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Abstract
It is a great challenge of nonequilibrium statistical mechanics to calculate
entropy production within a microscopic theory. In the framework of
linear irreversible thermodynamics, we combine the Mori–Zwanzig–Forster
projection operator technique with the first and second law of thermodynamics
to obtain microscopic expressions for the entropy production as well as for the
transport equations of the entropy density and its time correlation function. We
further present a microscopic derivation of a dissipation functional from which
the dissipative dynamics of an extended dynamical density functional theory
can be obtained in a formally elegant way.

PACS numbers: 82.70.Dd, 47.57.J−, 05.70.Ln

1. Introduction

One of the central challenges of statistical mechanics is to calculate and predict the entropy of a
given system under well-specified conditions from a microscopic point of view. In equilibrium,
this problem dates back to Boltzmann and it is by now standard textbook knowledge that the
entropy can be obtained by a suitable phase-space averaging in different ensembles [1]. The
same problem, however, is much more complicated and in general unsolved in a nonequilibrium
situation: while the second law of thermodynamics predicts a global entropy production in
a closed system, it is very difficult—even in principle—to calculate the entropy production
within a microscopic approach that starts from the individual interactions of the particles.
Linear irreversible thermodynamics [1–3] provides a framework in which this problem can be
addressed systematically in a simpler way. Moreover, the Mori–Zwanzig–Forster projection
operator technique (MZFT) [4–10], when supplemented with a selection of relevant slow
variables, can be used to derive microscopic expressions for the dynamical evolution of these
slow variables and their time correlation functions. When the MZFT is applied to the entropy
density, there is, however, a principle obstacle since the entropy density does not possess any
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known microscopic operator. This fact is opposed to, for example, the particle density and the
energy density, which both possess corresponding microscopic operators.

In fact, we have recently applied the MZFT in the framework of linear irreversible
thermodynamics to derive a generalized (extended) dynamical density functional theory
(EDDFT), which provides a microscopic basis for the dynamical evolution equations of
the relevant variables [11]. The approach was only formulated for slow conserved variables
such as particle and energy density. In this paper, we generalize the EDDFT approach of [11]
to include the entropy density σ (�r, t) as an additional (non-conserved) variable. Under the
assumption of the local formulation of the first law of thermodynamics, one has a local relation
between all relevant variables and the entropy density [6, 8, 12] which enables one to consider
the entropy density as a relevant variable. Assuming the applicability of linear irreversible
thermodynamics [1–3], we derive transport equations for the entropy density as well as for
its time correlation function Cσσ (�r,�r ′, t, t ′). The key idea here is to combine the first and
second law of thermodynamics with the microscopic expressions obtained within the MZFT
for the remaining slow variables in order to circumvent the obstacle that the entropy density
does not possess a known microscopic operator. Thereby, we provide—at least in principle—
a link of entropy production to microscopic expressions. In doing so, we also present a
microscopic expression for a dissipation functional from which EDDFT [11] and in particular
the traditional DDFT [13–17] can be derived in an elegant way. An important application of
this reformulation of EDDFT in terms of a dissipation functional is the derivation of phase field
crystal (PFC) models from EDDFT, in particular those which involve orientational degrees of
freedom [18–21].

Our derivation of the transport equations for the entropy density and its time correlation
function is valid for a general set of relevant variables, including variables that are not
considered in the context of current EDDFT. Furthermore, the derived expressions are not
restricted to the hydrodynamic limit (vanishing wave vector �k → �0 and frequency ω → 0)
and thus generalize the corresponding hydrodynamic equations to larger wave vectors and
frequencies. Our approach is compatible with the so-called GENERIC formalism developed
by Grmela and Öttinger [22, 23], which sets a general phenomenological framework for
nonequilibrium thermodynamics. Finally, we remark that the fluctuation theorem derived by
Jarzynski [24] provides another route to express entropy production in terms of microscopic
quantities. The Jarzynski theorem considers the average over the work performed by the system
when it goes from an initial to a final state. This is a different viewpoint and setup of entropy
production as compared to our approach. In contrast to our approach, which relies on linear
irreversible thermodynamics, the Jarzynski theorem is exact and therefore also applicable to
situations far from thermodynamic equilibrium.

The formalism derived and presented in this paper can be applied to various problems. One
important example is nonequilibrium relaxation from an initial state towards a final equilibrium
state [25]. In particular, static classical DFT is capable of describing equilibrium crystals [26]
and the traditional DDFT can be used to predict the dynamics of crystallization processes
from an undercooled melt [27] for colloidal suspensions. For colloidal crystallization there is
no latent heat since the solvent thermalizes the system instantaneously. For crystallization in
molecular systems [28] or complex plasmas [29], on the other hand, latent heat is produced
which slows down further crystal growth [30]. Our approach includes the corresponding
entropy production upon crystallization and therefore provides an ideal microscopic framework
to describe crystallization processes even in dusty plasmas [29].

This paper is organized as follows: after preliminary remarks about the considered
systems and notation in section 2, we present a derivation of transport equations for the
entropy density and its time correlation function as well as a microscopic expression for
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the corresponding dissipation functional in section 3. These expressions for general relevant
variables are afterwards specialized to the variables of EDDFT in section 4. Finally, we
conclude the paper in section 5.

2. Relevant variables and their transport equations

As usual in the context of EDDFT [11], we consider a grand-canonical (total) ensemble of
systems of N particles with the not explicitly time-dependent Hamiltonian Ĥ(�̂t )

4 and the set
�̂t of phase-space coordinates. These systems can be described by the Liouville probability
density ρ̂(t), which is given by the solution of the Liouville–von Neumann equation

˙̂ρ = −L̂ρ̂ = − i

�
[Ĥ, ρ̂], ρ̂(t) = e−L̂t ρ̂(0) (1)

with the Liouvillian L̂, the imaginary unit i, the reduced Planck constant � = h/(2π), and the
commutator [X,Y ] = XY − Y X of X and Y .

