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Abstract. We explore the crystallization in a colloidal monolayer on a
structured template starting from a few-particle nucleus. The competition
between the substrate structure and that of the growing crystal induces a new
crystal growth scenario. Unlike with the crystal growth in the bulk where a well-
defined and connected crystal–fluid interface grows into the fluid, we identify
a mechanism where a ‘compatibility wave’ of the prescribed nucleus with
the underlying substrate structure dictates the growth direction and efficiency.
The growth process is strongly anisotropic and proceeds via transient island
formation in front of an initial solid–fluid interface. We demonstrate the validity
of this compatibility wave concept for a large class of substrate structures
including a square lattice and a quasicrystalline pattern. Dynamical density
functional theory that provides a microscopic approach to the crystallization
process is employed for colloidal hard spheres. Our predictions can be verified
in experiments on confined colloids and also bear consequences for molecular
crystal growth on structured substrates.
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1. Introduction

The novel material properties of ultrathin films promise fabrication of technologically
relevant optical switching devices, high-density information storage media and nanofilters with
controlled porosity. In many cases, these films are crystalline monolayers which are grown on
a patterned substrate acting as a template for solidification. Pivotal examples for these two-
dimensional (2D) arrays range from sheets of graphene [1, 2] and organic molecules [3, 4]
to soft matter films composed of nanoparticles [5, 6], proteins [7], polymers [8] or colloidal
particles [9–13].

There are various techniques to prepare crystalline layers on a structured substrate. Using
heteroepitaxy from the gas phase [14], crystalline islands are formed first on the substrate, which
then expand until they merge to a covering layer while exhibiting at the same time layer-by-
layer growth into the direction perpendicular to the substrate. Crystals on a patterned substrate
can also be grown out of the liquid phase where typically a layer-by-layer growth is obtained
perpendicular to the wall [9, 15–18]. A complementary technique uses self-assembly within the
monolayer by e.g. drying out the films [6, 10] or using electrophoretic deposition in the first
place [19] which basically corresponds to a 2D crystallization process.

In order to control and steer the formation of crystalline sheets on a template, a detailed
understanding of the crystallization process on the scale of the individual particles is necessary.
Colloidal suspensions are excellent model systems to study the crystallization process on
the particle scale [20]. A structured substrate can be realized by superimposing optical laser
fields [21] which constrain the colloidal particles to a modulated external potential confining
them to a 2D layer [22–24]. They thus offer the unique opportunity to observe the 2D
crystallization process in real space.

Here, we explore the crystallization in a colloidal monolayer on a structured template
starting from a few-particle nucleus. There is a crucial competition between the substrate
structure and that of the growing crystal (typically hexagonal for spherical particles) which
gives rise to a new crystal growth scenario. Unlike with the crystal growth in the bulk [25]
or on unstructured substrates [16] where a well-defined and connected crystal–fluid interface
grows into the fluid possibly via faceting, branching or dendrite formation [26], we identify
a mechanism where a ‘compatibility wave’ of the prescribed nucleus with the underlying
substrate structure dictates the growth direction and efficiency. The compatibility wave describes
the commensurability of the substrate structure with the stable hexagonal bulk crystal as
documented in the Moiré pattern of the periodic solid induced by the imposed nucleus and the
underlying substrate. Correspondingly, the growth process is strongly anisotropic and proceeds
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via transient island formation in front of an initial solid–fluid interface breaking the assumption
of a well-defined single-connected interface topology. The compatibility wave concept is valid
for a large variety of substrate structures, e.g. for a square lattice and a quasicrystalline pattern.
Providing a microscopic approach to the crystallization process, dynamical density functional
theory (DDFT) is employed for colloidal hard spheres. Our predictions can be verified by
performing experiments on confined colloids and they also bear consequences for molecular
crystal growth on structured substrates. Finally, by quenching the transient emerging crystal
during growth it will be possible to fabricate remarkable extended and hollow crystal structures
with new potential technological applications.

2. Methods, model and first results

We consider a system of hard discs of diameter σ in the crystalline phase, influenced by
an external potential with square symmetry. In figure 1(a), a schematic representation of the
examined system is shown. A nucleus with inter-particle distances a1 is placed on a square
substrate with lattice constant aV. The nucleus is rotated counter-clockwise by an angle φ with
respect to a symmetry axis of the substrate. The fluid that surrounds the nucleus is modulated by
the substrate potential. A typical time series of a growth process is shown in the snapshots (b)–(f)
of figure 1. Movies of this and a similar growth process are available in the supplementary
data (available from stacks.iop.org/NJP/15/073013/mmedia). In contrast to the typical crystal
growth where a well-defined crystal–fluid interface is growing, the external potential influences
the dynamics such that regions that are compatible with the positions of the potential minima
grow before regions that are less matching.

