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Micron-sized self-propelled (active) particles can be considered as model systems for characterizing

more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric

microswimmers by soft lithography and study their circular motion on a substrate and near channel

boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for

asymmetric self-propelled particles, which couples their translational and orientational motion.
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Micron-sized particles undergoing active Brownian mo-
tion [1] currently receive considerable attention from exper-
imentalists and theoreticians because their locomotion
behavior resembles the trajectories of motile microorgan-
isms [2–5]. Therefore, such systems allow interesting
insights into how active matter [6] organizes into complex
dynamical structures. During the last decade, different ex-
perimental realizations ofmicroswimmers have been inves-
tigated, where, e.g., artificial flagella [7] or thermophoretic
[8] and diffusiophoretic [9] driving forces lead to active
motion of micron-sized objects. So far, most studies have
concentrated on spherical or rodlikemicroswimmerswhose
dynamics is well described by a persistent random walk
with a transition from a short-time ballistic to a long-time
diffusive behavior [10]. Such simple rotationally symmetric
shapes, however, usually provide only a crude approxima-
tion for self-propelling microorganisms, which are often
asymmetric around their propulsion axis. Then, generically,
a torque is induced that significantly perturbs the swimming
path and results in a characteristic circular motion.

In this Letter, we experimentally and theoretically study
the motion of asymmetric self-propelled particles in a
viscous liquid. We observe a pronounced circular motion
whose curvature radius is independent of the propulsion
strength but only depends on the shape of the swimmer.
Based on the shape-dependent particle mobility matrix, we
propose two coupled Langevin equations for the transla-
tional and rotational motion of the particles under an
intrinsic force, which dictates the swimming velocity.
The anisotropic particle shape then generates an additional
velocity-dependent torque, in agreement with our measure-
ments. Furthermore, we also investigate the motion of
asymmetric particles in lateral confinement. In agreement
with theoretical predictions we find either a stable sliding
along the wall or a reflection, depending on the contact
angle.

Asymmetric L-shaped swimmers with arm lengths of 9
and 6 �m were fabricated from photoresist SU-8 by pho-
tolithography [11]. In short, a 2:5 �m thick layer of SU-8
is spin coated onto a silicon wafer, soft baked for 80 s at
95 �C and then exposed to ultraviolet light through a
photomask. After a postexposure bake at 95 �C for 140 s
the entire wafer with the attached particles is coated with a
20 nm thick Au layer by thermal evaporation. When the
wafer is tilted to approximately 90� relative to the evapo-
ration source, the Au is selectively deposited at the front
side of the short arms as schematically shown in Figs. 1(a)
and 1(b). Finally, the coated particles are released from the
wafer by an ultrasonic bath treatment. A small amount of
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FIG. 1 (color online). (a),(b) Trajectories of an (a) Lþ and
(b) L� swimmer for an illumination intensity of 7:5 �W=�m2.
(Red) bullets and (blue) square symbols correspond to initial
particle positions and those after 1 min each, respectively. The
insets show microscope images of two different swimmers with
the Au coating (not visible in the bright-field image) indicated by
an arrow. (c),(d),(e) Probability distributions pð�Þ of the angle �
[see inset in (c)] between the normal vector û? of the metal
coating and the displacement vector �r of an Lþ particle in
time intervals of 12 s each for illumination intensities
(c) I ¼ 0 �W=�m2, (d) 5 �W=�m2 and (e) 7:5 �W=�m2.
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L-shaped particles is suspended in a homogeneous mixture
of water and 2,6-lutidine at critical concentration (28.6
mass percent of lutidine), which is kept several degrees
below its lower critical point (TC ¼ 34:1 �C) [12]. To
confine the particle’s motion to two dimensions, the sus-
pension is contained in a sealed sample cell with 7 �m
height. The particles are localized above the lower wall at
an average height of about 100 nm due to the presence of
electrostatic and gravitational forces. Under these condi-
tions, they cannot rotate between the two configurations
shown in Figs. 1(a) and 1(b), which will be denoted as
Lþ ðleftÞ and L� ðrightÞ in the following. When the sam-
ple cell is illuminated by light (� ¼ 532 nm) with inten-
sities ranging on the order of several �W=�m2, the metal
cap becomes slightly heated above the critical point and
thus induces a local demixing of the solvent [13,14]. This
leads to a self-phoretic particle motion similar to what has
been observed in other systems [15–17].

