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We introduce and investigate a coarse-grained model for quasi one-dimensional ferrogels. In our
description the magnetic particles are represented by hard spheres with a magnetic dipole moment
in their centers. Harmonic springs connecting these spheres mimic the presence of a cross-linked
polymer matrix. A special emphasis is put on the coupling of the dipolar orientations to the elas-
tic deformations of the matrix, where a memory effect of the orientations is included. Although the
particles are displaced along one spatial direction only, the system already shows rich behavior: as a
function of the magnetic dipole moment, we find a phase transition between “soft-elastic” states with
finite interparticle separation and finite compressive elastic modulus on the one hand, and “hardened”
states with touching particles and therefore diverging compressive elastic modulus on the other hand.
Corresponding phase diagrams are derived neglecting thermal fluctuations of the magnetic particles.
In addition, we consider a situation in which a spatially homogeneous magnetization is initially im-
printed into the material. Depending on the strength of the magneto-mechanical coupling between
the dipole orientations and the elastic deformations, the system then relaxes to a uniaxially ferromag-
netic, an antiferromagnetic, or a spiral state of magnetization to minimize its energy. One purpose
of our work is to provide a largely analytically solvable approach that can provide a benchmark to
test future descriptions of higher complexity. From an applied point of view, our results could be
exploited, for example, for the construction of novel damping devices of tunable shock absorbance.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807003]

I. INTRODUCTION

Magnetic hybrid materials composed of ferro- or super-
paramagnetic particles in an elastic matrix have a variety
of fascinating material properties.1 One important feature in
view of possible applications arises from the fact that their
elastic moduli can be tuned reversibly by applying an exter-
nal magnetic field,1–5 which could be exploited for example
to construct novel damping devices6 or vibration absorbers.2

The materials allow to combine specific properties of ferroflu-
ids and magnetorheological fluids7–17 with the convenience of
crosslinked polymer systems: a confinement or container is
not needed to maintain them.

Other properties studied for these systems are
magnetostriction18 as well as deformations in nonuni-
form magnetic fields,19, 20 swelling behavior under external
magnetic fields,21 shape memory effects,22 and their value
for the design of soft actuators.23 Furthermore, some of
the properties induced by an external magnetic field can be
permanently imprinted into the materials during the manu-
facturing process. For example, when during the crosslinking
procedure an external magnetic field is applied that orients
and arranges the magnetic particles, a significant degree of
anisotropy can be locked in.24–26 This anisotropy can show
up in the optical, magnetic, and mechanical properties as well
as in the swelling behavior.

a)Electronic mail: annunziata@thphy.uni-duesseldorf.de
b)Electronic mail: menzel@thphy.uni-duesseldorf.de
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By now, new preparation techniques and detailed char-
acterization of the materials on the mesoscopic scale of the
ferro-particles have lead to first results for a particle-resolved
understanding of the structural and dynamical material prop-
erties. The degree of orientational coupling between the mag-
netic moments and the surrounding elastic matrix turns out
to be a decisive parameter both from practical and theoretical
points of view. This coupling is rather weak if the particles
are small enough so that their magnetic moments can easily
flip with respect to the particle axes, or if the particles them-
selves are only loosely incorporated into the polymer matrix
and can easily rotate with respect to their environment.27–29

On the contrary, this magneto-mechanical coupling is strong,
e.g., for bigger ferro-particles that are covalently bound to the
polymer network.30–33

Despite the importance of ferrogels in both applications
and from a fundamental point of view as tunable soft mat-
ter, a complete theoretical description of their properties is
missing. One difficulty arises from the long-ranged nature of
the magnetic interactions, in particular, when surface effects
in samples of finite size are investigated.34 The long-ranged
magnetic interactions are typically modeled using a dipo-
lar form.35–37 For dipolar fluids the consequences of a finite
system size and the presence of surfaces have been pointed
out.38, 39 Another inherent problem is the simultaneous pres-
ence of many length scales ranging from the atomic or molec-
ular scales of the polymer matrix over the mesoscopic scale
of the magnetic particles to the macroscopic scales of a block
of material. While there has been quite a number of previous
theoretical works on the macroscopic scale by using concepts
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from hydrodynamics40–42 and elasticity theory,43, 44 there are
only very few micro- and mesoscopic studies on ferrogels that
explicitly incorporate the magnetic particles.

One recent attempt has been performed by Camp and
co-workers,45, 46 who also model the ferromagnetic particles
as dipoles. The dipolar pairwise interaction between neigh-
boring particles is supplemented by a stabilizing hard core.
The elastic matrix, however, enters on the macroscopic level:
box shape fluctuations are penalized with an appropriate elas-
tic energy contribution. Within this approach, affine deforma-
tions of the system are assumed. In other words, the macro-
scopic deformation of a block of material is affinely mapped
to the displacement of each single particle. Consequently, the
translational degrees of freedom of each particle are slaved to
the superimposed macroscopic deformation. Ivaneyko et al.
also used this simplifying assumption to study the behavior of
paramagnetic or superparamagnetic particles that are rigidly
positioned on a regular rectangular lattice.47 In their case the
lattice as a whole can affinely deform on the cost of an elas-
tic energy penalty that mimics the behavior of the crosslinked
polymer matrix. When magnetic fields or mechanical defor-
mations are externally imposed, the lattice affinely deforms
to reduce the overall energy. Naturally, rotations of the dipo-
lar particle moments are not considered in Ref. 47 because the
dipoles are induced by the static external magnetic field.

At the next level of refinement, the translational degrees
of freedom of each magnetic particle are included. In other
words, a step beyond the assumption of affine deformations is
made. Quite complementary to the modeling of Camp and co-
workers,45, 46 the attempt by Wojciechowski and co-workers48

puts an effort in modeling the elastic matrix on the mesoscale
level, but reduces the particles to effective beads ignoring
their dipolar interaction. The model of Wojciechowski and
co-workers48 has shown to reproduce—under suitable initial
conditions—the negative Poisson ratio of dilational materials.
Recently, Holm and co-workers49 have introduced a micro-
scopic dipole-spring model for ferrogels, which combines the
essentials of both the elastic matrix and the dipolar nature of
the particles. In Ref. 49, a finite two-dimensional block of ma-
terial was simulated at finite temperature in order to get a first
insight into the macroscopic properties of ferrogels.

More refined dipole-spring approaches have been em-
ployed very recently to study the conformation of flexible
magnetic filaments by Sánchez, Cerdà, and co-workers.50, 51

In the first work,50 they model a single supramolecular
magnetic filament as a bead-spring chain of freely rotat-
ing dipoles. The existence of different conformations of the
chains in three spatial dimensions is demonstrated by varying
the strength of the dipolar interaction. A similar model is used
in Ref. 51, but there a coupling of the dipolar orientations to
the orientation of the filament axis is additionally included.
The phase diagram of the equilibrium conformations of a sin-
gle flexible magnetic chain in a poor solvent is derived. It fea-
tures compact, helicoidal, partially collapsed, simply closed,
and extended open states as a function of the temperature and
of the relative strength of the interparticle interactions.