2.1. Relevant variables

Following the idea of the MZFT, we select a set of n � N independent relevant variables
(operators) âi(�r, t) with i ∈ {1, . . . , n}, which is sufficient to describe the considered system on
a much simpler basis, where the huge number of irrelevant microscopic variables is projected
out. Transport equations for the relevant variables are given by the Liouville–von Neumann
equations

˙̂ai = L̂âi = i

�
[Ĥ, âi], âi(�r, t) = eL̂t âi(�r, 0). (2)

The set of relevant variables is associated with a relevant probability density ρ(t). Together
with the grand-canonical trace Tr, the relevant probability density can be used to define the
averaged relevant variables

ai(�r, t) = Tr(ρ(t)âi(�r )). (3)

We assume a given generalized Helmholtz free-energy functionalF[a1, . . . , an] 5 that describes
the state of the considered system in terms of the averaged relevant variables ai(�r, t). As usual
in DFT, the existence of this functional is known, but its concrete form is unknown in general.
The generalized Helmholtz free-energy functional F can be used to define the thermodynamic
conjugates6

a�
i (�r, t) = δF[a1, . . . , an]

δai(�r, t)
(4)

of the averaged relevant variables ai(�r, t). In terms of the relevant variables and their
thermodynamic conjugates, the relevant probability density ρ(t) is here specified as the
generalized grand-canonical probability density7

ρ(t) = 1

	(t)
e−βĤeff(t) (5)

4 For consistency, we denote all quantities that are directly associated with the set of phase-space variables �̂t by a
hat ˆ , while the hat is omitted for all other quantities.
5 The Helmholtz free-energy functional F is a generalization of the equilibrium Helmholtz free energy to
nonequilibrium situations. See equation (6) in [11] for a microscopic definition. Static stability of the considered
system requires that F is bounded from below.
6 The internal energy density is an exception. Its thermodynamic conjugate has to be considered differently (see
sections 2.2 and 3.1).
7 See [7, 11] for further details regarding the relevant probability density ρ(t). Notice that ρ(t) depends on time t
only through the averaged relevant variables ai(�r, t) (see equations (4) and (6)).
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with the grand-canonical partition sum 	(t), the (constant) inverse reference thermal energy
β = 1/(kBT0), where kB denotes the Boltzmann constant and T0 is an absolute reference
temperature8, and the explicitly time-dependent effective Hamiltonian

Ĥeff(t) = Ĥ −
n∑

i=1

∫
R3

d3r a�
i (�r, t)âi(�r ). (6)

Notice that the considered system is displaced from thermodynamic equilibrium at t = 0 so
that ρ(t) and 	(t) are explicitly time-dependent.

The n = nc + nn relevant variables âi(�r, t) have to be distinguished into nc conserved
variables âc

i (�r, t) and nn non-conserved variables ân
i (�r, t). The same holds for their averages

ai(�r, t), which are distinguished into conserved averaged variables ac
i (�r, t) and non-conserved

averaged variables an
i (�r, t).

2.2. Transport equations

The dynamics of the nc conserved relevant variables can be described by the conservation
equations

˙̂ac
i (�r, t) + �∇�r · �̂J (i)(�r, t) = 0 (7)

with the local currents �̂J (i)(�r, t) and i ∈ {1, . . . , nc}. Correspondingly, the dynamics of the
averaged conserved relevant variables is given by

ȧc
i (�r, t) + �∇�r · �J (i)(�r, t) = 0. (8)

On the other hand, it is assumed that the time-evolution of the nn non-conserved relevant
variables can be described by the balance equations

˙̂an
i (�r, t) + �̂(i)(�r, t) = 0 (9)

with the local quasicurrents �̂(i)(�r, t) and i ∈ {1, . . . , nn}, while the averaged non-conserved
relevant variables are described by

ȧn
i (�r, t) + �(i)(�r, t) = 0. (10)

Both the currents �J (i)(�r, t) and the quasicurrents �(i)(�r, t) can be decomposed into two
different contributions [31]:

�J (i)(�r, t) = �J (i)
R (�r, t) + �J (i)

D (�r, t), (11)

�(i)(�r, t) = �
(i)
R (�r, t) + �

(i)
D (�r, t). (12)

These are the reversible contributions denoted by the subscript ‘R’ and the dissipative
contributions denoted by the subscript ‘D’. While the reversible contributions are isentropic,
i.e., they are not associated with entropy production, the dissipative (reversible) contributions
increase the total entropy of the system.

Examples for the general relevant variables âc
i (�r, t) and ân

i (�r, t) are a concentration field
and a local polarization, respectively. There are only two possible relevant variables that have
to be treated explicitly and cannot be taken into account by the general set âi(�r, t) of relevant
variables. These special variables are the conserved generalized internal energy density ε̂(�r, t)

8 Since we are dealing with the linear response regime, a general inhomogeneous temperature field T (�r, t) describes
linear deviations from thermodynamic equilibrium dictated by the constant reference temperature T0. Therefore, β is
defined as β = 1/(kBT0).
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or its Legendre transforms and the non-conserved entropy density σ̂ (�r, t) (see section 3.1).9

Since the internal energy density is conserved, the transport equations for ε̂(�r, t) and ε(�r, t)
can be written as

˙̂ε(�r, t) + �∇�r · �̂Jε(�r, t) = 0, (13)

ε̇(�r, t) + �∇�r · �Jε(�r, t) = 0 (14)

with the internal energy currents �̂Jε(�r, t) and �Jε(�r, t) = �Jε
R(�r, t)+ �Jε

D(�r, t). The entropy density,
in contrast, is non-conserved and the transport equations for σ̂ (�r, t) and σ (�r, t) are

˙̂σ (�r, t) + �̂σ (�r, t) = 0, (15)

σ̇ (�r, t) + �σ (�r, t) = 0 (16)

with the entropy quasicurrents �̂σ (�r, t) and �σ (�r, t) = �σ
R(�r, t) + �σ

D(�r, t).