Figures 1(a) and 1(b) show trajectories of Lþ and L�
swimmers obtained by digital video microscopy for an
illumination intensity of 7:5 �W=�m2, which corre-
sponds to a mean propulsion speed of 1:25 �m=s. In
contrast to spherical swimmers, here a pronounced circular
motion with clockwise (Lþ) and counterclockwise (L�)
direction of rotation is observed. For the characterization
of trajectories we determined the center-of-mass position
rðtÞ ¼ ðxðtÞ; yðtÞÞ and the normalized orientation vector û?
of the particles [see inset of Fig. 1(c)]. From this, we
derived the angle � between the displacement vector �r
and the particle’s body orientation û?. Figures 1(c)–1(e)
show how the normalized probability distribution pð�Þ
changes with increasing illumination intensity I. In the
case of pure Brownian motion [see Fig. 1(c)] pð�Þ �
const since the orientational and translational degrees of
freedom are decoupled when only random forces are acting
on the particle. In the presence of a propulsion force which
is constant in the body frame of the particle, however, the
translational and rotational motion of an asymmetric par-
ticle are coupled. This leads to a peaked behavior of pð�Þ
as shown in Figs. 1(d) and 1(e). The peak’s halfwidth
decreases with increasing illumination intensity since the
contribution of the Brownian motion is more and more
dominated by the propulsive part. In addition, the peaks are
shifted to positive (negative) values for a particle swim-
ming in a (counter)clockwise direction. The position of
the peak is given by � ¼ ��t=�, where � is the intensity-
dependent cycle duration of the circle swimmer [cf.,
Fig. 2(b)] and �t is the considered time interval. This
estimate [see arrows in Figs. 1(d) (� ¼ 60 s) and 1(e)
(� ¼ 40 s)] is in good agreement with the experimental
data. The shift of the maximum of pð�Þ documents a
torque responsible for the observed circular motion of
such asymmetric swimmers. In contrast to an externally
applied constant torque [18], here it is due to viscous forces
acting on the self-propelling particle. This is supported by

the experimental observation that the particle’s angular
velocity !ðtÞ ¼ d�=dt increases linearly with its total
translational velocity vðtÞ [see Fig. 2(a)]. As a direct result
of the linear relationship between ! and v, the radius R of
the circular trajectories becomes independent of the pro-
pulsion speed, which is set by the illumination intensity
[see Fig. 2(b)].
For a theoretical description of the motion of asymmet-

ric swimmers, we consider an effective propulsion force F
[19], which is constant in a body-fixed coordinate system
that rotates with the active particle. With the unit
vectors û? ¼ ð� sin�; cos�Þ and ûk ¼ ðcos�; sin�Þ [see
Figs. 1(c) and 3(a)], where—in the case of L-shaped
particles—� is the angle between the short arm and the
x axis, the propulsion force F is given by F ¼ Fûint with

ûint ¼ ðcûk þ û?Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p
with the constant c depending

on how the force is aligned relative to the particle shape. If
the propulsion force is aligned along the long axis û?, one
obtains c ¼ 0, i.e., ûint ¼ û?. In the case of an asymmetric
particle, the propulsion force leads also to a velocity-
dependent torque relative to the particle’s center of mass.
For c ¼ 0 this torque is given by M ¼ lF with l the
effective lever arm [see Fig. 3(a)]. Our theoretical model
is valid for arbitrary particle shapes and values of c and l.
However, for the sake of clarity, we set c ¼ 0 as this
applies for the L-shaped particles considered here.
Accordingly, we obtain the following coupled Langevin
equations, which describe the motion of an asymmetric
microswimmer

_r ¼ �FðDTû? þ lDCÞ þ �r ;

_� ¼ �FðlDR þDC � û?Þ þ �� :
(1)

Here, � ¼ 1=ðkBTÞ is the inverse effective thermal energy
of the system. These Langevin equations contain the trans-
lational short-time diffusion tensorDTð�Þ ¼ Dkûk � ûk þ
D?

k ðûk � û? þ û? � ûkÞ þD?û? � û? with the dyadic

product � and the translation-rotation coupling vector

DCð�Þ ¼ Dk
Cûk þD?