In the present paper, we consider a quasi-1D ferrogel
model system of hard-sphere particles of equal magnetic
dipolar moment. Its phase behavior is investigated in the

presence of an external magnetic field with special focus
on the rotational coupling between the dipolar moments and
the elastic polymer matrix. For this purpose we include the
dipole-dipole interaction between particles and an explicit
dipolar-matrix interaction. The system is quasi-1D because
the particles are displaced along one direction of space only,
whereas the magnetic moments can reorient in all spatial
directions. We propose a coarse-grained dipolar-spring ap-
proach, which is to a big extent analytically solvable. Neglect-
ing thermal fluctuations, i.e., considering a state of zero tem-
perature for the magnetic particles, this model already in 1D
exhibits a phase transition between states of zero (“hardened”)
and finite (“soft-elastic”) particle-separation. The correspond-
ing phase diagram includes a critical point. We also take into
account the possibility of an orientational memory concern-
ing the dipole orientations with respect to their environment.
In this case the properties of the “soft-elastic”–“hardened”
transition change only quantitatively. However, qualitatively
different energetic ground state solutions can emerge as a
consequence.

To illustrate this point, we consider the following situ-
ation. A sample is generated under the influence of a strong
external magnetic field that homogeneously orients all dipolar
moments into the same direction obliquely to the 1D-system
axis. The orientational memory of this initial state is perma-
nently imprinted into the system. When the external magnetic
field is switched off, the system minimizes its energy under
the influence of the orientational memory. The picture varies
sensibly as a function of the magnitude of the magnetic dipole
moment as well as of the strength of the orientational mem-
ory. We find that for small values of the magnetic moment or
strong orientational memory, the new energetic ground state is
given by a spiral arrangement of the dipolar moments around
the system axis. For larger values of the magnetic moment
and weaker orientational memory, instead, we can find one of
the following two states minimizing the energy of the system:
a uniaxial ferromagnetic configuration in which the dipolar
moments are aligned along the system axis; or an alternating
antiferromagnetic-like state in which the relative orientations
of neighboring dipoles are given by half turns around the sys-
tem axis.

Our motivation to study a one-dimensional model is
twofold: first, as is known in general in statistical mechan-
ics, any analytical solution of a one-dimensional model may
serve as a benchmark to test general approximate theories and
thereby provide constraints to the theory. One important ex-
ample is the classic Tonks gas of hard rods in one dimen-
sion where the full density functional is analytically soluble.52

This has been found to be a key element in constructing ap-
proximative density functionals in higher dimensions via the
dimensional crossover constraint.53 The second motivation is
to include effects of orientational memory of the ferrogel,
which have not yet been studied before. Therefore, it is useful
to explore them within a simple one-dimensional model first
before generalizing them to higher dimensions.

The paper is organized as follows. In Sec. II we present
our model and give the basic definitions. We discuss in
Sec. III a situation without orientational memory but in the
presence of a strong external magnetic field, while in Sec. IV
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the phase diagram and the critical-point positions are deter-
mined under the influence of an orientational memory. In the
latter case, qualitatively different ground state solutions are
found depending on the strength of the magneto-mechanical
coupling. Finally, our conclusions are given in Sec. V.

II. THE MODEL

In the following we consider a ferrogel system in a thin
cylinder. The ferro-particles are distributed along the cylin-
drical axis and the remaining space in the cylinder is filled by
the polymer such that the arrangement of the ferro-particles
is one-dimensional. Either ferromagnetic particles or, with
a small modification,54 superparamagnetic particles are de-
scribed by our model.

In real materials, two different situations can be realized
nowadays:32, 33 either the particles are physically caged within
the mesh pockets of the enclosing chemically crosslinked
polymer network and can rotate within these mesh pockets; or
the particles are permanently covalently bound into the poly-
mer network so that they become themselves a part of the
network upon crosslinking. The latter feature can be achieved
through surface-functionalization of the particles.32, 33 During
the crosslinking process, a strong magnetic field can be ap-
plied that aligns the ferromagnetic particles with their easy
axis and magnetic moment along the field direction while the
crosslinking of the polymer chains is taking place. As a con-
sequence, even when the field is turned off, the particles “re-
member” their original orientation. Therefore, at least in the
situation of covalently bound particles, an orientational mem-
ory of the dipolar orientations during the crosslinking process
is generated.24

We model the quasi-1D ferrogel system as a 1D-chain
made of N hard spherical particles of diameter σ and dipo-
lar magnetic moments mi. Here, the index i = 1, . . . , N la-
bels the particles. The orientation of each magnetic moment
mi is parameterized by the two angles θ i and φi. θ i corre-
sponds to the angle between mi and the chain axis, whereas
φi measures the azimuthal orientation around the chain axis.
Neighboring particles are connected by springs having an ini-
tial length L and an elastic constant k, as illustrated in Fig. 1.
In this first approach we will completely neglect the effect of
thermal fluctuations on the magnetic particles. Our treatment
in the following will therefore be a purely energetic one.

FIG. 1. Schematic figure of the model: every two neighboring particles i and
i + 1 (i = 1, . . . , N − 1) are connected by a spring of elastic constant k
attached to their centers, the center-to-center distance being ai. Each particle
is represented by a hard sphere of diameter σ , and each magnetic moment mi

(i = 1, . . . , N) forms the angle θ i with the chain axis x̂.

The elastic part of our energy is

Eel = k

2

∑
〈i,j〉

(rij − L)2, (1)

where rij = ‖rij‖ with rij = rj − ri. Here, the angular brack-
ets 〈i, j〉 denote a sum that is evaluated only over nearest
neighbors. The dipole-dipole interaction is given by

Edip = μ0

4π

N∑
i,j=1,i<j

(mi · mj )r2
ij − 3(mi · rij )(mj · rij )

r5
ij

.

(2)
In the case of superparamagnetic particles magnetized by an
external magnetic field, an additional factor of 1/2 enters this
formula.54 It can be considered by rescaling the constant μ0

that will only appear in this energetic contribution.
We introduce a rotational coupling term between the

magnetic dipoles and the distance vectors via

ED = D
∑
〈i,j〉

(
mi · rij

mi rij

− m(0)
i · r(0)

ij

m
(0)
i r

(0)
ij

)2

, (3)

where D sets the strength of the coupling, m(0)
i and r(0)

ij are,
respectively, the initial magnetic moment and the initial rel-
ative distance vectors after cross-linking, and mi = ‖mi‖,
m

(0)
i = ‖m(0)

i ‖, as well as r
(0)
ij = ‖r(0)

ij ‖. In short, this contribu-
tion means that rotations of the magnetic dipole moments to-
wards or away from the chain axis cost energy. Such a rotation
has occurred, if the new dipole orientation mi/mi with respect
to the direction rij/rij differs from the initial dipole orientation
m(0)

i /m
(0)
i with respect to the initial direction r(0)

ij /r
(0)
ij . Conse-

quently, we can include via this term an orientational memory.
It becomes important when we model the case of ferromag-
netic particles that are covalently bound to the surrounding
crosslinked polymer network.