2.3. Dissipation functionals

If the considered system is in local thermodynamic equilibrium, so that the local formulation
of the first and second law of thermodynamics hold, linear irreversible thermodynamics [1–3]
can be applied [31]. This useful framework is especially applicable for all passive systems and
states the existence of a dissipation functional R from which the dissipative currents �J (i)

D (�r, t)
and quasicurrents �

(i)
D (�r, t) of the averaged relevant variables ai(�r, t) and the entropy density

σ (�r, t) can be derived. The dissipation functional

R =
∫

R3
d3r r(�r, t) (17)

describes the total amount of energy that is dissipated per time unit in the considered system. Its
integrand, the dissipation function r(�r, t), is therefore positive semi-definite as a consequence
of the second law of thermodynamics [8, 31]: r(�r, t) � 0.10 It is nonlinear in the thermodynamic
variables and quadratic in the thermodynamic forces that are defined as

�a c

i = −�∇�r ac�

i , an

i = an�

i (18)

and correspond to the averaged relevant variables ai(�r, t). Again, the internal energy density
ε(�r, t) and the entropy density σ (�r, t) have to be treated separately. While a thermodynamic
force corresponding to the internal energy density does not exist, since we formulate the first
law of thermodynamics in terms of the generalized internal energy as the thermodynamic
potential (see equation (22) further below), the thermodynamic force σ 
(�r, t) corresponding
to the entropy density is defined further below by equation (29). For a given dissipation
functional, the dissipative currents and quasicurrents of the averaged relevant variables follow
directly by functional differentiation with respect to the thermodynamic forces [31]:11

�J (i)
D = δR

δ�a c

i

, �
(i)
D = δR

δan

i

. (19)

9 In fact, the internal energy density ε̂(�r, t) has to be treated separately, since ε(�r, t) is a Legendre transform of the
generalized Helmholtz free-energy density that can be gradient expanded in terms of the other relevant variables.
The entropy density σ̂ (�r, t), on the other hand, has to be treated separately, since it is not independent of the internal
energy density ε̂(�r, t). Both variables are related by the local formulation of the first law of thermodynamics.
10 The condition r(�r, t) � 0 is a necessary prerequisite for dynamical stability of the considered system [31]. For
entirely reversible processes, r(�r, t) is zero, while it is positive for all other (dissipative) processes.
11 Since the dissipation functional R is quadratic in the thermodynamic forces, equation (19) implies a linear
relation between the (quasi)currents and the thermodynamic forces. Notice that, in contrast, the relation between the
thermodynamic forces and the relevant variables is in general strongly nonlinear.
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The dissipative energy current �Jε
D(�r, t) and the dissipative entropy quasicurrent �σ

D(�r, t) have
to be derived differently (see section 3.1 further below).

For systems far from thermodynamic equilibrium, linear irreversible thermodynamics
cannot be applied and a dissipation functional is in general not known [1]. This is the case
for active systems like, for example, lasers, amplifiers, and biological systems. Indeed there
is a generalization of the dissipation functional—the generalized Lyapunov functional—to
systems that can also be far from thermodynamic equilibrium, but a Lyapunov functional does
not exist in general. The criteria for the existence of a Lyapunov functional for a particular
system are characterized by potential conditions [32–35].

3. The entropy density as a relevant variable

It is well-established in the framework of the MZFT that the entropy density is a slow variable,
although it is not strictly hydrodynamic [6, 8, 12]. However, the entropy density σ (�r, t) is a
special (non-conserved) relevant variable that has not yet been considered in the context of
EDDFT [11]. Although EDDFT could in principle be generalized to include non-conserved
variables, the entropy density cannot be incorporated into EDDFT directly. It should instead be
considered separately, since there is no corresponding operator σ̂ (�r, t) known for the entropy
density that would be required to incorporate the entropy density into EDDFT using the
MZFT [11]. To avoid this problem, we assume the applicability of the local formulation of the
first law of thermodynamics for operators and express the unknown operator for the entropy
density in terms of the known operators of the other relevant variables. We thus construct
an expression for the entropy density operator that is applicable in the framework of linear
irreversible thermodynamics. On this basis, we present the derivation of dynamical equations
for the entropy density σ (�r, t) as well as for its time correlation function Cσσ (�r,�r ′, t, t ′).

3.1. Nonequilibrium dynamics

Since the entropy density σ (�r, t) is not conserved, its dynamics has to be described by the
balance equation (16), where the entropy quasicurrent

�σ (�r, t) = �∇�r · �Jσ (�r, t) − Qσ (�r, t) (20)

can be decomposed into a divergence term with the entropy current �Jσ (�r, t) = �Jσ
R (�r, t) +

�Jσ
D(�r, t) describing the transport of entropy and a source term Qσ (�r, t) denoting the production

of entropy12. The entropy production [31]

Qσ (�r, t) = 2r(�r, t)

T (�r, t)
(21)

in turn can be expressed in terms of the dissipation function r(�r, t) and the absolute
local temperature T (�r, t). In order to derive explicit microscopic expressions for
�Jσ (�r, t) and Qσ (�r, t), we make use of the local formulation of the first law of
thermodynamics13 [31]

dε = T dσ + ac�
i dac

i + an�
i dan

i (22)

12 The dissipative entropy quasicurrent is therefore �σ
D(�r, t) = �∇�r · �Jσ

D (�r, t) − Qσ (�r, t).
13 Einstein’s sum convention is assumed in the following. Equation (22) makes the internal energy density ε(�r, t)
and the entropy density σ (�r, t) dependent on each other and is the reason why ε(�r, t) and σ (�r, t) have to be treated
separately from the other relevant variables ai(�r, t) (see section 2.2).
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with the increment of the generalized internal energy density dε(�r, t), which is related to the
increment of the generalized Helmholtz free-energy density d f (�r, t) by

d f = dε − T dσ − σ dT, (23)

and additional conserved and non-conserved classical thermodynamic variables ac
i (�r, t) and

an
i (�r, t), respectively14. Equation (22) can be rearranged into

σ̇ = 1

T
ε̇ − ac�

i

T
ȧc

i − an�
i

T
ȧn

i (24)

providing a dynamical equation for the entropy density in terms of the time derivatives15 of
the internal energy density and the other relevant variables. Using the transport equations (8)
and (10) for the general relevant variables ac

i (�r, t) and an
i (�r, t), respectively, (14) for the

internal energy density ε(�r, t), and (16) for the entropy density σ (�r, t), equation (24) can be
transformed into the balance equation for the entropy density (16) with the decomposition (20),
the dissipative entropy current

�Jσ
D(�r, t) = 1

T
�Jε
D − ac�

i

T
�J (i)
D , (25)

and the entropy production

Qσ (�r, t) = − 1

T
�Jσ
D · �∇�rT − 1

T
�J (i)
D · �∇�r ac�

i + 1

T
�

(i)
D an�

i . (26)