C û? [20]. The translational diffusion

coefficients Dk, D?
k , and D?, the coupling coefficients D

k
C

and D?
C , and the rotational diffusion constant DR are
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FIG. 2 (color online). (a) Angular velocity ! and (b) radius R
of the circular motion of an Lþ swimmer plotted as functions of
the linear velocity v ¼ jvj and the illumination intensity I � v.
The dashed lines correspond to a linear fit with nonzero and zero
slope, respectively.
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determined by the specific shape of the particle.
Finally, �rðtÞ and ��ðtÞ are Gaussian noise terms of zero

mean and variances h�rðt1Þ � �rðt2Þi ¼ 2DT	ðt1 � t2Þ,
h�rðt1Þ��ðt2Þi ¼ 2DC	ðt1 � t2Þ, and h��ðt1Þ��ðt2Þi ¼
2DR	ðt1 � t2Þ [23].

In the case of vanishing noise, Eq. (1) immediately leads
to a circular trajectory with radius

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD?

k þ lDk
CÞ2 þ ðD? þ lD?

C Þ2
ðD?

C þ lDRÞ2

vuut
: (2)

In agreement with the experimental observation [see
Fig. 2(b)] the radius does not depend on the particle

velocity set by the propulsion force. Rather, the value
of R is determined only by the particle’s geometry,
which defines its diffusional properties. Moreover, the
translational and angular particle velocities are

v¼�F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD?

k þlDk
CÞ2þðD?þlD?

C Þ2
q

and !¼�FðD?
C þ

lDRÞ. Both quantities are proportional to the internal force
F and ensure R ¼ v=j!j in perfect agreement with the
experimental results shown in Fig. 2(a).
For a quantitative comparison with the experimental

data, most importantly, the diffusion and coupling coeffi-
cients for the particles under study have to be determined.
They constitute the components of the generalized diffu-
sion matrix and are, in principle, obtained from solving the
Stokes equation that describes the low Reynolds number
flow field around a particle close to the substrate [24]. This
procedure can be approximated by using a bead model
[25], where the L-shaped particle is assembled from a large
number of rigidly connected small spheres. Exploiting the
linearity of the Stokes equation, the hydrodynamic inter-
actions between any pair of those beads can be super-
imposed to calculate the generalized mobility tensor of
the L-shaped particle and from that its diffusion and cou-
pling coefficients; details of the calculation are outlined in
Ref. [25]. This method is well established for arbitrarily
shaped particles in bulk solution [25,26]. We take into
account the presence of the substrate by using the
Stokeslet close to a no-slip boundary [27] to model the
hydrodynamic interactions between the component beads
in the bead model. For the L-shaped particles considered
here, we find that the value of D? exceeds the terms D?

k ,
lDk

C, and lD
?
C in the numerator of Eq. (2) by more than one

order of magnitude (given that l is in the range of 1 �m).
On the other hand, the value of D?

C is negligible compared

to lDR. This finally yields

R ¼ jD?=ðlDRÞj (3)

as an approximate expression for the trajectory radius and,
correspondingly,

! ¼ �DRlF (4)

for the angular velocity.
We determined the diffusion coefficients D?, Dk, and

DR experimentally under equilibrium conditions (i.e., in
the absence of propulsion) from the short-time correlations
of the translational and orientational components of the
particle’s trajectories [28,29] (see Table I). The experimen-
tal values are in good agreement with the theoretical
predictions.
Inserting the experimentally determined values for the

diffusion coefficients and the mean trajectory radius R ¼
7:91 �m into Eq. (3), we obtain the effective lever arm
l ¼ �1:65 �m. This value is about a factor of 2 larger
compared to an ideally shaped L particle [see Fig. 3(a)]
with its propulsion force perfectly centered at the middle of
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FIG. 3 (color online). (a) Geometrical sketch of an ideal Lþ
swimmer as considered in our model. The dimensions are a ¼
9 �m, b ¼ 6 �m, xS ¼ 2:29 �m, and yS ¼ 3:55 �m (for ho-
mogeneous mass density and an additional 20 nm thick Au
layer). The internal force F induces a torque M on the center-
of-mass S depending on the lever arm l. (b),(c) Visualization of
the experimental trajectory (for an illumination intensity of I ¼
7:5 �W=�m2) that is used for the quantitative analysis of the
fluctuation-averaged trajectory in (d). The dashed curve in (d) is
the experimental one, and the solid curve shows the theoretical
prediction with the starting point indicated by a red bullet. Inset:
closeup of the framed area in the plot.
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the Au layer. This deviation suggests that the force is
shifted by 0:94 �m in lateral direction, which is
most likely caused by small inhomogeneities of the
Au layer due to shadowing effects during the grazing
incidence metal evaporation. Accordingly, from Eq. (4)
we obtain the intensity-dependent propulsion force
F=I ¼ 0:83� 10�13 N�m2=�W.

