points.

Finally, the attractors in phase space are drawn in the
third and fourth columns. Black arrows indicate the direction
of motion along the attractors. We show plots in θ -φ space
(third column) and in s-ψ space (fourth column). As intro-
duced in Eqs. (5) and (17), θ and φ describe the orientation
of the long axis of the deformation tensor S and the orien-
tation of the relative velocity vector v, respectively. θ and φ

are observed from the laboratory frame. This is different for
s and ψ . First, s measures the magnitude of deformation as
is obvious from Eq. (6). Second, ψ is defined as the relative
angle between the long axis of deformation and the velocity
orientation,

ψ = θ − φ. (35)

Thus s and ψ are measured in the co-moving particle frame.
Both attractors, in the θ -φ space and in the s-ψ space, are
independent of the initial y-coordinate.

We now go through the different dynamic states depicted
in Fig. 1. The most trivial state is represented by the turquoise
filled pentagon symbols in Fig. 1(a). They indicate a pas-
sive straight motion. In the absence of any external flow
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FIG. 1. (a) Dynamical phase diagram and (b)–(f) trajectories in real space (1st column), return maps (2nd column), attractors in θ -φ space (3rd column)
as well as in s-ψ space (4th column) of the typical dynamical motions, obtained by solving Eqs. (3) and (8)–(10) numerically in two dimensions without
active rotational motion (ζ = −0.1); (b) active straight motion for α = 0.5 and γ̇ = 0.1 indicated by the green open pentagons in panel (a); (c) and (d)
cycloidal I motions of clockwise and counter-clockwise rotations of the particle deformations, respectively, for α = 0.9 and γ̇ = 0.1 marked by the red open
squares in panel (a); (e) winding I motion for α = 0.7 and γ̇ = 0.08 indicated by the purple filled triangles in panel (a); (f) cycloidal II motion for α = 0.1
and γ̇ = 2 marked by the gray filled squares in panel (a). Arrows in panels (b)–(f) show the directions of motion. Some snapshots of the particle, the size
of which is adjusted for illustration, are superimposed to the trajectory in real space. Turquoise filled pentagons in panel (a) represent the passive straight
motion with v = 0. The variable � corresponding to active spinning equals 0 for all of these types of motion. A return map for the active straight motion
and winding I motion in panels (b) and (e) does not exist because the y-component of the velocity does not change its sign in these motions (enhanced
online). [URL: http://dx.doi.org/10.1063/1.4820416.1] [URL: http://dx.doi.org/10.1063/1.4820416.2] [URL: http://dx.doi.org/10.1063/1.4820416.3] [URL:
http://dx.doi.org/10.1063/1.4820416.4] [URL: http://dx.doi.org/10.1063/1.4820416.5]

field, a particle in this state is motionless and has a circu-
lar shape. When the shear flow is switched on, the particle is
elongated due to the elongational contribution from the flow
field. Nevertheless, its active self-propulsion velocity remains
zero, v = 0, so that it is just passively advected with the flow

field. We do not include plots of these trivial trajectories in
Fig. 1.

Next, a particle that moves straight in a condition with-
out shear flow continues to move straight in the presence of
shear flow at low shear rates γ̇ . It features a time-independent
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steady state of deformation. Such a situation is marked by
the green open pentagons in the phase diagram (Fig. 1(a))
and shown in Fig. 1(b) for α = 0.5 and γ̇ = 0.1. The real-
space trajectory is only bent a little because the particle is ad-
vected in x-direction with the fluid flow that increases in the
y-direction due to the shear geometry. Since v �= 0, we term
this type of motion an active straight motion in this paper. We
note from the line α = −0.1 in the phase diagram (Fig. 1(a))
that with increasing shear rate γ̇ a transition from passive to
active straight motion can be induced. Interestingly, the phase
behavior is reentrant, and we again observe passive straight
motion at very high shear rates. The reason for this behav-
ior is shear-rate dependent deformations S that are induced in
Eq. (9) via the shear flow. They in turn couple to the relative
velocity v in Eq. (8) and at intermediate shear rates induce
active self-propulsion.