In the latter case, elastic torsional deformations of the
polymer network must also be taken into account. These oc-
cur when different ferromagnetic particles together with their
dipolar moments rotate around the chain axis by different an-
gles. To quantify this situation, neighboring magnetic mo-
ments are projected into a plane perpendicular to the chain
axis; then we focus on the angle between these projections of
neighboring dipolar moments. If this angle has changed be-
tween the current configuration and the initial configuration,
an energetic penalty arises. This whole procedure is achieved
through the following energetic contribution:

Eτ = τ
∑
〈i,j〉

(
mi × rij

‖mi × rij‖ · mj × rij

‖mj × rij‖

− m(0)
i × r(0)

ij∥∥m(0)
i × r(0)

ij

∥∥ · m(0)
j × r(0)

ij∥∥m(0)
j × r(0)

ij

∥∥
)2

, (4)

where τ gives the strength of the coupling. The orientation of
the projection of mi into the plane perpendicular to the chain
axis is given by the fraction term mi × rij/‖mi × rij‖ (apart
from an additional rotation by π /2), and likewise for mj , see
Fig. 2. The scalar product between the projections of mi and
mj gives a measure for the difference in azimuthal angles,
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FIG. 2. Schematic figure of the model for two neighboring particles i and j (i
= 1, . . . , N − 1, j = i + 1) as seen from along the chain axis x̂ (x̂ is oriented
towards the reader). For the ith particle, the direction of the projection of the
magnetic moment into the plane perpendicular to the chain axis is given by
mi × rij/‖mi × rij‖, except for an additional rotation by π /2. The azimuthal
orientation of each magnetic moment mi (i = 1, . . . , N) around the chain axis
x̂ is measured by the angle φi.

φi − φj, between neighboring projected orientations. Then the
difference between the current and the initial configuration is
taken by subtracting the two scalar products.

Finally, the hard-sphere interaction between the magnetic
particles reads

EHS =
∑
〈i,j〉

uHS(rij ), (5)

where uHS(rij) is the two-body hard-sphere potential

uHS(r) =
{

+∞ if r < σ

0 if r ≥ σ
, (6)

with σ the diameter of the particles. This stabilizes the sys-
tem, because it avoids a collapse when the dipole-dipole in-
teraction is attractive.

In a situation without orientational memory, for example,
for superparamagnetic particles, or for ferromagnetic particles
that are not covalently bound into the surrounding polymer
matrix and can relatively easily rotate within their polymer
mesh pockets, the energy is given by

E1 ≡ Eel + Edip + EHS. (7)

In this case, we will assume that the orientation of the mag-
netic moments is fixed from outside. Such a situation can
occur when the magnetic particles are exposed to a strong
homogeneous external magnetic field and can easily rotate
with respect to their environment, or when the particles are
superparamagnetic.54, 55

Conversely, when orientational memory is important,
for example, when ferromagnetic particles are covalently
crosslinked into the surrounding polymer network, the energy
reads

E2 ≡ E1 + ED + Eτ . (8)

From now on, we assume that the magnitude of the mag-
netic moment is the same for all particles mi = m, i = 1, . . . ,
N. Thus mi = mûi , i = 1, . . . , N, with the unit vectors ûi giv-
ing the orientations of the magnetic moments.

III. NO ORIENTATIONAL MEMORY

In this section we study the behavior of the system de-
scribed by the energy E1 of Eq. (7). Since there is no orien-
tational memory in E1, this corresponds to the case of super-
paramagnetic particles, the magnetic moments of which can

rotate with respect to the particle axes, or to the case of fer-
romagnetic particles that can rotate with respect to the poly-
mer matrix without energetic penalty on the considered time
scales. We start by considering a strong external magnetic
field. Then the orientation angle of the dipoles can be viewed
as an externally fixed parameter θ i = θB (i = 1, . . . , N), where
θB is the angle that the magnetic field forms with the chain.

Looking for spatially homogeneous solutions only, we
assume that all the interparticle distances ai are equal, i.e.,
ai = a for i = 1, . . . , N. For simplicity, the thermodynamic
limit of large N is considered. As a consequence the energy
per particle becomes

E1

N
= k

2
(a − L)2 + μ0ζ (3)m2

4πa3
(1 − 3 cos2 θB) + EHS

N
, (9)

where ζ (3) = ∑∞
n=1

1
n3 ≈ 1.20206 and ζ is the Riemann zeta-

function. We assume that the distance a can freely adjust itself
to minimize this energy, or, in other words, that there is no
external pressure applied. Minimizing Eq. (9) with respect to
a, the interparticle distance a∗ defined by d(E1/N)/da|a* = 0
is obtained from the implicit condition

a∗4(a∗ − L) − 3μ0ζ (3)

4πk
m2(1 − 3 cos2 θB) = 0. (10)

The corresponding elastic modulus G,

G(a∗) ≡ 1

N

(
d2E1

da2

)
a∗

, (11)

becomes

G(a∗) = k

[
1 + 4

(
1 − L

a∗

)]
. (12)

Both quantities, a∗ and G(a∗), can be radically modified
by varying the angle of the external magnetic field θB because
at

θ1 ≈ 0.3π ≈ 54.7◦, θ2 ≈ 0.7π ≈ 125.3◦, (13)

the dipolar interaction vanishes. For θB ∈ [0, θ1) ∪ (θ2, π ]
the dipolar interaction is attractive, while for θB ∈ (θ1, θ2) it
is repulsive. The attractive case is particularly interesting, be-
cause for each θB, a critical magnetic moment mc exists such
that G = 0. Furthermore, for m > mc the elastic compress-
ibility modulus G diverges. We call this the “hardened” phase
in which the hard spheres touch each other so that the system
cannot be compressed any further. From the condition G = 0,
the critical values of the interparticle distance and of the mag-
netic moments are obtained as

a∗
c = 4

5
L, (14)

mc(θB) = 16

25

√
4π

15ζ (3)(3 cos2 θB − 1)
m0, (15)

where m0 ≡
√

kL5/μ0 provides a unit of measurement for the
magnetic moment. It is interesting to note that, at variance
with the critical value of the magnetic moment mc, the criti-
cal value of the interparticle distance a∗

c does not depend on
the angle of the external magnetic field θB, i.e., it is a purely
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FIG. 3. Interparticle distance a/σ and compressive elastic modulus G at equi-
librium, as a function of the magnetic dipole moment m/m0. In (a) and (b), the
three different lines correspond to three different values of the rescaled initial
particle separation L/σ , whereas the orientation of the external magnetic field
with respect to the system axis is kept fixed at θB = π /4; here L/σ = 1.1
(dotted line), L/σ = (L/σ )c = 5/4 (dashed line), and L/σ = 2 (solid line). In
(c) and (d), the three different lines correspond to three different orientations
θB of the external magnetic field with respect to the system axis, whereas the
rescaled initial particle separation is kept fixed at L/σ = 2; here θB = π /4
(solid line), θB = θ1 ≈ 0.3π (dotted line), and θB = π /3 (dashed line).

mechanical feature of the model. Furthermore, a∗
c is solely

determined by the initial particle distance L, whereas the hard
sphere diameter σ does not enter the expression. Since here
we assume spatial homogeneity together with an identical ori-
entation of all magnetic moments, the dipolar moment m of
the single particles is proportional to the overall magnetiza-
tion of the sample.