To compare the trajectories obtained from the Langevin
equations (1) with experimental data, we divided the mea-
sured trajectories into smaller segments and superimposed
them such that the initial slopes and positions of the
segments overlap. After averaging the data we obtained
the noise-averaged mean swimming path, which is pre-
dicted to be a logarithmic spiral (spira mirabilis) [30] that
is given in polar coordinates by

rð�Þ ¼ �F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

?
D2

R þ!2

s
exp

�
�DR

!
ð���0Þ

�
: (5)

Qualitatively, such spirals can be understood as follows: in
the absence of thermal noise, the average swimming
path corresponds to a circle with radius R given by
Eq. (3). In the presence of thermal noise, however, single
trajectory segments become increasingly different as time
proceeds. This leads to decreasing distances di between
adjacent turns of the mean swimming path [di=diþ1 ¼
expð2�DR=j!jÞ, see Fig. 3(d)] and, finally, to the conver-
gence in a single point for t ! 1. Because of the align-
ment of the initial slope, this point is shifted relative to the
starting point depending on the alignment angle and the
circulation direction of the particle.

The solid curve in Fig. 3(d) is the theoretical prediction
[see Eq. (5)] with the measured values of D?, DR, and !.
On the other hand, the dashed curve in Fig. 3(d) visualizes
the noise-averaged trajectory determined directly from the
experimental data [see Figs. 3(b) and 3(c)]. The agreement
of the two curves constitutes a direct verification of our
theoretical model on a fundamental level.

Finally, we also address the motion of asymmetric
swimmers under confinement, e.g., their interaction with
a straight wall. This is shown in Fig. 4(a) exemplarily for
an Lþ swimmer which approaches the wall at an angle 
.
Because of the internal torque associated with the active
particle motion, it becomes stabilized at the wall and
smoothly glides to the right along the interface. In contrast,

for a much larger initial contact angle the internal
torque rotates the front part of the particle away from the
obstacle, the motion is unstable, and the swimmer is
reflected by the wall [see Fig. 4(b)] [31]. Figure 4(c) shows
the observed dependence of the motional behavior on the
approaching angle.
The experimental findings are in line with an instability

analysis based on a torque balance condition of an
L-shaped particle at wall contact as a function of its contact
angle 
. For 
crit < 
< � [see Figs. 4(b) and 4(e)] with a
critical angle 
crit, the particle is reflected, while for 0<

< 
crit [see Figs. 4(a) and 4(d)] stable sliding with an
angle 
sl occurs. Both, 
sl and 
crit are given as stable
and unstable solutions, respectively, of the torque balance
condition

jlj ¼ ½ða� ySÞ cos
� xS sin
� sin
 : (6)

For l ¼ �0:71 �m corresponding to an ideal L-shaped
particle with the propulsion force centered in the middle
of the Au layer, we obtain 
sl ¼ 8:0� and 
crit ¼ 59:2�,
which is in good agreement with the measured value of
about 
crit ¼ 60� [see Fig. 4(c)]. The observed scatter in
the experimental data around the critical angle is due to
thermal fluctuations that wash out the sharp transition
between the sliding and the reflection regime.
In conclusion, we have demonstrated that due to viscous

forces of the surrounding liquid, asymmetric micro-
swimmers are subjected to a velocity-dependent torque.
This leads to a circular motion, which is observed in
experiments in agreement with a theoretical model based
on two coupled Langevin equations. In a channel geome-
try, this torque leads either to a reflection or a stable sliding
motion along the wall. An interesting question for the
future addresses how asymmetric swimmers move through

TABLE I. Diffusion coefficients for the L-shaped particle in
Fig. 3(a) on a substrate: translational diffusion along the long
(D?) and the short (Dk) axis of the L-shaped particle as well as

rotational diffusion constant DR.