If a particle undergoes a circular motion when the shear
is absent, it exhibits what we call a cycloidal I motion under a
small nonzero shear rate as indicated by the red open squares
in Fig. 1(a). In this state, a particle moves on a cycloidal tra-
jectory with v �= 0 and with its deformation axes rotating as
depicted in Figs. 1(c) and 1(d), both for α = 0.9 and γ̇ = 0.1.
Both, clockwise (c) and counter-clockwise (d) rotations are
possible. Whether clockwise or counter-clockwise rotation
appears during the cycloidal I motion generally depends on
the initial conditions. At higher shear rates close to the stabil-
ity boundary of the cycloidal I motion, however, cycloidal I
motion of counter-clockwise rotation becomes unstable first,
before the one with clockwise rotation. This is because the
rotational part of the shear flow is oriented in clockwise di-
rection as well and breaks the rotational symmetry of space.
However, the effect occurs within a thinner parameter region
than the grid size in Fig. 1(a) resolves. Therefore we do not
mark this region in the phase diagram (Fig. 1(a)).

So far, we have only discussed types of motion that re-
sult directly as a generalization of the types of motion found
for vanishing flow field γ̇ = 0.16, 20 Quite contrarily, the fol-
lowing types of motion are qualitatively different and newly
observed in the presence of the shear flow.

When the cycloidal I motion has become unstable at high
shear rates, the particle exhibits a winding I motion. The cor-
responding narrow region in the phase diagram (Fig. 1(a)) is
marked by the purple filled triangles. It is located between
the cycloidal I motion and the active straight motion. For this
winding I motion, the long axis of the particle does not make
full rotations in the laboratory frame. It only oscillates in time
around the velocity vector, as shown in Fig. 1(e) for α = 0.7
and γ̇ = 0.08. In particular, the trajectories in θ -φ space ex-
hibit a closed loop indicating an oscillation. In contrast to the
active straight motion, both, the relative velocity and the de-
formations of the particle, are time-dependent.

Finally, at high shear rates, also the active straight mo-
tion becomes unstable, and a cycloidal II motion appears. It
is indicated by the gray filled squares in Fig. 1(a) and fur-
ther characterized in Fig. 1(f) for α = 0.1 and γ̇ = 2. Again
the trajectory in real space is of cycloidal shape. However,
as can be seen from the trajectory in θ -φ space, the value
of θ stays close to zero with only small oscillations around
it. Thus, in contrast to the cycloidal I motion, the elongation

axis of deformation remains approximately horizontal for all
times.

V. FULL DYNAMICS

In Secs. III and IV, we considered simplified special
cases of the dynamic equations (3) and (8)–(10) to identify
the basic states of motion. First we neglected deformations in
Sec. III, then we excluded active contributions from the rota-
tional spinning motion in Sec. IV. Nevertheless, the dynamics
in both cases was already quite complex. This complexity is
increased even further when we now investigate the full active
dynamics. For example, qualitatively new quasi-periodic and
chaotic states arise.

We use the same methods and the same parameter values
as in Sec. IV to study the full set of dynamic equations (3) and
(8)–(10). The only difference is that now active rotations of
the particle, which we call active spinning motions, are taken
into account. They are induced by setting ζ to a positive value,
ζ = 1.5, in Eq. (10). Since the rotational symmetry of space
is broken by the shear flow given by Eq. (13) with γ̇ > 0,
we distinguish between two cases. First, we consider clock-
wise active rotations of the particle, after that counter-
clockwise spinning motions. The rotational part of the shear
flow itself is oriented in the clockwise direction. Our results
are again presented in terms of the quantities introduced in
Eqs. (5), (17), and (35).

A. Clockwise active rotation

Without an externally imposed shear flow, i.e., for γ̇ = 0,
the situation of active spinning has been recently investigated
by some of the present authors.19, 20 For the parameters that
we have chosen in this paper, two types of motion have been
found in the absence of the shear flow: circular and quasi-
periodic motions. We repeat these results on the left border
of our phase diagram (Fig. 2(a)) in the column γ̇ = 0. There,
with increasing self-propulsion strength α, the circular motion
is reentrant.19, 20

With the shear flow now turned on and an active spinning
in clockwise direction, the circular motion changes to the cor-
responding cycloidal I motion that was already obtained in
Sec. IV and characterized in Fig. 1(c) for ζ = −0.1. It covers
a major part of our phase diagram (Fig. 2(a)) and is indicated
by the red open squares. A cycloidal trajectory naturally re-
sults, when advection due to the flow is superimposed to a
circular motion.