In the following we use the ratio m/m0 as a control param-
eter. We illustrate the equilibrium behavior of a(m/m0) and
G(m/m0) in Fig. 3. On the left-hand side, we compare the be-
havior of a(m/m0) and G(m/m0) for different rescaled initial
interparticle distances L/σ , but for the same orientation an-
gle of the external magnetic field θB = π /4. Comparing to
the angle θ1 in Eq. (13), we find that the dipolar interaction
is attractive in this case. Therefore, the interparticle distance
a > σ always decreases when the magnetic moment m/m0

is increased as depicted in panel (a), until the particles touch
each other, a = σ . For a rescaled initial particle separation
L/σ < (L/σ )c (dotted line), this transition to the touching state
is continuous. For L/σ > (L/σ )c (solid line), the transition is
discontinuous. The behavior at the critical value (L/σ )c = 5/4
(dashed line) is also shown. Of course, when the hard spheres

FIG. 4. Energy per particle E1/N as a function of the rescaled interparticle
distance a/σ , for m/m0 = 0.5 and θB = π /4. The black points are equal-energy
minima of E1/N: at the point a/σ = 1 the hard spheres touch each other and
the system is in a “hardened” state, while at the point a/σ = a*/σ ≈ 2.45 the
system is still “soft-elastic”.

touch each other, the compressive elastic modulus G diverges,
as given for all cases in panel (b). On the right-hand side of
Fig. 3, we compare the different behaviors of a(m/m0) and
G(m/m0) for the same rescaled initial particle separation L/σ ,
but for different orientation angles of the external magnetic
field θB. In the first case, θB = π /4 < θ1 (solid line), the dipo-
lar interaction is attractive. Again the same curves (solid lines)
as in panels (a) and (b) are shown for a discontinuous transi-
tion to the “hardened” state of touching particles a = σ and
diverging compressive elastic modulus G. If the dipolar in-
teraction is repulsive instead, as depicted here for θ1 < θB

= π /3 < θ2 (dashed line), the particles tend to separate from
each other with increasing m/m0 due to the growing repulsion.
Consequently, we find a growing a in panel (c). Still, however,
we observe that the modulus G increases with the magnetic
moment as depicted in panel (d). In the neutral case between
dipolar attraction and repulsion, θB = θ1 (dotted line), both
the particle separation a and the modulus G remain constant
when m/m0 is changed.

Figure 4 shows an example of the energy per particle
E1/N as a function of the rescaled interparticle distance a/σ .
In this case the energy can exhibit two local minima. The first
one is located at the point a*/σ defined by d(E1/N)/da|a* =
0. Here the particles are elastically connected to each other
and separated by a finite distance. When a compressive force
is applied, the system can be deformed reversibly, so that we
call this state “soft-elastic”. The second minimum is located at
the intersection point of the E1/N curve with the line a/σ = 1.
Now there is no gap left between the particles so that the hard
spheres touch each other. Consequently, the elastic compress-
ibility modulus G diverges because the system cannot be com-
pressed any further. By varying m/m0, we can tune the energy
corresponding to these two minima to be equal. This special
situation realizes two equilibrium states with the same energy,
i.e., a phase coexistence between the “hardened” state a/σ = 1
and the “soft-elastic” state a/σ = a∗/σ . Since these two phases
are characterized by a different value of the interparticle dis-
tance, we consider the equilibrium particle distance a∗/σ − 1
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FIG. 5. Phase diagram for a quasi-1D ferrogel system without orientational
memory in the presence of a strong external magnetic field that is tilted
with respect to the system axis by the angle θB = π /4. The bottom plane
a/σ = 1 corresponds to the “hardened” phase, while the upper tilted surface
corresponds to the “soft-elastic” phase. For 1 < L/σ < 5/4 the transition is
continuous, while it is discontinuous for L/σ > 5/4.

as an order parameter. The control parameters are the rescaled
initial particle separation L/σ and the magnetic moment m/m0.

As a function of the magnetic moment m/m0, we find
a phase transition between these two states. This transition
is discontinuous for L/σ > 5/4 and becomes continuous for
1 < L/σ < 5/4, with a second-order critical point at (L/σ )c

= 5/4, as illustrated in Figs. 3(a) and 3(b). In Fig. 5, we show
the phase diagram of the system, here for θB = π /4. Within
the phase diagram, the location of the critical point is given
by the coordinates

(L/σ )c = 5

4
,

(m/m0)c = 16

25

√
4π

15ζ (3)(3 cos2 θB − 1)
, (16)

(a/σ )c = 1.

While the plane a/σ = 1 corresponds to the “hard-
ened” phase, the upper tilted surface corresponds to the “soft-
elastic” phase. We emphasized in the figure the continuous
nature of the transition for 1 < L/σ < 5/4 and its discontinu-
ous nature for L/σ > 5/4.

The phase transition at the critical point given by
Eqs. (14) and (15) is of second order. From Eq. (10), we ob-
tain the magnetostrictive susceptibility as

χ ≡ da∗

dm
= 3μ0ζ (3)m(1 − 3 cos2 θB)

10πka∗3(a∗ − a∗
c )

, (17)

which diverges for a∗ → a∗
c [see Eq. (14)]. Furthermore, we

can extract the critical exponent of χ when the magnetic mo-
ment and the rescaled interparticle distance approach their
critical values (m/m0)c and (a/σ )c, respectively, as given by
Eqs. (16). This limit is taken at fixed L/σ = (L/σ )c = 5/4, cor-

responding to the dashed curve of Fig. 3(a). The exponent is
defined by

χ ∼ 1

a∗ − a∗
c

∼ |m/m0 − (m/m0)c|−β. (18)

We find β = 1/2 as it is typical for any mean-field approach.
This result can be obtained analytically by integrating Eq. (17)
and neglecting the term a∗3 → a∗

c
3 for m/m0 → (m/m0)c.

IV. ORIENTATIONAL MEMORY

In this section, we study the behavior of the system
described by the energy E2 of Eq. (8). The rotational de-
grees of freedom are taken into account by including both
the angles θ i that the magnetic dipoles form with the chain
axis and the dipole azimuthal angles φi as independent vari-
ables. This means that the magnetic moments are coupled
to elastic deformations through the energetic contributions of
Eqs. (2)–(4). As in Sec. III, only spatially homogeneous so-
lutions are considered for the displacements ai = a and the
angles θ i = θ ∀ i = 1, . . . , N.

The energetic contribution in Eq. (3) introduces the mem-
ory angle θ (0) of the initial configuration, so that ED = 0 for
θ = θ (0). When modeling ferrogels, such a term mimics the
effect of an imprinted orientation of the magnetic moments in
the polymer matrix.24–26 For example, an externally applied
magnetic field can homogeneously orient the magnetic mo-
ments during the synthesis of the material. The memory of
this state can be permanently stored in the system through the
chemical crosslinking process.32, 33 An analogous conclusion
follows from Eq. (4) for the memory of the initial relative az-
imuthal angles φ

(0)
i − φ

(0)
j between neighboring dipoles.

In summary, it is assumed that the magnetic moments
are homogeneously aligned by an external magnetic field dur-
ing cross-linking, so that θ

(0)
i = θ (0) and φ

(0)
i − φ

(0)
j = 0 ∀ i,

j = 1, · · · , N . When the magnetic field is then switched off
after crosslinking, the system relaxes to minimize its energy,
given by E2 = E1 + ED + Eτ in Eq. (8). Consequently, the
equilibrium state is characterized by the system of equations⎧⎪⎨

⎪⎩
∂E2/∂φi = 0 ∀i = 1, · · · , N,

∂E2/∂θ = 0,

∂E2/∂a = 0.

(19)

Using the ansatz φi = i� ∀ i = 1, . . . , N, we guarantee
that all of the equations ∂E2/∂φi = 0 are satisfied. In this way,
we investigate the existence of solutions of spiral-like mag-
netization, where � is the relative azimuthal angle between
the magnetic moments of any two neighboring particles (see
Fig. 6). As a result, the energy E2 has to be minimized only
with respect to the three remaining parameters �, θ , and a;
i.e., the first line in Eq. (19) is replaced by ∂E2/∂� = 0.