Experiment Theory

D? ½10�3 �m2 s�1� 8:1	 0:6 8.3

Dk ½10�3 �m2 s�1� 7:2	 0:4 7.5

DR ½10�4 s�1� 6:2	 0:8 6.1
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FIG. 4 (color online). (a),(b) Trajectories of an Lþ swimmer
approaching a straight wall at different angles (symbols corre-
spond to positions after 1 min each). (c) Experimentally deter-
mined particle motion for different contact angles 
. Bullets and
open squares correspond to particle sliding and reflection. (d),
(e) Visualization of the predicted types of motion for an Lþ
swimmer with arrows indicating the direction of the propulsion
force: (d) stable sliding and (e) reflection. The angles are defined
in the text.
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patterned media. In the presence of a drift force, one may
expect Shapiro steps in the particle current similar to what
has also been found in colloidal systems driven by a
circular drive [33]. Another appealing outlook addresses
the motion of chiral swimmers in the presence of external
fields such as gravity [34]. In the case of asymmetric
particles, this leads to an orientational alignment during
their sedimentation, which may result in a preferential
motion relative to gravity similar to the gravitactic behav-
ior of asymmetric cells as, e.g., Chlamydomonas [35,36].

We thank M. Aristov for assistance in particle prepara-
tion and M. Heinen for helpful discussions. This work was
supported by the DFG within SPP 1296 and SFB TR6-C3
as well as by the Marie Curie-Initial Training Network
Comploids funded by the European Union Seventh
Framework Program (FP7). R.W. gratefully acknowledges
financial support from a Postdoctoral Research Fellowship
(WI 4170/1-1) of the DFG.

*Present address: Department of Physics, Bilkent
University, Cankaya, Ankara 06800, Turkey.

[1] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L.
Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1
(2012).

[2] S. J. Ebbens and J. R. Howse, Soft Matter 6, 726
(2010).

[3] T. Mirkovic, N. S. Zacharia, G.D. Scholes, and G.A.
Ozin, ACS Nano 4, 1782 (2010).

[4] R. Pontier-Bres, F. Prodon, P. Munro, P. Rampal, E.
Lemichez, J. F. Peyron, and D. Czerucka, PLoS ONE 7,
e33796 (2012).

[5] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[6] M.C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.

Liverpool, J. Prost, M. Rao, and R.A. Simha,
arXiv:1207.2929.

[7] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A.
Stone, and J. Bibette, Nature (London) 437, 862 (2005).

[8] H. R. Jiang, N. Yoshinaga, and M. Sano, Phys. Rev. Lett.
105, 268302 (2010).

[9] Y. Hong, N.M.K. Blackman, N.D. Kopp, A. Sen, and D.
Velegol, Phys. Rev. Lett. 99, 178103 (2007).

[10] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99,
048102 (2007).

[11] S. Badaire, C. Cottin-Bizonne, W. Joseph, A. Yang, and
A.D. Stroock, J. Am. Chem. Soc. 129, 40 (2007).

[12] C. A. Grattoni, R. A. Dawe, C. Y. Seah, and J. D. Gray, J.
Chem. Eng. Data 38, 516 (1993).

[13] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C.
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Condens. Matter 23, 194119 (2011).
[20] Alternatively, it is also possible to use the resistance

matrix formalism [21,22].
[21] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601

(2009).
[22] E.M. Purcell, Am. J. Phys. 45, 3 (1977).
[23] Because of the multiplicative noise, an additional drift

term has to be taken into account, when Eqs. (1) are solved
numerically.

[24] J. Happel and H. Brenner, Low Reynolds Number
Hydrodynamics: With Special Applications to Particulate
Media, Mechanics Fluids and Transport Processes Vol. 1
(Kluwer Academic Publishers, Dordrecht, 1991), 2nd ed.

[25] B. Carrasco and J. Garcia de la Torre, J. Chem. Phys. 111,
4817 (1999).

[26] J. Garcia de la Torre, S. Navarro, M. C. L. Martinez,
F. G. Diaz, and J. J. L. Cascales, Biophys. J. 67, 530
(1994).

[27] J. R. Blake, Proc. Cambridge Philos. Soc. 70, 303 (1971).
[28] Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T. C.

Lubensky, and A.G. Yodh, Science 314, 626 (2006).
[29] Y. Han, A. Alsayed, M. Nobili, and A.G. Yodh, Phys. Rev.

E 80, 011403 (2009).
[30] S. van Teeffelen and H. Löwen, Phys. Rev. E 78, 020101
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