Influenced by the substrate potential, a modulation of the local density is induced. When
the nucleus is positioned on the substrate, the hexagonal symmetry of the nucleus causes a
modulation which starts growing but is different from the substrate symmetry. We call the
superposition of these two modulations the ‘compatibility wave’ which drives the growth
process. The compatibility wave possesses maxima at the positions where the two patterns
coincide.

In our schematic sketch in figure 1(a) the colour code indicates the distance of two
nearest neighbouring peaks of the crystal lattice sites and the substrate minima and therefore
the compatibility positions are denoted by darker red particles. Snapshots (c)–(f) display the
propagation of the compatibility wave in red, whereas the grown crystal is displayed by black
regions.

The external substrate potential Vext(r) dictating the square symmetry is given by

Vext(r) = V0

[
1 −

1

4
(1 − cos(kx x))

(
1 − cos(ky y)

)]
, (1)

where kx = ky = 2π/aV are the components of the reciprocal lattice vector k and V0 denotes the
strength of the potential. We measured V0 in units of the thermal energy kBT , with temperature
T and Boltzmann’s constant kB and chose an amplitude of V0 = 0.5kBT and an area fraction
of η = 0.74. Furthermore, the length scale of the substrate aV is chosen such that on average
there is always one particle per minimum. For these parameters, in equilibrium the system is in
a triangular crystalline phase [27].

We use DDFT for Brownian particles, which is a dynamical generalization of classical
density functional theory [29–32] and can be derived from the exact Smoluchowski
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Figure 1. (a) Schematic representation of a nucleus of hard discs with diameter σ

located on a 2D substrate with square symmetry rotated counterclockwise by an
angle φ = 5◦ relative to a symmetry direction of the substrate and lattice constant
aV. The snapshots (b)–(f) illustrate the growth of a spherical nucleus influenced
by the substrate with amplitude V0 = 0.5kBT at times (b) t = 0.0, (c) t = 0.6τB,
(d) t = 1.5τB, (e) t = 2.0τB and (f) t = 4.0τB, where τB is the Brownian time. Red
regions display the compatibility wave and are defined by density peaks above a
threshold value ρthσ

2
= 1.5061. Black regions denote crystalline areas (ρthσ

2
=

2.0), whereas blue regions remain fluid (ρthσ
2 6 1.5060). The growth process

depicted in (b)–(f) is also shown in a movie that is part of the supplementary
data (available from stacks.iop.org/NJP/15/073013/mmedia).

equation [33–35]. The time dependence of the density profiles ρ(r, t) is given by a generalized
diffusion equation

∂ρ(r, t)

∂t
= (kBT )−1 D∇ ·

(
ρ(r, t)∇

δ�[T, A, µ, ρ(r, t)]

δρ(r, t)

)
, (2)

where D is the short-time diffusion coefficient. The grand canonical free energy
�(T, A, µ, [ρ(r, t)]) is a functional of the time-dependent local density ρ(r, t) and depends on
temperature T , area of the system A and the chemical potential µ, which is used as a Lagrangian
multiplier to fix the average particle number in the system. The grand canonical free energy
can be split into the contribution of an ideal gas Fid[ρ(r)] = kBT

∫
drρ(r)

[
ln

(
32ρ(r)

)
− 1

]
including the (irrelevant) thermal wavelength 3, the excess free energy Fexc[ρ(r)] for which
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we use a recently developed approach from fundamental measure theory [36] and Fext[ρ(r)]
which describes the interaction of the particles with the substrate of (1) and which is given by

Fext[ρ(r)] =

∫
drρ(r)[Vext(r) − µ]. (3)

In order to obtain the initial nucleus in figure 1 and the movies we included in the
supplementary data, a density profile modulated by the external potential is used. For a time
of 0.07τB an external pinning potential of Gaussian shape given by

Vp(r) =

∑
i

V (0)
p e−α(r−r i )

2
(4)

with a strong amplitude V (0)
p /kBT = 4 and width ασ 2

= 6 is added to the external substrate
potential so that the density peaks grow at the pinning positions r i . After this time, the pinning
potential is switched off and only the patterned substrate potential remains.