Notice that only the dissipative currents and quasicurrents contribute to the entropy production
so that the following equation must hold:

�∇�r · �Jε
R = T �∇�r · �Jσ

R + ac�
i

�∇�r · �J (i)
R + an�

i �
(i)
R . (27)

Combining equations (21) and (26) now leads to the desired microscopic expression for the
dissipation function:

2r(�r, t) = −�Jσ
D · �∇�rT − �J (i)

D · �∇�r ac�
i + �

(i)
D an�

i . (28)

Notice that equations (26) and (28) are in accordance with equation (21). Since the dissipation
function r(�r, t) has to be positive semi-definite, equation (28) implies that the dissipative
currents and quasicurrents are functions of the thermodynamic forces (18). In fact, these
functions are assumed to be linear and homogeneous [31]. With this assumption, it is
obvious that the dissipative currents �J (i)

D (�r, t) and quasicurrents �
(i)
D (�r, t) corresponding to

the conserved relevant variables ac
i (�r, t) and the non-conserved relevant variables an

i (�r, t),
respectively, can be derived from a given dissipation functional R using equations (19).
Analogously, the dissipative entropy current �Jσ

D(�r, t) can be derived:

σ � = T, �σ 
 = −�∇�r T, �Jσ
D = δR

δ�σ 

. (29)

The dissipative energy current �Jε
D(�r, t) follows then from equation (25).

Equation (16) together with equations (20) and (25)–(28) embody a microscopic
expression for the dynamical equation of the entropy density. This microscopic equation
expresses the entropy quasicurrent and the dissipation functional in terms of the (microscopic)
currents and quasicurrents of the other relevant variables and constitutes the first main result
of this paper. It is noteworthy that the equations in this subsection closely resemble the
corresponding hydrodynamic equations [31].

14 Notice that the thermodynamic conjugate of the entropy density is the local absolute temperature: σ �(�r, t) =
∂ε(�r, t)/∂σ (�r, t) = T (�r, t).
15 Throughout the whole paper, a dot ˙ denotes a derivation with respect to time t. This applies also to time derivatives
of correlation functions with two time variables t and t ′ further below, where the dot always means a derivation with
respect to t and not to t ′.
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3.2. Equilibrium correlations

We now consider the dynamics of the entropy time correlation function Cσσ (�r,�r ′, t, t ′). In the
linear regime near equilibrium, the equilibrium time correlation function (Kubo function [8])
of two variables X̂ (�r, t) and Ŷ (�r, t) is defined as [8, 11]

CXY (�r,�r ′, t, t ′) = 〈�X̂ eq(�r, t)|�Ŷ eq(�r ′, t ′)〉eq. (30)

Here, the letters ‘eq’ denote equilibrium quantities, 〈·|·〉eq is Mori’s scalar product [11] and
�X̂ eq(�r, t) = X̂ (�r, t) − X eq(�r ) with X eq(�r ) = 〈X̂ (�r, t)〉eq are the equilibrium fluctuations
of the variable X̂ (�r, t). Since they are associated with equilibrium fluctuations, the time
correlation functions (30) are translationally invariant with respect to time: CXY (�r,�r ′, t, t ′) =
CXY (�r,�r ′, t − t ′). For the derivation of the dynamics of Cσσ (�r,�r ′, t, t ′), we need an expression
for the operator σ̂ (�r, t) of the entropy density, but such an operator is not known in general.
Therefore, we assume that the local formulation of the first law of thermodynamics (22) also
holds for the corresponding operators [6, 8, 12, 36, 37]. This leads to the equation16

dε̂ = T dσ̂ + a�
i dâi (31)

that expresses the entropy density operator σ̂ (�r, t) in terms of the internal energy density
operator ε̂(�r, t) and the operators âi(�r, t) for the other relevant variables that are known.
Notice that the relevant variables âi ∈ {âc

i , ân
i } are not distinguished into conserved and

non-conserved variables in this paragraph. Equation (31) can now be rearranged into

˙̂σ = 1

T
˙̂ε − a�

i

T
˙̂ai (32)

providing a dynamical equation for the entropy density operator. Using the definition (30)
of the time correlation functions and their symmetry properties described in [8], relations
between the time-derived correlation functions ĊXY (�r,�r ′, t, t ′) with X,Y ∈ {σ, ε, ai} can be
derived. A combination of these relations leads to the following transport equation for the
entropy time correlation function:

Ċσσ (�r,�r ′, t, t ′) = 1

T (�r, t)T (�r ′, t ′)
Ċεε(�r,�r

′, t, t ′) − a�
i (�r, t)

T (�r, t)T (�r ′, t ′)
Ċaiε(�r,�r

′, t, t ′)

− a�
i (�r

′, t ′)
T (�r, t)T (�r ′, t ′)

Ċεai (�r,�r
′, t, t ′) + a�

i (�r, t)a�
j(�r

′, t ′)

T (�r, t)T (�r ′, t ′)
Ċaia j (�r,�r

′, t, t ′). (33)

This equation constitutes the second main result of this paper, since it brings about a
microscopic expression for the entropy time correlation function.

3.3. Dissipation

By the entropy balance equation (16) with the quasicurrent (20) and the entropy
production (21), the dissipation function (28) is directly associated with dissipation. Also,
the time-derived correlation functions in equation (33) can be related to dissipation, when the
validity of the fluctuation–dissipation theorem [8, 38] is assumed. For systems sufficiently
close to thermodynamic equilibrium, the fluctuation–dissipation theorem implies the relation

Ċaia j (�r,�r
′, t, t ′) = 2

iβ
χ ′′

i j(�r,�r
′, t, t ′) (34)

16 Although equation (31) provides an expression for the entropy operator σ̂ (�r, t), this variable cannot be incorporated
into EDDFT in the usual way, since the MZFT requires a set of independent relevant variables [11]. Notice that by
averaging equation (31) with Tr(ρ(t) · ), one obtains the local formulation of the first law of thermodynamics (22).