Next, a quasi-periodic motion is marked by the black
crosses in the phase diagram (Fig. 2(a)). It occurs at inter-
mediate self-propulsion strengths α. Interestingly, this type of
motion is suppressed with increasing shear-rate γ̇ . We fur-
ther characterize it in Fig. 2(b) for α = 0.5 and γ̇ = 0.1. Ob-
viously, the motion is not simply periodic as evident from
the real-space trajectory and from the trajectories indicated
in the θ -φ and s-ψ phase spaces by the black dots. However,
it is quasi-periodic and not chaotic, because the return maps
give discrete closed loops as shown in the second column of
Fig. 2(b). The difference between the quasi-periodic motion
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FIG. 2. (a) Dynamical phase diagram and (b)–(f) trajectories in real space (1st column), return maps (2nd column), attractors in θ -φ space (3rd column) as
well as in s-ψ space (4th column) of the typical dynamical motions, obtained by solving Eqs. (3) and (8)–(10) numerically in two dimensions for clockwise
active rotations (ζ = 1.5); (b) quasi-periodic motion for α = 0.5 and γ̇ = 0.1 indicated by the black crosses in panel (a); (c) periodic motion for α = 0.7
and γ̇ = 1 marked by the black plus symbols in panel (a); (d) winding II motion for α = 0.5 and γ̇ = 0.8 identified by the blue open circles in panel (a);
(e) and (f) chaotic motions for α = 0.3 and γ̇ = 0.4 as well as for α = 0.7 and γ̇ = 2, respectively, marked by the purple open diamonds in panel (a).
Arrows in panels (b)–(f) show the directions of motion. Some snapshots of the particle, the size of which is adjusted for illustration, are superimposed to
the trajectory in real space. In panels (e) and (f), insets show the corresponding trajectories over longer time intervals. The trajectories in θ -φ and s-ψ phase
space in panels (b), (e), and (f) are indicated by the black points. We also include short-time trajectories as red lines. Red open squares stand for the cycloidal
I motion as already characterized in Fig. 1(c) for ζ = −0.1. The blue filled diamonds in panel (a) represent an undulated cycloidal I motion as it is further
illustrated in Fig. 3(c). Superimposed symbols in panel (a) indicate the observation of different trajectory types depending on the initial conditions (enhanced
online). [URL: http://dx.doi.org/10.1063/1.4820416.6] [URL: http://dx.doi.org/10.1063/1.4820416.7] [URL: http://dx.doi.org/10.1063/1.4820416.8] [URL:
http://dx.doi.org/10.1063/1.4820416.9] [URL: http://dx.doi.org/10.1063/1.4820416.10]

in the absence of the shear flow and the one in the presence of
the shear flow is simply that the particle stays within a finite
area in the former case while in the latter case it escapes over
time in the positive or negative x-direction.

When the shear rate γ̇ is increased, several new types of
motion are found that we have not observed before. Interest-
ingly, all of them are sensitive to the initial conditions. We find
a coexistence of at least two types of motion at every point of
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the phase diagram that we investigated for these new dynamic
states, which leads to the superposition of the symbols in
Fig. 2(a).

First, at higher shear rates, a periodic motion that cannot
be observed at low shear rates is found at some positions in
the phase diagram. This dynamic state is marked by the black
plus symbols in Fig. 2(a) and further illustrated in Fig. 2(c)
for α = 0.7 and γ̇ = 1. The real-space trajectory appears as a
commensurately modulated cycloid. We can distinguish this
kind of motion from the quasi-periodic motion by the return
map in the second column of Fig. 2(c), where thousands of
measured trajectory extrema condense on ten discrete points
in contrast to the closed loop object in Fig. 2(b). There are
even some coexistence points of periodic and quasi-periodic
motion in the phase diagram, induced by different initial
conditions.