3. Detailed analysis

To reveal the underlying mechanism, we now focus on a much simpler setup of planar growth
and thus, we examine a nucleus consisting of a stripe of particles and analyse the growth
perpendicular to the long side of the stripe. There are two different symmetries occurring—the
lattice sites of the crystal that is about to grow and the positions of the minima of the square
potential. The superposition of these two patterns results in a Moiré structure that consists
of regions where the crystal lattice sites almost coincide with the substrate wells and regions
with less match. We call the regions of coincidence the compatibility regions, which depend
in width and orientation on the angle φ. In figures 2(a) and (c) the patterns of crystal sites
and the minima positions of the substrate potential are shown for two different values of φ. At
first glance, compatibility regions are visible, where the overlay of the patterns is less dense.
The time-resolved growth of the nucleus is shown in figures 2(b) and (d) for the same rotation
angles φ. The colour code denotes the times t∗ at which the local density peak has passed a
threshold value ρth. We obtain a growth behaviour strongly linked to the overlapping patterns
with different symmetries where compatibility regions are clearly preferred during the growth
process and thus, indicated by darker coloured patches in figures 2(b) and (d). At smaller angles
φ, the obtained pattern consists of broader stripes, while at larger angles these regions merge
each other resulting in a pattern with thinner stripes. Thus, the islands that occur during the
growth process are more pronounced for smaller angles φ.

When the hexagonal crystal grows on the square substrate, the resulting crystal is no longer
a perfect hexagonal one but is slightly distorted. Thus, it becomes necessary to introduce a
different lattice constant a′

1, which describes the obtained crystal more accurately.
Figures 3(b) and (c) illustrate quantitative results of the growth in the direction

perpendicular to the elongation of the nucleus. There are two length scales competing, namely
the lattice constant of the external potential ãV measured in the direction of growth and the mean
inter-particle distance of the nucleated crystal a′

1. Depending on the detune ratio of these length
scales, ãV/a′

1, compatibility regions can be found by comparing integer multiples of both length
scales. Regarding the mismatch between these integer multiples of a′

1 and ãV, local minima can
be found which correspond to the predicted compatibility regions. In figure 3(a), the results of
this analysis are shown. Here, the positions of the compatibility regions in the x-direction are
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Figure 2. A stripe of hard discs located on a square substrate at two different
angles (a, b) φ = 5◦ and (c, d) φ = 20◦. The colour code in (b, d) displays
the time t∗/τB, at which the local density peak has reached a threshold value
ρthσ

2
= 1.75. The left plots (a) and (c) show the corresponding positions of the

substrate minima (red) and the particle positions of the final crystal (black) as
obtained from overlaying the crystal structure of the nucleus with the substrate
structure (Moiré pattern). From these, compatibility regions can be extracted by
measuring the distances between the points of both patterns.

plotted for different detune ratios ãV/a′

1. In the limit of ãV/a′

1 = 1, all positions are compatible.
However, for a very small detune the first compatibility region occurs at a very large distance
x . With increasing the detune ratio, the distance to the first compatibility region as well as the
distances between further compatibility regions decrease. Thus, the larger the detune ratio, the
more frequent the occurrence of compatibility regions. In figures 3(b) and (c), the growth of
the 2D system is analysed for two different rotation angles φ similar to those already shown in
figure 2. The length scale of the external potential in the direction of growth, i.e. perpendicular
to the stripe that is used as a nucleus, is given by

ãV(φ) =
aV

cos(φ)
. (5)

Accordingly, the positions of best compatibility for all parameters can be read from
figure 3(a). From DDFT calculations, time-resolved density values ρ(r, t) are obtained at all
positions r . Based on these density distributions, a critical time t∗ can be extracted, at which the
local density peak is above a certain threshold value ρth. In figures 3(b) and (c), the values
of the critical times t∗ are shown. For small rotation angles φ, modulations in the growth
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Figure 3. Depending on the detune ratio of the lattice constants of the hexagonal
crystal a′

1 and of the substrate potential ãV measured in the direction of growth,
the discrete positions of best compatibility are plotted in (a). (b)–(e) Times t∗

at which the local density peaks of a growing crystal exceeds a given threshold
value ρth. The curves are obtained for a 2D system (b, c) as well as for one-
dimensional channels (d, e) as functions of the detune ratio ãV/a′

1. Plots (b)–(e)
are normalized to the lattice constant of the hexagonal crystal a′

1, such that the
best matching positions, indicated by coloured vertical lines, can be obtained
from (a).
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behaviour are more pronounced, caused by a smaller mismatch of the two length scales. Thus,
the compatibility positions, indicated by coloured vertical lines, appear at larger distances. For
small ρth, very short times are sufficient for the local density to pass the threshold value. The
regions of short critical times t∗ match well with the proposed positions from figure 3(a). This
can be understood as here the positions of the substrate potential coincide well with the crystal
lattice sites. For higher threshold values, the curves denoting t∗ become monotonic. However,
close to the compatibility positions, the slope of the curves in the space–time plot is still much
smaller than that at less compatible positions.

