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Using the framework of geometry-based fundamental-measure theory, we develop a classical density

functional for hard polyhedra and their mixtures and apply it to inhomogeneous fluids of Platonic solids

near a hard wall. As revealed by Monte Carlo simulations, the faceted shape of the polyhedra leads to

complex layering and orientational ordering near the wall, which is excellently reproduced by our theory.

These effects can be verified in real-space experiments on polyhedral colloids.
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Recent advances in the controlled preparation of aniso-
tropic nanoparticles and colloids have boosted our under-
standing of the collective properties of orientable hard
polyhedra. In fact, it is by now possible to prepare micro-
to nanometric particles with a polyhedral shape [1–5].
These particles self-assemble into structures much more
complex than those formed by spheres and are therefore
ideal candidates for photonic crystals [6] or electrical
networks [7]. At a very high concentration, the structure
should resemble the best-packed configurations of polyhe-
dra, the determination of which is a geometric problem
dating back to Plato [8] and is still under debate today in
connection with Ulam’s conjecture [9]. The latter states
that spheres have the lowest maximal packing fraction of
all convex shapes and was confirmed for a large number of
polyhedra [9–11] but not yet proved in general. At den-
sities below close packing, new structures were discovered
by computer simulation which are vastly different from
the close-packed ones [12–15]. A spectacular example is a
decagonal quasicrystal formed by hard tetrahedra [12,16]
and triangular bipyramids [13].

However, a general microscopic theory for the structure
and phase behavior of hard polyhedra is missing. Previous
theories for hard tetrahedra [17,18], motivated by the shapes
of molecules such as CF4 and CH4 [19], did not explicitly
take the orientations into account. Here, wewill use classical
density functional theory (DFT) with explicit orientational
degrees of freedom. By its design, DFT provides a powerful,
microscopic tool to investigate inhomogeneous fluids
[20–22]. A geometry-based fundamental-measure theory
was proposed for hard spheres by Rosenfeld [23,24], which
was later generalized to hard particles with an arbitrary
smooth shape by Hansen-Goos and Mecke [25,26]. The
fundamental-measure theory has been proven to be very
successful for inhomogeneous hard sphere fluids [27],
including the crystalline state [28] and the fluid-solid inter-
face, as well as for inhomogeneous fluids of hard spher-
ocylinders [25]. In particular, studies of the fluid-solid
interface [29] and the interface between a fluid and a
hard wall [27] for hard spheres illustrate clearly the use-
fulness of DFT, which directly yields the free energy and,

thus, the interfacial tension, while the complementary
simulation approaches are much more computationally
demanding [29–31].
In this Letter, we use the framework of geometry-based

fundamental-measure theory [25,26] and generalize it to
sharp edged hard polyhedra and their mixtures.We consider
Platonic solids, in particular; see Fig. 1. The density func-
tional theory is applied to the standard test case, namely,
to inhomogeneous fluids near a hard wall, and we perform
Monte Carlo computer simulations for comparison. The
faceted shape of the polyhedra leads to complex layering
and orientational ordering near the wall, which are excel-
lently reproduced by our theory.We find layering effects that
are not compatible with the behavior expected from close-
packed ordering for a mixture of tetrahedra and octahedra.
In principle, our theory can be exploited for structural order-
ing and bulk phase transitions for particles with an arbitrary
polyhedral shape. It will also be paramount in understanding
the heterogeneous nucleation of crystals or mesophases at a
wall. As was already demonstrated for spherical particles
[32,33], the predicted layering effects near walls can be
verified in confocal microscopy experiments on sterically
stabilized anisotropic colloids.
Density functional theory is specifically designed to

handle inhomogeneous mixtures of anisotropic particles
described by a density profile �sðr; $Þ, which expresses
the local density at the position r of particles of a certain
species s with a specific orientation $, which denotes the
three Euler angles. The grand-canonical free energy—
the thermodynamic potential of the ensemble where the
chemical potential�, the volume V, and the temperature T
are held fixed—can be written as a sum over three parts