8
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or equivalently in Fourier space (see appendix A.1)

χ̃ ′′
i j(�r,�r

′, ω) = β

2
ωC̃aia j (�r,�r

′, ω) (35)

between the time correlation function Caia j (�r,�r
′, t, t ′) and the absorptive response

function17 [11]

χ ′′
i j(�r,�r

′, t, t ′) = 1

2�
〈[âi(�r, t), â j(�r

′, t ′)]〉eq (36)

for any variables âi(�r, t) and â j(�r, t) also including the internal energy density ε̂(�r, t) and the
entropy density σ̂ (�r, t). In the following, the meaning of the dissipation functional R and the
absorptive response function χ ′′

i j(�r,�r
′, t, t ′) in the context of dissipation is considered in more

detail.

3.3.1. Nonequilibrium dynamics. The total work W (t) done on a system with the effective
Hamiltonian Ĥeff(t) is given by [8, 39]

W (t) = Tr(ρ(t)Ĥeff(t)). (37)

Its rate of change Ẇ (t) is the energy dissipated per time in this system and identical with the
dissipation functional [8, 12]

R = Ẇ (t) = Tr(ρ(t) ˙̂Heff(t)) = −
n∑

i=1

∫
R3

d3r ai(�r, t)ȧ�
i (�r, t), (38)

where the averaged relevant variables ai(�r, t) now also include the internal energy density
ε(�r, t), but not the dependent entropy density σ (�r, t). Notice that equation (38) can be
understood as a generalization of equation (33) in [16]. The time integral of equation (38) is
the total amount of dissipated energy

Wdiss =
∫

R

dt R =
n∑

i=1

∫
R

dt
∫

R3
d3r ȧi(�r, t)a�

i (�r, t). (39)

3.3.2. Equilibrium correlations. Using the fluctuation–dissipation theorem (34), the
dissipated energy (39) can also be expressed in dependence of the time-derived correlation
functions Ċaia j (�r,�r

′, t, t ′) or equivalently in dependence of the absorptive response functions
χ ′′

i j(�r,�r
′, t, t ′). For this purpose, the symmetric equilibrium susceptibility matrix (complex

response function) [11]

χi j(�r,�r
′, t, t ′) = δai(�r, t)

δa�
j(�r

′, t ′)

∣∣∣∣
eq

(40)

is used in order to express the averaged relevant variables ai(�r, t) = aeq
i (�r ) + �ai(�r, t) in

terms of the corresponding thermodynamic conjugates a�
i (�r, t)18:

�ai(�r, t) =
n∑

j=1

∫
R

dt ′
∫

R3
d3r′ χi j(�r,�r

′, t, t ′)a�
j(�r

′, t ′). (41)

17 See [8, 12, 39] for the symmetry properties of the absorptive response function χ ′′
i j(�r,�r

′, t, t ′).
18 In the linear regime near equilibrium, equation (41) follows directly from a functional Taylor expansion of the
variable ai(�r, t) with respect to the thermodynamic conjugates a�

i (�r, t) about the equilibrium state, in which the
thermodynamic conjugates vanish.
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Inserting this expression into equation (39) leads to

Wdiss =
n∑

i, j=1

∫
R

dt
∫

R

dt ′
∫

R3
d3r

∫
R3

d3r′ a�
i (�r, t)χ̇i j(�r,�r

′, t, t ′)a�
j(�r

′, t ′). (42)

In Fourier space, the complex response function (40) can be decomposed as [8, 11]

χ̃i j(�r,�r
′, ω) = χ̃ ′

i j(�r,�r
′, ω) + i χ̃ ′′

i j(�r,�r
′, ω) (43)

with the (Fourier transformed) reactive response function χ̃ ′
i j(�r,�r

′, ω) and absorptive response
function χ̃ ′′

i j(�r,�r
′, ω). Using this decomposition, together with the symmetry properties

[8, 12, 39] χ̃ ′
ji(�r

′,�r,−ω) = χ̃ ′
i j(�r,�r

′, ω) and −χ̃ ′′
ji(�r

′,�r,−ω) = χ̃ ′′
i j(�r,�r

′, ω) of the reactive and
absorptive response functions, respectively, as well as Parseval’s theorem (see appendix A.2),
it can be shown that equation (42) is equivalent to

Wdiss = 1

2π

n∑
i, j=1

∫
R3

d3r
∫

R3
d3r′

∫
R

dω ã�
i (�r,−ω)ωχ̃ ′′

i j(�r,�r
′, ω)ã �

j (�r
′, ω). (44)

In accordance with the second law of thermodynamics, the dissipated energy Wdiss must be
non-negative in a stable system (see section 2.3). Since this stability condition must also
hold for any generalized Helmholtz free-energy functional F and hence for an arbitrary set
of thermodynamic conjugates ã �

i (�r, ω), the product ωχ̃ ′′
i j(�r,�r

′, ω) 19 has to be positive semi-
definite for any ω [8]. As a consequence of equation (35), C̃aia j (�r,�r

′, ω) also has to be positive
semi-definite.

4. Extended dynamical density functional theory

So far, a general set of relevant conserved or non-conserved variables âi(�r, t) with general
transport equations (7) and (9), respectively, has been considered. In this section, we now focus
on current EDDFT [11] with its conserved, real, and independent variables âi(�r, t) ≡ âc

i (�r, t)
with i ∈ {1, . . . , n} including the internal energy density and with the corresponding specified
transport equations. We first summarize the EDDFT equations and the associated transport
equations for time correlation functions. Afterwards, we discuss the derivation of EDDFT from
a dissipation functional and consider the hydrodynamic limit of EDDFT. These considerations
are valid for general variables âi(�r, t) that have to be conserved, real, and independent, as usual
in the context of EDDFT [11]. For more particular EDDFT equations with the concentrations
ĉi(�r, t) and the energy density ε̂(�r, t) as relevant variables, see [11].