Our ansatz contains two limiting cases: for � = 0, all
the dipole moments point into the same direction, so that this
state may be called ferromagnetic; for � = π , the dipoles are
arranged in an alternating fashion, which we refer to as an
antiferromagnetic state in this context (see Fig. 6), although
the angle θ with the chain axis can be less than π /2.
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FIG. 6. Antiferromagnetic (left) and spiral-like (right) configurations of the
magnetic moments when seen from along the chain axis. In the antiferromag-
netic case we plot two neighboring magnetic moments, in the spiral case we
plot three neighboring magnetic moments. The antiferromagnetic case can be
viewed as a degenerate spiral of � = π .

As a consequence, the energy per particle becomes

E2

N
(a, θ,�)

= k

2
(a − L)2 + μ0ζ (3)m2

4πa3

[
f (�)

ζ (3)
sin2 θ − 2 cos2 θ

]

+D(cos θ − cos θ (0))2 + τ (cos � − 1)2 + EHS

N
, (20)

where f (�) = ∑∞
n=1

cos(n�)
n3 . This energy reduces to E1 when

we fix θ = θ (0) and � = 0.
Searching for the minimum of the energy E2, we iden-

tified three different cases for sufficiently high values of
the magnetic moment m/m0. A phase diagram in the plane
of the rotational coupling parameters (D, τ ) is reported for
m/m0 ≈ 0.3 in Fig. 7, where the three cases are illustrated
and the boundaries between them are indicated. Here we set
θ (0) = π /4.

The first case is obtained for small values of D. Then
rotations of the dipoles towards the chain axis do not lead
to a significant energetic penalty. Therefore, the dipolar en-
ergy is minimized by a ferromagnetic solution in which all the
magnetic moments are uniaxially aligned along the chain axis
(θ = 0).

FIG. 7. Phase diagram of the system for m/m0 ≈ 0.3 and θ (0) = π /4 in the
plane of the rescaled rotation parameters D and τ . We show the location
of the three states “FERRO” (uniaxially ferromagnetic), “SPIRAL” (spirally
magnetized), and “AF” (antiferromagnetic). The dashed-dotted, dashed, and
dotted lines correspond to the “FERRO”–“SPIRAL,” “FERRO”–“AF,” and
“SPIRAL”–“AF” phase boundaries, respectively.

In the other two cases, rotations of the dipoles towards
the chain axis cost a lot of energy, i.e., D is large. If, however,
azimuthal rotations around the chain axis do not imply a sig-
nificant energetic penalty (i.e., τ is low), the dipolar energy
is minimized by an alternating order. Here, the relative az-
imuthal angle between neighboring dipoles is � = π , which
we call the antiferromagnetic state.

If, in the third case, also azimuthal rotations around the
chain axis cost a lot of energy (i.e., τ is large), the influence of
the orientational memory is too strong for the limiting ferro-
magnetic or antiferromagnetic solutions to occur. As a com-
promise, the system escapes into a spiral-like order of the
magnetization directions. When the magnetic moment m/m0

decreases, only spirally magnetized states are found below a
certain threshold value.

To obtain the phase boundaries in Fig. 7, we compared
the energies of the three different states – uniaxially ferromag-
netic, antiferromagnetic, and spirally magnetized – to each
other. The phase boundaries were obtained and are drawn as
equal-energy lines between all three pairs of different states.

During the remaining part of this section, we outline the
impact of the orientational memory on the phase diagram in
Fig. 5. We recall that the external magnetic field is switched
off when we are looking for the ground state of the system. It
can therefore not be used to tune the magnitude of the mag-
netic moment m/m0 as in Sec. III. Consequently m/m0 must
rather be viewed as a material parameter in the following.

We start with the situation of strong orientational mem-
ory, i.e., large values both for D and τ . In this case the ground
state is reached by spirally magnetized states. Figure 8 shows

FIG. 8. Phase diagram (a), as well as rescaled interparticle distance a/σ (b),
angle θ formed by the magnetic moments with the chain axis (c), and relative
azimuthal angle � between neighboring magnetic moments (d), for states
of coexistence. This coexistence is stressed by the tie lines. The data curves
are obtained for a case of orientational memory that is characterized by the
parameter values τ /kL2 = 1 and D/kL2 = 5 (large-τ and large-D regime).
For the chosen parameters, the ground state of the magnetization is always
spiral-like.
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the phase diagram of a corresponding system for the dimen-
sionless parameters τ /kL2 = 1 and D/kL2 = 5. As can be seen
from Fig. 8(a), the phase diagram is qualitatively similar to
the non-memory case. Quantitatively, the orientational mem-
ory, τ /kL2 = 1 and D/kL2 = 5, leads to a decrease both in the
critical magnetic moment (m/m0)c, from previously 0.76 to
now 0.65, and in the critical quantity (L/σ )c, from previously
5/4 to now 1.22. For the states of coexisting “soft-elastic” and
“hardened” states, we report in Figs. 8(b)–8(d) the rescaled
interparticle distance a/σ (m/m0), the angle θ (m/m0) formed
by the magnetic moments with the chain axis, and the relative
azimuthal angle �(m/m0) between neighboring magnetic mo-
ments. At variance with the non-memory case, for each m/m0

< (m/m0)c the two values of a at coexistence correspond to
two non-trivial values of θ and � different from 0 and π , as
shown in Figs. 8(c) and 8(d). Below we illustrate how these
curves change when τ and D are varied.

Next, we consider the case of low orientational mem-
ory concerning azimuthal rotations of the dipoles around the
chain axis, but strong orientational memory for rotations to-
wards the chain axis. In other words, τ is small and D is
large. As an example, the phase behavior of the system is re-
ported for τ /kL2 = 5 × 10−4 and D/kL2 = 5 in Fig. 9. The
a/σ (m/m0) and θ (m/m0) coexistence curves are qualitatively
similar to the previous large-τ and large-D case. Now, the
critical magnetic moment (m/m0)c is even smaller ((m/m0)c

≈ 0.45) while the critical quantity (L/σ )c is approximately
the same as in the non-memory case. The �(m/m0) coexis-

FIG. 9. Phase diagram (a), as well as rescaled interparticle distance a/σ (b),
angle θ formed by the magnetic moments with the chain axis (c), and relative
azimuthal angle � between neighboring magnetic moments (d), for states
of coexistence. This coexistence is stressed by the tie lines. The data curves
are obtained for a case of orientational memory that is characterized by the
parameter values τ /kL2 = 5 × 10−4 and D/kL2 = 5 (small-τ and large-D
regime). The ground state of the magnetization is spiral-like for m/m0 � 0.25,
for larger values of m/m0 it becomes antiferromagnetic.

FIG. 10. Magnification of the upper branches of the a/σ and θ coexistence
curves in Figs. 9(b) and 9(c). The characteristics of a second-order phase
transition are visible in the a/σ and θ variables at the point above which
only antiferromagnetic states are found (m/m0 ≈ 0.25). In the curve for θ the
discontinuity in the first derivative is more evident.

tence curve instead is qualitatively different when we com-
pare Figs. 8(d) and 9(d). As can be seen from Fig. 9(d), for
m/m0 � 0.25 we find a spirally magnetized state of 0 < �

< π which coexists with the antiferromagnetic state � = π ,
while for m/m0 � 0.25 the ground state is given by the an-
tiferromagnetic solution. It is interesting to note that at the
value of the magnetic moment above which only antiferro-
magnetic states are found, m/m0 ≈ 0.25, both upper branches
of the a/σ (m/m0) and θ (m/m0) coexistence curves are contin-
uous but their first derivatives are discontinuous. These are
the characteristics of a further, second-order phase transition
in the variables a/σ and θ . Figure 10 stresses these additional
results.