�¼F idþF excþ
X

s

Z
d$

Z
dr�sðr;$Þ½Vext

s ðr;$Þ���;

where Vext
s ðr;$Þ is the external potential. The first

term in the grand potential � is the ideal gas free
energy [20] F id ¼ kBT

P
s

RR
�sðr;$Þ log½�sðr; $ÞV � �

�sðr; $Þd$dr, where kB is Boltzmann’s constant and
V is the irrelevant thermal volume. The excess free
energy from fundamental-measure theory [23–26,34] reads
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F exc ¼ kBT
R
dr�ðfn�;�ðrÞgÞ in terms of scalar (� ¼ 0),

vector (� ¼ 1), and rank-two tensor (� ¼ 2) weighted
densities denoted by n�;�ðrÞ, where � ¼ 0; . . . ; 3.

The function �ðfn�;�gÞ of the set of weighed densities

fn�;�g reads

� n0 logð1� n3Þ þ n1n2 � ~n1 � ~n2 � Tr½n$1n
$
2�

1� n3

þ 3

16�

~n2 � n$2 ~n2 � n2 ~n2 � ~n2 þ n2Tr½n$2
2� � Tr½n$3

2�
ð1� n3Þ2

;

where we use the notation n� � n�;0, ~n� � n�;1, and

n
$
��n�;2 to emphasize the scalar, vector, and tensor nature

of the corresponding weighted densities and Tr denotes the
trace of a matrix.

For brevity, we will call the polyhedron of species swith
orientation $ polyhedron �. The weighted densities con-
tain convolutions of the density profile with weight func-

tions wð�;�Þ
� ðr0Þ, which are only known for smooth particles

[26]. To extend the weight functions to polyhedra, we first
consider rounded polyhedra, where the edges are replaced
by cylinder sections with radius R and the vertices by
any surface that connects the rounded edges and faces
smoothly. For convenience, we calculate the Fourier trans-

formed weight functions ŵð�;�Þ
� ðkÞ for such rounded poly-

hedra and we perform the limit R ! 0. A more detailed
derivation of the weight functions is given in the
Supplemental Material [35]. The resulting Fourier trans-
formed weight functions are

ŵð�;�Þ
� ðkÞ ¼ XN�;�

j¼1

�ð�;�Þ
� �̂�;�;jðkÞ

by dividing polyhedron � into N3;� irregular tetrahedra

and its surface into N2;� triangles, while N1;� is the number

of edges for polyhedron � and N0;� is the number of

vertices. Also, we define the delta-like function ��;�;jðrÞ
by

R
drfðrÞ��;�;jðrÞ ¼

R
S�;�;j

d�rfðrÞ for any function fðrÞ,
where S�;�;j is an �-dimensional simplex: S0;�;j denotes

vertex j, S1;�;j denotes edge j, triangle j is denoted by

S2;�;j, and, finally, we denote the jth irregular tetrahedron

by S3;�;j. The subdivision of the surface and interior of the

particle in these simplices S�;�;j allows the following closed

form to be derived for the Fourier transform �̂�;�;jðkÞ of the
delta-like function:

�!jS�;�;jj
X�þ1

n¼1

expð�ik � r�;�;j;nÞQ
�þ1
m¼1;m�n ik � ðr�;�;j;m � r�;�;j;nÞ

;

where jS�;�;jj is 1 for� ¼ 0 and is equal to the length, area,

and volume of the jth edge, triangle, and irregular tetrahe-
dron for � ¼ 1, 2, and 3, respectively, of polyhedron s.
Also, the nth vertex of the jth � simplex of polyhedron �

is denoted by r�;�;j;n. The k-independent �ð�;�Þ
s consist of

scalars (�¼0), �ð0;0Þ
� �½2��PF�;j

k¼1ffð�;j;kÞ�=4�, �ð1;0Þ �
	�;j
�;j=8�, �

ð2;0Þ � 1, and �ð3;0Þ � 1; vectors (� ¼ 1),

�ð1;1Þ�e�;j;3sinð
�;j=2Þ=4�, and �ð2;1Þ � n�;j; and, finally,

rank-two tensors (�¼2), �ð1;2Þ � 	�;j½sin
�;jðe�;j;1eT�;j;1 �
e�;j;2e

T
�;j;2Þ � ð
�;j þ sin
�;jÞð32 e�;j;1eT�;j;1 � 1

2 IÞ�=8� and

�ð2;2Þ � n�;jn
T
�;j, where ffð�; j; kÞ is the opening angle of

face k of the F�;j faces joined at vertex j, 
�;j denotes the

angle between the two normals n�;j;1 and n�;j;2 of the faces

joined in edge j, 	�;j is 1 (�1) if the surface near edge

j is convex (concave), e�;j;1 ¼ N ½n�;j;1 � n�;j;2�, e�;j;2 ¼
N ½n�;j;1 � n�;j;2�, and e�;j;3 ¼ N ½n�;j;1 þ n�;j;2� with

N ½v� ¼ v=jvj, and finally n�;j is the normal of face j.

Using these expressions for the weight functions, we can
calculate the Fourier transformed weighted densities

n̂�;�ðkÞ ¼
X

s

Z
d$ŵð�;�Þ

s ðk; $Þ��̂sðk; $Þ;

where �̂sðk; $Þ denotes the Fourier transform of the den-
sity. Finally, the free energy is minimized with respect to
the density profile using the Picard iteration [27].
First, we will consider one-component fluids of the

Platonic solids (see Fig. 1) near a hard wall. The hard
wall leads to an external potential Vext

s ðr; $Þ, which is
infinite if a particle of species s with orientation $ at
position r overlaps with the wall and zero otherwise.
We compare our theory to standard Monte Carlo simula-
tions of polyhedra confined between two walls at large
enough separation L [35] that the middle of the slit behaves
like a bulk fluid. To limit the parameter space, we will fix
the average packing fraction � � vpN=ðLAÞ to � ¼ 0:3,

where vp is the volume of the particle, N is the number of

particles, and A is the area of the plates. For this volume
fraction, we always find a fluid phase.
In Fig. 2, the results for the dimensionless center-of-

mass density profile�ðzÞ � vp

P
N
i¼1h�ðz� ziÞi are shown,

where zi is the distance between the center of mass of
polyhedron i and the wall (the wall separation L is at least 4
times larger than the z interval shown). First of all, the
comparison between the simulation results and the theory
is good for tetrahedra and excellent for all other Platonic
solids. The structure of the peak near the wall is a result of a
competition of two effects: the pressure of the particles in

dodecahedron icosahedrontetrahedron cube octahedron

FIG. 1 (color online). The polyhedra considered in this work
are tetrahedra, cubes (hexahedra), octahedra, dodecahedra, and
icosahedra with (equal) edge lengths l as indicated. The different
colors are simply to allow facile distinction of the faces.
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the bulk that pushes the particles in the first layer toward
the wall and the rotational entropy loss that the particles
near the wall suffer because some of the orientations are
excluded due to overlap with the wall. The interplay
between these effects causes a complex layering, where
for instance tetrahedra show a sharp feature in between the
peaks of the first and second layers. Also, whether the first
peak is a sharp peak or a broad peak depends critically on
the shape of the particle. The maximum wall distance for
which a vertex, edge, or face can touch the wall (denoted
by zv, ze, and zf, respectively) is shown by the dashed lines

in Fig. 2. The position of the first peak is equal to zv for the
more spherical dodecahedra and icosahedra, and the sharp
interlayer feature for tetrahedra also occurs at z ¼ zv.

The orientational ordering is investigated using
the orientational order parameter profile P1ðzÞ ¼
½hPN

i¼1 cos�i�ðz � ziÞi=hPN
i¼1 �ðz � ziÞi � P0

1;iso�=½1 �
P0
1;iso�. Here, �i is the minimum of the angles between the

normals of the faces and the normal to the wall pointing
away from the system for particle i and P1;iso is the average

of 1
N

P
N
i¼1 cos�i over all orientations. The definition of

P1ðzÞ is such that P1ðzÞ ¼ 1 implies that one of the faces
(which are all equivalent for regular polyhedra) is perfectly
aligned with the wall and P1ðzÞ ¼ 0 when all orientations
of the polyhedron are equally probable. The orientational
order parameter profile is shown in Fig. 3. Obviously,
perfect face alignment is always found for z equal to zf,