4.1. Nonequilibrium dynamics

In its currently most general form, the EDDFT equations are given by [11]

ȧi(�r, t) + �∇�r · �Jai (�r, t) = 0 (45)

with the currents �Jai (�r, t) = �Jai
R (�r, t) + �Jai

D (�r, t) and

�Jai
R (�r, t) = Tr

(
ρ(t) �̂J (i)(�r, 0)

)
, (46)

�Jai
D (�r, t) = −

n∑
j=1

∫
R3

d3r′βD(i j)(�r,�r ′, t)�∇�r ′a�
j(�r

′, t). (47)

Here, D(i j)(�r,�r ′, t) denotes a diffusion tensor, for which explicit expressions can be found in
[11]. We note that D(i j)(�r,�r ′, t) in equation (47) contains all non-instantaneous contributions.
These are mainly dissipative in nature. For certain systems such as, for example, nematic
liquid crystals, there are also reversible contributions even in the hydrodynamic regime [6, 8].
19 Notice that the sign of this expression depends on the definition of the Fourier transformation.
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4.2. Equilibrium correlations

In the linear regime near equilibrium, the corresponding transport equations for the equilibrium
time correlation functions Caia j (�r,�r

′, t) 20 are given by [11]

Ċaia j (�r,�r
′, t) + �∇�r · J(i j)(�r,�r ′, t) = 0 (48)

with the total currents J(i j)(�r,�r ′, t) = J(i j)
R (�r,�r ′, t) + J(i j)

D (�r,�r ′, t) and their contributions

J(i j)
R (�r,�r ′, t) = −

n∑
k=1

∫
R3

d3r′′�(ik)
eq (�r,�r ′′)Ck j(�r

′′,�r ′, t), (49)

J(i j)
D (�r,�r ′, t) = −

n∑
k=1

∫
R3

d3r′′�(ik)
eq (�r,�r ′′)Ck j(�r

′′,�r ′, t). (50)

For explicit expressions for �
(i j)
eq (�r,�r ′) and �

(i j)
eq (�r,�r ′), see [11].

4.3. Dissipation

The reversible currents (46) of EDDFT often vanish. This is generally the case when all
relevant variables ai(�r, t) have the same time-reversal behavior [8]. Then only the dissipative
currents (47) remain and the complete EDDFT equations (45) can be derived from a dissipation
functional that is defined by equations (17) and (28). Notice that the internal energy density
is treated separately from the other relevant variables in equation (28), while it is included in
the relevant variables ai(�r, t) in equations (45)–(47). For instance, the traditional DDFT of
Marconi and Tarazona [13–15]

ρ̇(�r, t) + �∇�r · �Jρ (�r, t) = 0, (51)

�Jρ (�r, t) = −βD0ρ(�r, t)�∇�rρ
�(�r, t) (52)

with the one-particle density ρ(�r, t) and the translational short-time diffusion coefficient D0

can be derived formally from the dissipation functional R with the dissipation function

rMT(�r, t) = 1
2βD0ρ(�r, t)

(
�∇�rρ

�(�r, t)
)2

. (53)

This reformulation of DDFT in terms of a dissipation functional constitutes an alternative
representation of DDFT besides the usual DDFT equations. Such a representation by a
dissipation functional is very advantageous when some of the relevant variables (in this
example the one-particle density ρ(�r, t)) have to be parametrized by other order-parameter
fields and dynamical equations for these parameterizing order-parameter fields are needed.
The derivation of PFC models from DDFT, for example, involves such a parametrization of the
one-particle density. While this is pretty straightforward for isotropic systems with a purely
translational particle density [40, 41], the derivation of the dynamical equations becomes
considerably more complicated for additional orientational degrees of freedom both in two
[19, 20, 26] and three [18] spatial dimensions (for a recent review see [21]). The use of a
dissipation functional instead of a DDFT equation considerably simplifies the situation.

4.4. Special cases of the EDDFT equations

In this subsection, we consider two special cases of the EDDFT equations (45)–(47) in order
to demonstrate their applicability and to compare them to equations that are known from
the literature. These special cases are the dynamical equations for non-isothermal colloidal
suspensions and the hydrodynamic limit of the EDDFT equations.
20 Here, we made use of the fact that the equilibrium time correlation functions Caia j (�r,�r

′, t, t ′) are translationally
invariant with respect to time so that t ′ can be omitted.
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4.4.1. Non-isothermal colloidal suspensions. We consider a non-isothermal colloidal
suspension, whose state is described by a given generalized Helmholtz free-energy functional
F[c, T ] in terms of two relevant variables, the (conserved) concentration field c(�r, t) and the
(non-conserved) temperature field T (�r, t). Such a functional can, for example, be obtained
from static classical DFT [42–44], when a local approximation is applied to the DFT functional
F (T, [c]) with the spatially homogeneous temperature parameter T . Instead of the temperature
field T (�r, t), the internal energy density ε(�r, t) or the entropy density σ (�r, t) lead—in
combination with the concentration field c(�r, t)—to a set of two relevant variables that are
appropriate for describing the considered system (see appendix B for explicit expressions for
the Hamiltonian and the relevant variables). Here, we choose c(�r, t) and σ (�r, t) as the relevant
variables and the generalized internal energy functional

E[c, σ ] = F[c, T ] +
∫

R3
d3r T (�r, t)σ (�r, t) (54)

as the corresponding thermodynamic functional. The thermodynamic conjugates of the
relevant variables are thus defined as c�(�r, t) = δE/δc(�r, t) = δF/δc(�r, t) and σ �(�r, t) =
δE/δσ (�r, t) = T (�r, t) in this section. Since c(�r, t), ε(�r, t) and σ (�r, t) are even under parity
inversion and time reversal, there are no reversible currents [11]: �Jc

R(�r, t) = �Jε
R(�r, t) =

�Jσ
R (�r, t) = �0. Hence, the dynamics of such a non-isothermal colloidal suspension is

described by

ċ(�r, t) + �∇�r · �Jc
D(�r, t) = 0, (55)

σ̇ (�r, t) + �∇�r · �Jσ
D(�r, t) = Qσ (�r, t). (56)

These dynamical equations follow directly from equations (45), (16), and (20). The dissipative
currents in equations (55) and (56) result from equation (47) and are given by

�Jc
D(�r, t) = −

∫
R3

d3r′βD(cc)(�r,�r ′, t)�∇�r ′c�(�r ′, t) −
∫

R3
d3r′βD(cσ )(�r,�r ′, t)�∇�r ′σ �(�r ′, t),

(57)

�Jσ
D(�r, t) = −

∫
R3

d3r′βD(σc)(�r,�r ′, t)�∇�r ′c�(�r ′, t) −
∫

R3
d3r′βD(σσ )(�r,�r ′, t)�∇�r ′σ �(�r ′, t).