In Fig. 11 the phase diagram and the coexistence curves
are reported for the dimensionless parameters τ /kL2 = 2.5 and
D/kL2 = 0.105, which can be considered as a large value for
τ but as a small value for D. In this case the ground state is

FIG. 11. Phase diagram (a), as well as rescaled interparticle distance a/σ
(b), angle θ formed by the magnetic moments with the chain axis (c), and
relative azimuthal angle � between neighboring magnetic moments (d), for
states of coexistence. This coexistence is stressed by the tie lines. The data
curves are obtained for a case of orientational memory that is characterized
by the parameter values τ /kL2 = 2.5 and D/kL2 = 0.105 (large-τ and small-D
regime). The ground state of the magnetization is spiral-like for m/m0 � 0.3,
for larger values of m/m0 it becomes ferromagnetic.
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FIG. 12. Magnification of the upper branch of the a/σ coexistence curve in
Fig. 11(b). The characteristics of a second-order phase transition are visible
in the a/σ variable at the point above which only uniaxial ferromagnetic states
are found (m/m0 ≈ 0.3).

reached for m/m0 � 0.3 by a spirally magnetized state which
coexists with the ferromagnetic state θ = 0. For m/m0 � 0.3
the ground state is given by the ferromagnetic state. Again
the characteristics of a second-order transition appear in the
variable a/σ , now at the value of the magnetic moment above
which only uniaxial ferromagnetic states are found, i.e., m/m0

≈ 0.3. The upper branch of the a/σ (m/m0) coexisting curve is
continuous but its first derivative is discontinuous, as stressed
by Fig. 12. Furthermore, in the ferromagnetic state the ori-
entational memory effects are outbalanced. The solution
θ = 0 makes the memory terms vanish in the expression for
the energy of the system. Consequently, the critical point cor-
responds to the one without orientational memory, but in the
presence of an external magnetic field aligned with the system
axis, θB = 0. Therefore, (L/σ )c = 5/4 and (m/m0)c ≈ 0.3778
are obtained as from Eq. (16).

V. CONCLUSIONS

In this paper we introduced a simplified model for quasi
one-dimensional ferrogels. We mapped the behavior of dipo-
lar magnetic particles that are positionally and orientationally
coupled to elastic deformations of the surrounding polymer
matrix. The particles are represented by hard spheres and con-
nected to each other by identical harmonic springs of a given
rest length; furthermore, we take into account the dipole-
dipole magnetic interparticle potential. This model concerns
ferrogels at the mesoscopic level and incorporates the mag-
netic particles explicitly, with an approach similar to Ivaneyko
et al.,47 but it is the first model to introduce explicitly the rota-
tional coupling between the dipole orientations and the poly-
mer matrix.

Starting from dipole orientations imprinted into the ma-
terials during the crosslinking process,24, 33 the model can
be used for moderate dipolar rotation angles to mimic the
wrapping of the polymer chains around the magnetic parti-
cles when polymer chains are covalently bound to the parti-
cle surfaces32 and the magnetic particles rotate. This effect
has recently been outlined in a more microscopic simulation
approach.49

We first studied the phase diagram of this model without
orientational memory. This corresponds to the case of super-
paramagnetic particles in which the direction of the magnetic
moment can reorient with respect to the particle axes, or to
the case of ferromagnetic particles that can rotate with re-
spect to the polymer matrix without energetic penalty on the
considered time scales. The orientation of the magnetic mo-
ments is determined by a strong external magnetic field. A
hard-sphere repulsion between the particles stabilizes the sys-
tem. For these conditions and neglecting thermal fluctuations,
we investigated the behavior of the elastic modulus and the
interparticle distance under the assumption of spatial homo-
geneity. The behavior of the system can change radically as
a function of the angle that the strong external magnetic field
forms with the particle chain. Depending on this angle, the
dipolar interaction can be attractive or repulsive. In the attrac-
tive case we find a phase transition between “hardened” states
on the one hand, where the particles touch each other and
the compressive elastic modulus diverges, and “soft-elastic”
states on the other hand, characterized by a non-zero interpar-
ticle distance and a finite elastic modulus. The phase transi-
tion is continuous for small rescaled initial interparticle dis-
tances and discontinuous for larger rescaled initial interpar-
ticle distances. A critical point corresponding to a second-
order phase transition is identified, where the susceptibility of
magnetostriction diverges with the critical exponent β = 1/2
as a function of the magnetic moment. The elastic modulus
is a decreasing function of the magnetic moment and goes
to zero at the critical point. When the dipolar interactions
are repulsive, the elastic modulus and the equilibrium in-
terparticle distance are increasing functions of the magnetic
moment. This case is not as rich because there is no phase
transition.

An additional orientational memory that explicitly cou-
ples the orientations of the magnetic moments to the elastic
deformations changes both the coexistence curves and the lo-
cation of the critical point. We investigated, in the absence
of an externally applied magnetic field, the case of a mem-
ory angle such that the dipole-dipole interaction is attractive.
Similarly to the non-memory case, the phase diagram shows
“hardened” and “soft-elastic” states, but there are quantita-
tive differences: both the critical magnetic moment and the
critical rescaled initial interparticle distance are smaller. As-
suming initially homogeneously oriented dipolar moments
along the chain, we asked the question, to which ground state
the system relaxes as a function of the orientational mem-
ory of the initial state. Depending on the strength and na-
ture of the orientational memory and the magneto-mechanical
coupling, we find that the system relaxes to a uniaxial fer-
romagnetic, an antiferromagnetic, or a spirally magnetized
state.

In summary, we find that the nature of the orientational
memory and of the magneto-mechanical coupling signifi-
cantly determines the ground state of the system. Depend-
ing on the strength of the magneto-mechanical coupling, the
magnetic moments can more or less easily rotate relatively to
the surrounding elastic polymer network. From a macroscopic
point of view, the importance of such relative rotations for the
system behavior has been outlined before for polymeric liquid
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crystalline materials.56, 57 A corresponding nonlinear macro-
scopic description has been established.58–60 Furthermore, the
relevance of relative rotations has also been discussed for a
macroscopic characterization of ferrogels.41, 61 One of our fu-
ture tasks will be to derive the connection between a meso-
scopic approach as the one introduced in the present paper
and the macroscopic characterizations.

We stress that our results rely on a simplified model: first,
every particle is represented by a hard sphere, whereas it is
known already for non-crosslinked systems that an elonga-
tion of the particles can influence the structural order in dipo-
lar systems.62 To mimic the presence of the polymer network,
springs are attached to the particle centers, which clearly ne-
glects the complexity of attaching the springs on the surfaces
or considering the wrapping of the springs around the surfaces
for large rotation angles.49 The latter effect is modeled by
the orientational memory terms. Moreover, we used harmonic
springs to mimic the elastic behavior. In particular, when
the magnetic particles come very close, however, nonlinear
elasticity effects can become important. They may to some
degree mask the predicted behavior, for example, the strong
pre-transitional reduction of the compressive elastic modulus
preceding the phase transition from “soft-elastic” to “hard-
ened” states.