This mechanism can also be examined in an effective one-dimensional channel, where the
external potential is simplified to a cosine-wave parallel to the growth direction, with lattice
constant aV and amplitude V0. For similar packing fractions η and detune ratios aV/a′

1, the
time-resolved growth is explored and shown in figures 3(d) and (e). As the external potential
affects the dynamics only in one direction compared to the 2D growth scenario studied before,
the shape of the plots becomes smoother. Still, regions of good compatibility coincide with
the local minima of the critical times t∗ revealing the propagation of the compatibility wave.
Regions of high compatibility grow earlier than those of lower compatibility.

4. Substrates with other symmetries

We expect that the growth scenario with compatibility waves is also important for a lot of other
substrates with length scales that are incommensurate to the length scale of the growing crystal.
In principle, the knowledge of the detune ratio is enough to predict the growth behaviour of a
hexagonal crystal on any substrate. In figure 4, three different types of 2D substrates are overlaid
with a rotated and detuned hexagonal lattice. In figure 4(a), a hexagonal lattice is illustrated,
leading to a superstructure with a six-fold symmetry of regions with better compatibility. The
same symmetry occurs for a honeycomb lattice, displayed in figure 4(c). Figure 4(e) is created
by employing a quasicrystalline lattice consisting of squares and triangles. Since a quasicrystal
possesses at least two length scales per direction, the superstructure of compatibility regions
is no longer periodic. For example, the square-triangle tiling that is used here (see e.g. [28])
has two incommensurate length scales per direction. The compatibility regions are given by
the length scale of the growing lattice and one length scale of the quasicrystalline substrate,
while the second length scale causes a modulation of the compatibility regions such that the
compatibility regions never repeat in exactly the same way. Thus, the resulting pattern of a
square-triangular and a hexagonal lattice shown in figure 4(e) yields a six-fold symmetry but
the repeating regions all differ slightly from each other. The growth of a nucleus with stripe
symmetry on all three different substrate symmetries can be regarded and snapshots of these
are shown in the corresponding figures 4(b), (d) and (f). Regions with density peaks above
the threshold density are covered in black, while white regions have density values below the
threshold density. Obviously, the black spots apart from the crystal correspond to compatible
regions of the two lattice structures.

As the growth process is similar in all presented cases, it can be extracted that for other
kinds of substrate potentials, a crystal will grow in analogy to our prediction by a compatibility
wave, which drives the growth preferable at compatibility positions.
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Figure 4. Superposition of a hexagonal lattice and the minima of a substrate
potential (Moiré pattern) with (a) triangular, (c) honeycomb and (e) 12-fold
quasicrystalline symmetry. The detune ratio aV/a′

1 as well as the rotation angle
of the hexagonal lattice are varied, leading to three different combinations: (a)
aV/a′

1 = 1.05, φ = 2◦, (c) aV/a′

1 = 1.1, φ = 3◦; and (e) aV/a′

1 = 1.0, φ = 10◦.
The quasicrystalline pattern is given by a square-triangle tiling (see e.g. [28]).
(b), (d), (f) Snapshots of the growth of an initial stripe on the corresponding
substrate potential with threshold values (b) ρthσ

2
= 1.1, (d) ρthσ

2
= 1.0 and (f)

ρthσ
2
= 1.35 at time t = 0.5τB. The system parameters in (b, f) are area fraction

η = 0.73 and interaction strength V0 = 0.1kBT , while in (d) the interaction
strength is V0 = 0.2kBT .

5. Conclusions and outlook

In conclusion, we have investigated the dynamics of crystal growth for the case where a
hexagonal nucleus of particles is placed on a patterned substrate. We found that due to the
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different length scales that occur in the direction of growth—one length scale given by the
hexagonal crystal that is about to grow and at least one other length scale by the substrate
potential—no well-defined and connected crystal–fluid interface is obtained. In contrast, a
compatibility wave drives the growth by favouring the regions of high compatibility of the two
length scales. In principle, the same growth scenario also applies to the growth behaviour on
more complex substrate potentials. The only relevant parameter that determines the position of
the compatibility regions is the detune ratio of the two length scales. The compatibility wave
concept is also relevant for molecular absorbate on atomic substrates. However, it is difficult to
observe directly for molecular systems.

A possible application of the compatibility wave concept is that a crystal is grown and
impurities are confined at positions predefined by the compatibility regions. As islands form
before the crystal–fluid interface, impurities can be locally trapped instead of being pushed
in front of the interface. As a second application, it can be possible to infer the structure and
the properties of the initial nucleus from the occurrence of the compatibility regions and the
positions of the islands.

Furthermore, the growth behaviour of a nucleus on a patterned substrate in a three-
dimensional system may be strongly related to the presented 2D results. Therefore, we believe
that compatibility waves are important for many systems where crystal growth processes on
substrates with detuned length scales are studied and that the growth via a compatibility wave
is a more suitable description than any scenario that requires a connected interface between the
fluid and the crystalline phase.
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