(58)

Using these expressions for the dissipative currents �Jc
D(�r, t) and �Jσ

D(�r, t), an explicit equation
for the dissipative internal energy current �Jε

D(�r, t) can be derived from equation (25). This
explicit equation is given by

�Jε
D(�r, t) = −

∫
R3

d3r′ βD(εc)(�r,�r ′, t)�∇�r ′c�(�r ′, t) −
∫

R3
d3r′ βD(εσ )(�r,�r ′, t)�∇�r ′σ �(�r ′, t) (59)

with the diffusion tensors

D(εc)(�r,�r ′, t) = c�(�r, t)D(cc)(�r,�r ′, t) + σ �(�r, t)D(σc)(�r,�r ′, t), (60)

D(εσ )(�r,�r ′, t) = c�(�r, t)D(cσ )(�r,�r ′, t) + σ �(�r, t)D(σσ )(�r,�r ′, t). (61)

4.4.2. Hydrodynamic limit. All expressions presented in this paper so far are beyond
the scope of hydrodynamics and are also applicable for non-hydrodynamic wave vectors
�k and frequencies ω. In the hydrodynamic limit (�k → �0, ω → 0), the transport matrices
become constant and the transport equations simplify considerably. In particular, the diffusion
tensor D(i j)(�r,�r ′, t) in equation (47) and the transport matrices �

(i j)
eq (�r,�r ′) and �

(i j)
eq (�r,�r ′)

12
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in equations (49) and (50), respectively, are constant in the hydrodynamic limit (see [11] for
details). For example, equations (55)–(59) reduce to

ċ(�r, t) + �∇�r · �Jc
H(�r, t) = 0, (62)

σ̇ (�r, t) + �∇�r · �Jσ
H(�r, t) = Qσ

H(�r, t), (63)

ε̇(�r, t) = σ̇ (�r, t)T (�r, t) + ċ(�r, t)c�(�r, t) (64)

with the entropy production

Qσ
H(�r, t) = β

T (�r, t)

(
Dcc

(
�∇�rc

�(�r, t)
)2 + 2Dcσ �∇�rc

�(�r, t) · �∇�rT (�r, t) + Dσσ

(
�∇�rT (�r, t)

)2)
(65)

in the hydrodynamic limit. Here, c�(�r, t) denotes the functional derivative c�(�r, t) =
δF/δc(�r, t) of the Helmholtz free-energy functionalF[c, T ] and Dcc, Dcσ , and Dσσ are system-
dependent constants. The currents �Jc

H(�r, t) and �Jσ
H(�r, t) can be obtained from the dissipation

functional corresponding to the entropy production (65) by functional differentiation with
respect to the thermodynamic forces. This results in

�Jc
H(�r, t) = −βDcc�∇�rc

�(�r, t) − βDcσ �∇�rT (�r, t), (66)

�Jσ
H(�r, t) = −βDcσ �∇�rc

�(�r, t) − βDσσ
�∇�rT (�r, t). (67)

5. Conclusions and perspectives

For a general set of independent relevant variables, we derived microscopic transport
equations for the entropy density (see equations (16), (20), (25), and (26)) as well as for the
entropy time correlation function (see equation (33)) in the framework of linear irreversible
thermodynamics. We thus complemented current EDDFT [11] with a balance equation for
the entropy density that has previously not yet been considered in the context of EDDFT
as a relevant variable. We furthermore derived the microscopic expression (28) defining
a dissipation functional, from which the dissipative dynamics of EDDFT can be derived.
This reformulation of EDDFT in terms of a dissipation functional complements the EDDFT
equations and also states that DDFT [13–17] can be derived from a dissipation functional.
Our dissipation functional is especially useful, if some of the relevant variables have to be
parametrized and dynamical equations for the parameterizing quantities are needed. This is
particularly the case in the derivation of PFC models [18–21] from EDDFT.

Our theory can be applied by approximating the diffusion tensor in equation (47) and
the transport matrices in equations (49) and (50) by the corresponding expressions in the
hydrodynamic limit (see section 4.4.2). The latter involve only a few transport coefficients
that can be adjusted to actual simulation data for a given system. Then the resulting equations
are in principle closed and can be applied to describe a variety of relaxation processes. One
prominent example is the crystallization process from an undercooled melt where latent heat is
produced such that there is a coupling between the density field and the entropy density. Latent
heat production yields a hindering of crystal growth and is relevant both for molecular systems
and for dusty plasmas. For future perspectives, the application of our theoretical framework
towards crystallization processes is planned.

It is possible to generalize our approach to include macroscopic variables as well. These
are variables that relax on a sufficiently long but finite time scale in the long-wavelength
limit. Their combination with the hydrodynamic approach has been pioneered by Khalatnikov
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near the λ transition in superfluid 4He [45]. In this case, the degree of order, which is the
modulus of the macroscopic wave function, becomes a slow macroscopic variable as this
second-order phase transition is approached. The λ transition is, in fact, the second-order
phase transition, which has been studied more quantitatively than any other phase transition,
both theoretically [46–49] and experimentally [50, 51] testing universality concepts as well as
deviations from these concepts in detail. Quantitative agreement was found between theory
and experiment. Later, the degree of order has also been introduced as a macroscopic variable
near other phase transitions of second or weakly first order. Examples include phase transitions
in liquid crystals such as the isotropic–nematic phase transition [52], the nematic–smectic A
phase transition [53], the uniaxial–biaxial nematic phase transition [54–56], and the nematic–
columnar phase transition [57] as well as the normal fluid–superfluid 3He–A phase transition
in 3He [58].

Another class of slow variables arises when there is an energy scale in the system which is
much smaller than all other energy scales. A classical example of this case is superfluid 3He–A,
where the magnetic dipole–dipole interaction is of order 2 × 10−7 K (temperature associated
with the appropriate energy) and thus very small compared to all other energy scales including
the energy gap. As a consequence of the presence of the magnetic dipole–dipole interaction
the magnetization density is no longer a truly conserved hydrodynamic variable, but a rather
long-lived macroscopic variable, whose dynamics can be incorporated into the hydrodynamics
of superfluid 3He–A [37, 59], where it turns out to be crucial for the understanding of the
NMR spectra in the superfluid phase.

A class of macroscopic variables, which is particularly important for complex fluids
including polymers, colloids, liquid crystalline elastomers etc. are strain fields associated with
a transient network. In these cases the system reacts like a fluid below a certain frequency,
the so-called Maxwell frequency, and like a solid or glass above this frequency. Therefore,
the consequences of a transient strain field on the macroscopic behavior by combining it with
the hydrodynamic approach have also been explored [60–65]. It therefore seems a natural
next step to incorporate macroscopic variables such as a transient strain field into the EDDFT
approach.