Furthermore, we neglected thermal fluctuations of the
magnetic particles, i.e., we treated the particles as if they
were at zero temperature. For this case, we found the phase
transition between “hardened” and “soft-elastic” states in one
dimension. Generally, at finite temperatures and in one di-
mension, real thermodynamic phase transitions only exist if
the interaction forces do not decrease too quickly with sep-
aration distance.63, 64 The dipolar interactions in our case
do not satisfy this condition. However, smoothened transi-
tions should still be observable for chains of sufficiently
finite length. Apart from that, our coupling constants can
become temperature-dependent. As a simple example, the
fixed-junction model for ideal rubber elasticity suggests that
the elastic restoring forces should increase linearly with
temperature.65 This translates into a corresponding depen-
dence of our harmonic spring constant.

Finally, our model is one-dimensional and confines the
spatial distribution of the magnetic particles to one line.
Hence, it is not able to cover important features such as the
interplay of dipolar attraction and repulsion along different
directions. For example, a two-dimensional array of aligned
magnetic dipole particles has attractive dipolar interactions
along the direction of the magnetic moments, while repulsive
interactions occur in the orthogonal direction.47 It has been
demonstrated theoretically that different higher-dimensional
spatial arrangements can qualitatively change the characteris-
tics of the system.66, 67 We consider the behavior of the elastic
modulus for deformations along an externally induced parti-
cle magnetization. A net increase of the elastic modulus with
increasing magnetization is mostly observed for real materi-
als, in contrast to our case. It has been demonstrated that a
more isotropic particle distribution of hexagonal symmetry
in three spatial dimensions reproduces the effect.66 The lat-
ter results from the interplay of attractive and repulsive forces
along different spatial directions.

Nevertheless, the presented approach can be employed
to study effectively one-dimensional arrangements, for exam-
ple, when flexible supramolecular magnetic filaments50, 51 are
fixed along a line. Our model explicitly introduces the mem-
ory of the initial magnetic orientations. We believe it to be
a starting point to investigate the physics of ferrogel systems
when extending it to more spatial dimensions and including
thermal fluctuations.

ACKNOWLEDGMENTS

The authors thank H. R. Brand and G. K. Auernhammer
for helpful discussions and gratefully acknowledge the new
environment and support from the recently founded SPP 1681
by the Deutsche Forschungsgemeinschaft.

1G. Filipcsei, I. Csetneki, A. Szilágyi, and M. Zrínyi, Adv. Polym. Sci. 206,
137 (2007).

2H.-X. Deng, X.-L. Gong, and L.-H. Wang, Smart Mater. Struct. 15, N111
(2006).

3G. V. Stepanov, S. S. Abramchuk, D. A. Grishin, L. V. Nikitin, E. Y. Kra-
marenko, and A. R. Khokhlov, Polymer 48, 488 (2007).

4L. Chen, X.-L. Gong, W.-Q. Jiang, J.-J. Yao, H.-X. Deng, and W.-H. Li,
J. Mater. Sci. 42, 5483 (2007).

5H. Böse and R. Röder, J. Phys.: Conf. Ser. 149, 012090 (2009).
6T. L. Sun, X. L. Gong, W. Q. Jiang, J. F. Li, Z. B. Xu, and W. Li, Polym.
Test. 27, 520 (2008).

7R. E. Rosensweig, Ferrohydrodynamics (Cambridge University Press,
Cambridge, 1985).

8S. Odenbach, Colloids Surf., A 217, 171 (2003).
9S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer,
Berlin/Heidelberg, 2003).

10B. Huke and M. Lücke, Rep. Prog. Phys. 67, 1731 (2004).
11S. Odenbach, J. Phys.: Condens. Matter 16, R1135 (2004).
12B. Fischer, B. Huke, M. Lücke, and R. Hempelmann, J. Magn. Magn.

Mater. 289, 74 (2005).
13P. Ilg, M. Kröger, and S. Hess, J. Magn. Magn. Mater. 289, 325

(2005).
14J. P. Embs, S. May, C. Wagner, A. V. Kityk, A. Leschhorn, and M. Lücke,

Phys. Rev. E 73, 036302 (2006).
15P. Ilg, E. Coquelle, and S. Hess, J. Phys.: Condens. Matter 18, S2757

(2006).
16C. Gollwitzer, G. Matthies, R. Richter, I. Rehberg, and L. Tobiska, J. Fluid

Mech. 571, 455 (2007).
17J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Soft Matter 7,

3701 (2011).
18X. Guan, X. Dong, and J. Ou, J. Magn. Magn. Mater. 320, 158 (2008).
19M. Zrínyi, L. Barsi, D. Szabó, and H.-G. Kilian, J. Chem. Phys. 106, 5685

(1997).
20D. Szabó, G. Szeghy, and M. Zrínyi, Macromolecules 31, 6541

(1998).
21G. Filipcsei and M. Zrínyi, J. Phys.: Condens. Matter 22, 276001

(2010).
22L. V. Nikitin, G. V. Stepanov, L. S. Mironova, and A. I. Gorbunov, J. Magn.

Magn. Mater. 272–276, 2072 (2004).
23R. L. Snyder, V. Q. Nguyen, and R. V. Ramanujan, Smart Mater. Struct. 19,

055017 (2010).
24D. Collin, G. K. Auernhammer, O. Gavat, P. Martinoty, and H. R. Brand,

Macromol. Rapid Commun. 24, 737 (2003).
25Z. Varga, J. Fehér, G. Filipcsei, and M. Zrínyi, Macromol. Symp. 200, 93

(2003).
26D. Günther, D. Y. Borin, S. Günther, and S. Odenbach, Smart Mater. Struct.

21, 015005 (2012).
27M. Zrínyi, L. Barsi, and A. Büki, J. Chem. Phys. 104, 8750 (1996).
28M. Zrinyi, L. Barsi, and A. Büki, Polym. Gels Networks 5, 415 (1997).
29M. Krekhova, T. Lang, R. Richter, and H. Schmalz, Langmuir 26, 19181

(2010).
30M. Bonini, S. Lenz, E. Falletta, F. Ridi, E. Carretti, E. Fratini, A. Wieden-

mann, and P. Baglioni, Langmuir 24, 12644 (2008).

Downloaded 28 May 2013 to 134.99.64.185. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1007/978-3-540-46830-1
http://dx.doi.org/10.1088/0964-1726/15/5/N02
http://dx.doi.org/10.1016/j.polymer.2006.11.044
http://dx.doi.org/10.1007/s10853-006-0975-x
http://dx.doi.org/10.1088/1742-6596/149/1/012090
http://dx.doi.org/10.1016/j.polymertesting.2008.02.008
http://dx.doi.org/10.1016/j.polymertesting.2008.02.008
http://dx.doi.org/10.1016/S0927-7757(02)00573-3
http://dx.doi.org/10.1088/0034-4885/67/10/R01
http://dx.doi.org/10.1088/0953-8984/16/32/R02
http://dx.doi.org/10.1016/j.jmmm.2004.11.021
http://dx.doi.org/10.1016/j.jmmm.2004.11.021
http://dx.doi.org/10.1016/j.jmmm.2004.11.092
http://dx.doi.org/10.1103/PhysRevE.73.036302
http://dx.doi.org/10.1088/0953-8984/18/38/S15
http://dx.doi.org/10.1017/S0022112006003466
http://dx.doi.org/10.1017/S0022112006003466
http://dx.doi.org/10.1039/c0sm01221a
http://dx.doi.org/10.1016/j.jmmm.2007.05.043
http://dx.doi.org/10.1063/1.473589
http://dx.doi.org/10.1021/ma980284w
http://dx.doi.org/10.1088/0953-8984/22/27/276001
http://dx.doi.org/10.1016/j.jmmm.2003.12.838
http://dx.doi.org/10.1016/j.jmmm.2003.12.838
http://dx.doi.org/10.1088/0964-1726/19/5/055017
http://dx.doi.org/10.1002/marc.200350016
http://dx.doi.org/10.1002/masy.200351009
http://dx.doi.org/10.1088/0964-1726/21/1/015005
http://dx.doi.org/10.1063/1.471564
http://dx.doi.org/10.1016/S0966-7822(97)00010-5
http://dx.doi.org/10.1021/la1040823
http://dx.doi.org/10.1021/la802425k


204906-11 Annunziata, Menzel, and Löwen J. Chem. Phys. 138, 204906 (2013)

31R. Fuhrer, E. K. Athanassiou, N. A. Luechinger, and W. J. Stark, Small 5,
383 (2009).