denoted by the leftmost dashed line in Fig. 2 and the right
border of the gray rectangles in Fig. 3. Tetrahedra show
considerable misalignment compared to the average at
somewhat larger height, which is somewhat underesti-
mated by the theory. For the other shapes, the agreement
between theory and simulations is nearly perfect, while the
misalignment above the first layer is much less than for
tetrahedra. Naturally, the nearly spherical icosahedra and
dodecahedra show very little orientational order unless
they are brought really close to the wall.
As mentioned above, DFT calculations are a natural

method to obtain interfacial tension, in this case, of the
wall-fluid interface wf , as � ¼ �b þ 2wfA in our fluid
of hard polyhedra between two hard walls, where�b is the
grand-canonical free energy of the bulk reference fluid
with volume LA. In Fig. 3(f), wf is shown to increase as
the number of faces of the polyhedron decreases, which is a
natural result of the decrease in orientational freedom in
the fluid near the wall [corresponding to a nonzero value
of P1ðzÞ in Figs. 3(a)–3(e)] with increasing anisotropy of
the particles.
Finally, we apply the DFT to mixtures of polyhedra. We

consider a 2:1 mixture of tetrahedra and octahedra [36]
with the same edge length for both species. The constitu-
ents of this mixture, two tetrahedra and an octahedron, can
form a parallelepiped that has a maximum packing fraction
of 1. The corresponding crystal contains flat layers, so we
might expect a similar structure at the wall; see the inset of
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FIG. 2 (color online). Center-of-mass density profiles as a function of the height z divided by the edge length l for one-component
systems of (a) tetrahedra, (b) cubes, (c) octahedra, (d) dodecahedra, and (e) icosahedra, which are depicted in Fig. 1. Fundamental-
measure DFT (dark or blue lines) is compared to results from Monte Carlo (MC) simulations (light or orange lines). The average
volume fraction � � vpN=AH is set to � ¼ 0:3, where vp is the volume of the particles. (f) The density profile of spheres for the same

packing fraction � ¼ 0:3 is shown as a function of the height z divided by the diameter 	 for comparison. The heights for which a
particle can just touch the wall with a vertex, an edge, and a face are indicated by the dashed lines; also shown are polyhedra with the
corresponding orientations.
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Fig. 4. To allow an easy comparison to the pure systems
of octahedra and tetrahedra, we use the same packing
fraction � ¼ 0:3 as for the one-component systems. The
resulting center-of-mass density profiles from the theory
and the simulations are shown to agree very well in Fig. 4.
Focusing on the first peak, we see that the octahedral peak
has almost the same position in the mixture as in the one-
component system [Fig. 2(c)]. In comparison, the changes
in the tetrahedral peak are remarkable: The sharp feature
at z ¼ zv is much less pronounced, the peak near the wall
is broader, and its maximum has shifted toward higher z
values. This is the exact opposite of what one would expect
from the crystalline layer [see Fig. 4 (inset)], where the
peak at z ¼ zv would actually be enhanced. Clearly, the
behavior of the polyhedra near the wall is not so easy to
predict from simple considerations, while our DFT is able
to predict the complex structure accurately.

In conclusion, we propose a fundamental-measure den-
sity functional theory for polyhedral particles, which
shows excellent overall agreement with simulation results.
In future work, the theory could be applied to crystals of
convex polyhedra. Nonconvex polyhedra have recently
been synthesized in the form of nanoparticles, and their
packing has been studied using a packing algorithm
[11]. The theory presented here can in principle be
extended to nonconvex particles at the cost of an additional

approximation [35]. The theory can also be directly applied
to the polyhedral approximation of a colloid or nanopar-
ticle that results from modeling [37,38] of the synthesis
process or a direct measurement [39]. Polyhedral mole-
cules [19,40] and nanoparticles [2] or colloids with signifi-
cant (depletion) attractions could be modeled by adding
the attractions as a perturbation on top of DFT for hard
polyhedra. Finally, nonequilibrium systems of hard poly-
hedra could be investigated using the dynamic version
of DFT [33,41–43], which presupposes the existence
of a free energy functional for the corresponding equilib-
rium system.
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