In contrast to hydrodynamic equations, our results are not restricted to the hydrodynamic
regime (�k → �0, ω → 0), but are also applicable for larger wave vectors �k and frequencies ω.
However, our results based on linear irreversible thermodynamics are restricted to systems that
are sufficiently close to thermodynamic equilibrium, where the local formulations of the first
and second law of thermodynamics are valid. This is generally the case for all passive systems,
but not for active systems. The generalization of our results to active systems that are far
from thermodynamic equilibrium, where the entropy production can also be negative locally
or in a subsystem and linear irreversible thermodynamics is not applicable, will therefore be
an important task for the future. In this context, the crucial question for the existence of an
entropy density operator in particular will have to be answered.

Entropy has been considered in the context of DDFT in recent work by Anero et al [66]
and Schmidt [67]. In our work, described in the present paper, a generalized Helmholtz free-
energy functional is chosen as an appropriate thermodynamic functional, the DDFT equations
in the work of Anero et al are based on an entropy functional and do not include the entropy
density as a thermodynamic variable [66]. As a further difference, the balance equation for
the entropy density and the dissipation functional are not used in the approach of Anero
et al. Schmidt, on the other hand, proposed DDFT equations for a one-particle density and an
internal energy density on the basis of a generalized grand-canonical potential functional that
depends functionally on the one-particle density and the entropy density and is minimized by
both densities in thermodynamic equilibrium [67].
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Appendix A. Fourier transformation

Since there are different definitions of the Fourier transformation in the literature, here we give
the definition we used in the context of the work presented. We further state a useful theorem
related to the Fourier transformation.

A.1. Definition

Within the definition we used, the Fourier transformation of a time-dependent function X (t)
is given by

X̃ (ω) =
∫

R

dt X (t) eiωt, X (t) = 1

2π

∫
R

dω X̃ (ω) e−iωt (A.1)

with ω ∈ R.

A.2. Parseval’s theorem

If X (t) and Y (t) are two time-dependent square-integrable functions, Parseval’s theorem states∫
R

dt X (t)Y (t) = 1

2π

∫
R

dω X̃ (ω)Ỹ (ω), (A.2)

where the bar · denotes complex conjugation.

Appendix B. Non-isothermal colloidal suspensions

In this appendix we present explicit expressions for the Hamiltonian of a suspension of Nc

rigid isotropic colloidal (c) particles that are suspended in a solvent (s) consisting of Ns 
 Nc

atomic or molecular isotropic particles as well as for the relevant variables of this system
(see section 4.4.1), since these expressions are needed for the application of the MZFT. The
phase-space variables of this system are the positions �r c

i (t) and translational momenta �pc
i (t)

with i = 1, . . . , Nc of the colloidal particles as well as the positions �r s
i (t) and momenta �p s

i (t)
with i = 1, . . . , Ns of the solvent particles at time t. In general, the colloidal and solvent
particles are subjected to external potentials Uc

1 (�r ) and U s
1 (�r ), respectively. Interactions

between the particles are taken into account by the pair-interaction potentials U (cc)

2 (‖�r −�r ′‖),
U (cs)

2 (‖�r −�r ′‖), and U (ss)
2 (‖�r −�r ′‖) for colloid–colloid, colloid–solvent, and solvent–solvent

particle interactions, respectively.
If mc denotes the mass of a colloidal particle and ms the mass of a solvent particle, the

system is completely described by its Hamiltonian [8, 11]

Ĥ =
∑

μ∈{c,s}

Nμ∑
i=1

Ĥμ
i , Ĥμ

i = (�pμ
i (t))2

2mμ

+ Uμ

1 (�r μ
i (t)) + 1

2

∑
ν∈{c,s}

Nν∑
j=1

(μ,i)�=(ν, j)

U (μν)

2 (‖�r μ
i (t) − �r ν

j (t)‖)

(B.1)
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or equivalently by the Liouvillian

L̂ =
∑

μ∈{c,s}

Nμ∑
i=1

(
�∇�pμ

i
Ĥ

) · �∇�r μ
i

−
∑

μ∈{c,s}

Nμ∑
i=1

(
�∇�r μ

i
Ĥ

) · �∇�pμ
i
. (B.2)

Conserved relevant variables of this system are the local concentration of colloidal particles
ĉ(�r, t) and the internal energy density ε̂(�r, t) with the microscopic expressions [8, 11]

ĉ(�r, t) =
Nc∑

i=1

δ
(
�r − �r c

i (t)
)
, (B.3)

ε̂(�r, t) =
∑

μ∈{c,s}

Nμ∑
i=1

Ĥμ
i δ

(
�r − �r μ

i (t)
)
. (B.4)

The dynamics of these relevant variables is given by

˙̂c(�r, t) + �∇�r · �̂J c(�r, t) = 0, ˙̂ε(�r, t) + �∇�r · �̂Jε(�r, t) = 0 (B.5)

with the local currents �̂J c(�r, t) and �̂Jε(�r, t). From the Hamiltonian (B.1) explicit expressions
can be derived for these currents. They are [8, 11]

�̂J c(�r, t) =
Nc∑

i=1

�pc
i (t)

mc
δ
(
�r − �r c

i (t)
)
, (B.6)

�̂Jε(�r, t) =
∑

μ∈{c,s}

Nμ∑
i=1

�pμ
i (t)

mμ

Ĥμ
i (t)δ

(
�r − �r μ

i (t)
) − 1

4

∑
μ,ν∈{c,s}

Nμ∑
i=1

(μ,i)�=(ν, j)

Nν∑
j=1

�r (μν)
i j (t)⊗�r (μν)

i j (t)

‖�r (μν)
i j (t)‖

×
(

�pμ
i (t)

mμ

+ �pν
j (t)

mν

)
dU (μν)

2 (r)

dr

∫ 1

0
dλδ

(
�r − �r μ

i (t)+ λ�r (μν)
i j (t)

)
(B.7)

with the dyadic product ⊗ and the notation �r (μν)
i j (t) = �r μ

i (t) − �r ν
j (t).
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