Next, in analogy to the winding I motion of Sec. IV, a
winding II motion is identified at the positions of the blue open
circles in the phase diagram (Fig. 2(a)). We characterize it in
Fig. 2(d) for α = 0.5 and γ̇ = 0.8. Since the particle in real
space continuously descends in y-direction, the discrete points
in the return map descend along the diagonal. The winding II
motion can easily be distinguished from its counterpart, the
winding I motion in Fig. 1(e), by the trajectory in θ -φ phase
space. When observed from the laboratory frame, the parti-
cle features full rotations of its long axis of deformation in
the winding II state, while only oscillations of this long axis
occur in the winding I state. To facilitate the connection be-
tween the real- and phase-space trajectories in Fig. 2(d), we
marked corresponding points by the capital letters “A,” “B,”
and “C.” We found a three-state coexistence region including
the winding II motion, the periodic motion, and the quasi-
periodic motion in the phase diagram (Fig. 2(a)) around the
point α = 0.5 and γ̇ = 0.6.

Most interestingly, we now also find chaotic states of
the dynamic behavior of our single deformable active par-
ticle subjected to linear shear flow. In the phase diagram
(Fig. 2(a)) they are marked by the purple open diamonds.
Figures 2(e) and 2(f) show the characteristics of two chaotic
dynamic states for α = 0.3 and γ̇ = 0.4 as well as for α

= 0.7 and γ̇ = 2, respectively. The inset figures in the real-
space trajectory plots in the first column of Figs. 2(e) and
2(f) depict the trajectory over longer time intervals. Closer
inspection shows that the attractors in the θ -φ and s-ψ phase
spaces of Fig. 2(e) are similar to the ones of the quasi-periodic
motion in Fig. 2(b). However, the return maps are different
enough to distinguish these two separate types of motion:
the return map of the quasi-periodic motion forms a simple
closed loop, while that of the chaotic motion in Fig. 2(e) is
dispersed around the diagonal yn + 1 = yn. Likewise, we can
distinguish the chaotic motion in Fig. 2(f) from the undulated
cycloidal I motion discussed below in Fig. 3(c) via their return
maps, although the attractors in θ -φ space and s-ψ space are
similar.

At large shear rates γ̇ and intermediate self-propulsion
strengths α, another dynamic state was observed. It is marked
by the blue filled diamonds in the phase diagram (Fig. 2(a))
and we call it an undulated cycloidal I motion. Since it also
appears in the case of counter-clockwise active rotations of

the particle, we discuss it below together with the dynamic
states observed in that case.

B. Counter-clockwise active rotation

Finally, we analyze the case of counter-clockwise spin-
ning motions of the active particle, i.e., active rotations in the
direction opposite to that of the rotational part of the shear
flow. Without the shear flow at γ̇ = 0, the rotational symme-
try in space is not broken, and the dynamical states of clock-
and counter-clockwise rotations are identical (except for the
sense of rotation).

At low shear rates, the dynamics for both senses of
rotation is still similar as can be inferred when compar-
ing the corresponding phase diagrams (Figs. 2(a) and 3(a))
for low values of γ̇ . Again, a cycloidal I motion appears
for both high and low self-propulsion strengths α. Like-
wise, a quasi-periodic motion emerges at intermediate self-
propulsion strengths α. They are marked by the red open
squares and black crosses in the phase diagram (Fig. 3(a)) and
were discussed in Figs. 1(d) and 2(b), respectively. Increasing
the shear rate γ̇ , the quasi-periodic motion becomes unstable
in favor of the cycloidal I motion. Also the periodic motion,
indicated by the black pluses and previously characterized in
Fig. 2(c), as well as the winding II motion, marked by the
blue open circle and previously depicted in Fig. 2(d), are re-
covered. Coexistence of different dynamic states again occurs
and is shown by the superposition of different symbols in the
phase diagram (Fig. 3(a)).

Interestingly, at large shear rates γ̇ � 1, we observe
an active-straight motion at all investigated self-propulsion
strengths α. It is indicated in the phase diagram (Fig. 3(a))
by the green open pentagons and was previously discussed in
Fig. 1(b). The origin of the emergence of the active straight
motion at these shear rates can be easily understood: it ap-
pears when the rotation due to the active spinning motion in
the counter-clockwise direction and the rotation due to the ex-
ternal flow in the clockwise direction balance each other.