32N. Frickel, R. Messing, and A. M. Schmidt, J. Mater. Chem. 21, 8466
(2011).

33R. Messing, N. Frickel, L. Belkoura, R. Strey, H. Rahn, S. Odenbach, and
A. M. Schmidt, Macromolecules 44, 2990 (2011).

34J. J. Weis, J. Phys.: Condens. Matter 15, S1471 (2003).
35J. J. Weis and D. Levesque, Phys. Rev. Lett. 71, 2729 (1993).
36A.-P. Hynninen and M. Dijkstra, Phys. Rev. E 72, 051402 (2005).
37J. M. Tavares, J. J. Weis, and M. M. Telo da Gama, Phys. Rev. E 59, 4388

(1999).
38S. H. L. Klapp and M. Schoen, J. Chem. Phys. 117, 8050 (2002).
39S. H. L. Klapp, J. Phys.: Condens. Matter 17, R525 (2005).
40E. Jarkova, H. Pleiner, H.-W. Müller, and H. R. Brand, Phys. Rev. E 68,

041706 (2003).
41S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E 70, 061411 (2004).
42S. Bohlius, H. Pleiner, and H. R. Brand, Phys. Fluids 19, 094103 (2007).
43O. V. Stolbov, Y. L. Raikher, and M. Balasoiu, Soft Matter 7, 8484 (2011).
44A. Y. Zubarev, Soft Matter 8, 3174 (2012).
45D. S. Wood and P. J. Camp, Phys. Rev. E 83, 011402 (2011).
46E. A. Elfimova, A. O. Ivanov, and P. J. Camp, J. Chem. Phys. 136, 194502

(2012).
47D. Ivaneyko, V. P. Toshchevikov, M. Saphiannikova, and G. Heinrich,

Macromol. Theory Simul. 20, 411 (2011).
48M. R. Dudek, B. Grabiec, and K. W. Wojciechowski, Rev. Adv. Mater. Sci.

14, 167 (2007).
49R. Weeber, S. Kantorovich, and C. Holm, Soft Matter 8, 9923 (2012).
50P. A. Sánchez, J. J. Cerdà, T. Sintes, and C. Holm, preprint

arXiv:1302.5845v1 [cond-mat.mes-hall] (2013).

51J. J. Cerdà, P. A. Sánchez, C. Holm, and T. Sintes, preprint
arXiv:1302.5897v1 [cond-mat.soft] (2013).

52J. K. Percus, J. Stat. Phys. 15, 505 (1976).
53Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Phys. Rev. E 55,

4245 (1997).
54V. A. Froltsov, R. Blaak, C. N. Likos, and H. Löwen, Phys. Rev. E 68,

061406 (2003).
55V. A. Froltsov, C. N. Likos, H. Löwen, C. Eisenmann, U. Gasser, P. Keim,

and G. Maret, Phys. Rev. E 71, 031404 (2005).
56P. G. de Gennes, in Liquid Crystals of One- and Two-dimensional Order,

edited by W. Helfrich, and G. Heppke (Springer, Berlin, 1980), p. 231.
57H. R. Brand and H. Pleiner, Physica A 208, 359 (1994).
58A. M. Menzel, H. Pleiner, and H. R. Brand, J. Chem. Phys. 126, 234901

(2007).
59A. M. Menzel, H. Pleiner, and H. R. Brand, J. Appl. Phys. 105, 013503

(2009).
60A. M. Menzel, H. Pleiner, and H. R. Brand, Eur. Phys. J. E 30, 371 (2009).
61H. R. Brand, P. Martinoty, and H. Pleiner, in Cross-linked Liquid Crys-

talline Systems: From Rigid Polymer Networks to Elastomers, The Liquid
Crystals Book Series, edited by D. Broer, G. Crawford, and S. Zumer (CRC
Press Inc, 2011), pp. 529–563.

62M. A. Miller, R. Blaak, C. N. Lumb, and J.-P. Hansen, J. Chem. Phys. 130,
114507 (2009).

63R. L. Dobrushin, Commun. Math. Phys. 32, 269 (1973).
64J. Fröhlich and T. Spencer, Commun. Math. Phys. 84, 87 (1982).
65G. Strobl, The Physics of Polymers (Springer, Berlin/Heidelberg, 2007).
66D. Ivaneyko, V. Toshchevikov, M. Saphiannikova, and G. Heinrich, Con-

dens. Matter Phys. 15, 33601 (2012).
67Y. Han, W. Hong, and L. E. Faidley, Int. J. Solids Struct. 50, 2281 (2013).

Downloaded 28 May 2013 to 134.99.64.185. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1002/smll.200801091
http://dx.doi.org/10.1039/c0jm03816d
http://dx.doi.org/10.1021/ma102708b
http://dx.doi.org/10.1088/0953-8984/15/15/311
http://dx.doi.org/10.1103/PhysRevLett.71.2729
http://dx.doi.org/10.1103/PhysRevE.72.051402
http://dx.doi.org/10.1103/PhysRevE.59.4388
http://dx.doi.org/10.1063/1.1512282
http://dx.doi.org/10.1088/0953-8984/17/15/R02
http://dx.doi.org/10.1103/PhysRevE.68.041706
http://dx.doi.org/10.1103/PhysRevE.70.061411
http://dx.doi.org/10.1063/1.2757709
http://dx.doi.org/10.1039/c1sm05714f
http://dx.doi.org/10.1039/c2sm06961j
http://dx.doi.org/10.1103/PhysRevE.83.011402
http://dx.doi.org/10.1063/1.4717718
http://dx.doi.org/10.1002/mats.201100018
http://dx.doi.org/10.1039/c2sm26097b
http://arxiv.org/abs/1302.5845v1
http://arxiv.org/abs/1302.5897v1
http://dx.doi.org/10.1007/BF01020803
http://dx.doi.org/10.1103/PhysRevE.55.4245
http://dx.doi.org/10.1103/PhysRevE.68.061406
http://dx.doi.org/10.1103/PhysRevE.71.031404
http://dx.doi.org/10.1016/0378-4371(94)00060-3
http://dx.doi.org/10.1063/1.2742383
http://dx.doi.org/10.1063/1.3054295
http://dx.doi.org/10.1140/epje/i2009-10535-2
http://dx.doi.org/10.1063/1.3089620
http://dx.doi.org/10.1007/BF01645609
http://dx.doi.org/10.1007/BF01208373
http://dx.doi.org/10.5488/CMP.15.33601
http://dx.doi.org/10.5488/CMP.15.33601
http://dx.doi.org/10.1016/j.ijsolstr.2013.03.030