At still larger shear rates γ̇ , this balance is no longer
maintained and different types of motion appear. At high self-
propulsion strength α, the particle next undergoes a winding
III motion as denoted by the blue open downward triangles in
the phase diagram (Fig. 3(a)). This motion is characterized in
Fig. 3(b) for α = 0.9 and γ̇ = 4. In contrast to the winding I
and winding II motions in Figs. 1(e) and 2(d), respectively, the
angle θ as viewed from the laboratory frame always remains
of small magnitude with values close to zero. This means that
the particle always remains elongated along the horizontal di-
rection. Only small oscillations of the long axis of deforma-
tion occur that are due to the competition between the active
rotation in the counter-clockwise direction and the clockwise
rotation induced by the shear flow. In Fig. 3(b), capital let-
ters “A,” “B,” and “C” are again used to mark corresponding
points along the trajectories in real space, in θ -φ phase space,
and in s-ψ phase space.

In Sec. IV we have already found a dynamic mode that
features an almost horizontal elongation of the particle at all
times. It was the cycloidal II motion, obtained without active
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FIG. 3. (a) Dynamical phase diagram and (b)–(f) trajectories in real space (1st column), return maps (2nd column), attractors in θ -φ space (3rd column) as
well as in s-ψ space (4th column) of the typical dynamical motions, obtained by solving Eqs. (3) and (8)–(10) numerically in two dimensions for counter-
clockwise active rotations (ζ = 1.5); (b) winding III motion for α = 0.9 and γ̇ = 4 indicated by the blue open downward triangles in panel (a); (c) undulated
cycloidal I motion for α = 0.5 and γ̇ = 6 specified by the blue filled diamonds in panel (a); (d) undulated cycloidal II motion for α = 0.9 and γ̇ = 6
marked by the blue open upward triangles in panel (a); (e) and (f) chaotic motions for α = 0.1 and γ̇ = 0.8 as well as for α = 0.3 and γ̇ = 4, respectively,
indicated by the purple open diamonds in panel (a). Arrows in panels (b)–(f) show the directions of motion. Some snapshots of the particle, the size of
which is adjusted for illustration, are superimposed to the trajectory in real space. In panels (e) and (f), insets show the corresponding trajectories over longer
time intervals. The trajectories in θ -φ and s-ψ phase space in panels (c)–(f) are indicated by the black points. We also include short-time trajectories as red
lines. The dynamic states corresponding to the other symbols in panel (a) that are not further characterized in panels (b)–(f) have already been explained
in Figs. 1 and 2. Superimposed symbols in panel (a) indicate the observation of different trajectory types depending on the initial conditions (enhanced
online). [URL: http://dx.doi.org/10.1063/1.4820416.11] [URL: http://dx.doi.org/10.1063/1.4820416.12] [URL: http://dx.doi.org/10.1063/1.4820416.13] [URL:
http://dx.doi.org/10.1063/1.4820416.14] [URL: http://dx.doi.org/10.1063/1.4820416.15]

spinning, and depicted in Fig. 1(f). Indeed, we find this type
of motion again when increasing the shear rate γ̇ from the
winding III motion at high self-propulsion strengths α. In ad-
dition to that, it is also the dominant dynamic mode at large

shear rate γ̇ but small self-propulsion strength α. We indicate
it again by the gray filled squares in Fig. 3(a).

Apart from the cycloidal I and II motions, depicted previ-
ously in Figs. 1(c) and 1(d) as well as in Fig. 1(f), respectively,
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there are two other types of cycloidal motions. One of them is
the undulated cycloidal I motion that has already been found
for clockwise active spinning motion. It is marked by the blue
filled diamonds in the phase diagrams (Figs. 2(a) and 3(a)).
We now further characterize it in Fig. 3(c) for α = 0.5 and
γ̇ = 6. An undulation of the cycloidal amplitude is apparent
from the real-space trajectory as well as from the return map.
As can be seen in θ -φ phase space, the long axis of deforma-
tion makes full rotations in the laboratory frame.

The other further cycloidal type is the new undulated cy-
cloidal II motion that we find only for counter-clockwise par-
ticle spinning and that we mark by the blue open upward
triangles in Fig. 3(a). We illustrate this dynamic mode in
Fig. 3(d) for α = 0.9 and γ̇ = 6. In contrast to the undulated
cycloidal I motion, there is no full rotation of the long axis
of deformation in the laboratory frame as becomes obvious in
θ -φ phase space.

Again we also observe chaotic motions, which are rep-
resented by the purple open diamonds in Fig. 3(a). Charac-
teristics of these chaotic motions are displayed in Figs. 3(e)
and 3(f) for α = 0.1 and γ̇ = 0.8 as well as for α = 0.3 and
γ̇ = 4, respectively. A qualitative difference between the two
depicted chaotic motions becomes obvious from the plots in
phase space. While in the first case of Fig. 3(e) the long axis
of deformation of the particle tends to rotate together with the
velocity direction, it has a tendency to remain horizontal in
the second case of Fig. 3(f). Both tendencies can be inferred
from the dark bands in the θ -φ plots. Generally, we find that
the trajectories in phase space in Figs. 3(e) and 3(f) are more
delocalized than for the chaotic states of clockwise rotations
that we have illustrated in Figs. 2(e) and 2(f).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the dynamics of a de-
formable active particle in shear flow. For that purpose, we
have considered a soft deformable particle with two types of
activity: one is a spontaneous propulsion and the other one is a
spontaneous spinning motion. The deformation of the particle
is described by a symmetric traceless tensor variable, and its
rotation by an anti-symmetric tensor variable. Further vari-
ables are the position of the center of mass and its relative
velocity with respect to the flow. The externally imposed lin-
ear shear flow is included by taking into account its deforma-
tional and its rotational impact. Using symmetry arguments,
we derive coupled dynamic equations for all of these vari-
ables. Our equations reduce to known models in the two limits
of vanishing shear flow and vanishing particle deformability.
On the one hand, in the limit of vanishing shear flow, we re-
produce the previous results of Refs. 19 and 20. On the other
hand, for vanishing particle deformability, we obtain an ap-
proximate analytical solution that is consistent with previous
investigations.42

Various types of motion arise as numerical solutions of
the full set of dynamical equations, including active straight
motion, periodic motions, motions on regular and undulated
cycloids, winding motions, as well as quasi-periodic and
chaotic motions induced at high shear rates. In order to char-
acterize and distinguish these dynamical states, we have ana-

lyzed and categorized them via their trajectories, correspond-
ing return maps, as well as their attractors in phase space.
Also the two situations of clockwise and counter-clockwise
rotations with respect to the direction of the shear flow are
distinguished and lead to partially different results, in partic-
ular at high shear rates.

Our predictions can be verified in experiments on self-
propelled droplets exposed to shear flow. For instance, in
some experiments10, 44 self-propelled droplets on liquid-air in-
terfaces can be exposed to linear shear fields by putting the
carrier liquid between two parallel confining walls that move
alongside into opposite directions. This induces an approxi-
mately planar linear shear gradient at the surface of the car-
rier liquid, if the liquid container is sufficiently deep. Since the
motion of the droplets is confined to the liquid-air interface,
the geometry is quasi-two dimensional. Using this experimen-
tal set-up, it is in principle possible to verify the phenomena
predicted by our analysis.

Future studies should address several extensions of our
model: first of all, different prescribed flow fields can be ex-
plored using our equations. Most noticeable examples include
a Poiseuille flow43 or an imposed vorticity field. We expect
again a manifold of different types of motion in these flow
fields presuming that the different flow topologies will in-
duce different types of motion. The next step is to extend
our analysis to a finite concentration of particles and to in-
clude steric interactions between them. This is a complex
problem which is already very difficult for rigid self-propelled
particles.38, 54–61 Another step is to extend the current analysis
of the model to three spatial dimensions. In a previous study,
some of us demonstrated that – without shear flow – a particle
can exhibit additional qualitatively different types of motion
when comparing a three- to a two-dimensional set-up.20 In
the case without shear flow, these were additional helical and
superhelical types of motion.20 Thus we expect that further
new types of dynamics can arise in three dimensions when the
shear flow is included. Finally one could access the dynamics
of propelled vesicles by using our analysis as a starting point.
Here one should impose the constraints of constant volume
and constant surface area of the deformable particle. The dy-
namics of passive vesicles in shear flow has been explored
quite extensively in recent years62, 63 with various specific ef-
fects like tank-treading motion, lifting,64, 65 wrinkling,66 tum-
bling, and swinging.67, 68 It would indeed be interesting to
generalize all these effects to self-propelled vesicles.
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