
PHYSICAL REVIEW E 87, 032712 (2013)

Vortex arrays as emergent collective phenomena for circle swimmers
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Universitätsstraße 1, D-40225 Düsseldorf, Germany

(Received 3 December 2012; published 15 March 2013)

Collective properties of many rodlike circle swimmers are explored by computer simulations in two spatial
dimensions. In the model considered, the center of mass of a single swimmer moves on a circle with radius
R. Therefore, the model provides an interpolation between an interacting self-propelled-rod model for linear
swimmers (R → ∞) and that of interacting passive rotors (R = 0). We map out the state diagram for various
swimmer densities and radii R. For increasing density, the dilute state is followed by vortices consisting of
single particles (singlet-vortex state), where neighboring particles are perpendicularly oriented, and vortices of
swimmer pairs (doublet-vortex state). The vortices exhibit strong structural ordering on an array. At higher
densities, a slowed rotor fluid with a significant degree of mutual rotation hindrance occurs. The single-particle
vortex structure becomes unstable above a threshold in the circling radius R, while pair vortices are stable only
for intermediate radii R. A simple theory is proposed to predict the topology of the state diagram. Our results are
verifiable for bacterial and artificial rodlike circle swimmers.
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I. INTRODUCTION

Both swimming micro-organisms [1,2] and synthetic col-
loidal swimmers [3] are able to form remarkable collective
spatiotemporal patterns [4–10] including swarming [11–14]
and complex swirling [15–24] behavior. Most of the observed
patterns can be obtained by a simple modeling that includes
the tendency of the particles to move autonomously and their
direct interaction mainly governed by the excluded volume
of effective anisotropic objects [20,25]. When supplemented
with Brownian dynamics, binary collisions between neigh-
boring particles lead to mutual alignment and thus provide a
mechanism of swarming [26]. The observed effects occur in
most cases in two dimensions, i.e., for particles moving in a
planar geometry.

In fact, self-propelled particles in two dimensions can be
realized in a number of ways including autonomously nav-
igating confined bacteria and microbes [16,17,27–30], polar
granular rods on a vibrating flat surface [31,32], flagellated
alga [33], and even pedestrians in a pedestrian zone [34,35].
Moreover, colloidal dispersions have been shown to provide
various valuable model systems of active matter [36–43]. Most
of these particles have an anisotropic rodlike shape and move
along their orientation axis such that a single particle proceeds
along a line. This is a key ingredient in previous modeling of
many swimmers [14,26,44–49].

Moreover, self-propelled particles have been discovered
that move in circles rather than in a straight line. Examples
for these circle swimmers include various bacteria [50–55],
protozoans [56], microtubules [57], spermatozoa [18,58,59],
crustaceans [60], and spherical camphors that have been shown
to exhibit circular swimming at an interface [61]. Furthermore,
synthetic microswimmers with various shapes exhibit circular
motion [62–65]. Driven Brownian particle models [66–70]
have been proposed to describe the basic physics of circle
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swimmers where the particles proceed with both an effective
translational and angular propagation velocity and expe-
rience additional Brownian fluctuations. The deterministic
(noise-free) trajectory in two dimensions is a closed circle.
More explicit models that resolve the swimming strokes have
recently been put forth for single circle swimmers [71,72].

However, the collective properties of circle swimmers at
finite density are rarely understood. Experiments [18] have
shown emerging dynamic arrays of vortices for spermatozoa
resembling quantized rotating waves if the density exceeds a
threshold. The origin was explained in terms of hydrodynamic
interactions. However, apart from a coarse-grained recent
diffusive theory [73], there is no particle-resolved simulational
study nor any theoretical study for the emergent behavior
of many circle swimmers. Here we simulate the collective
behavior of many circle swimmers by a minimal model
in two spatial dimensions incorporating excluded volume
interactions. The swimmers are interacting via a strongly
repulsive and short-range Yukawa-segment potential [74],
which prevents particles from overlapping. Each rod has
a length �. The self-motility of the individual swimmers
is imposed by introducing a constant translational velocity
along the main orientation axis of each rod and a constant
angular velocity that rotates each rod. The combination of
both translational and rotational self-propulsion results in a
circular swimming path for the center of mass of radius R for
each individual rod. At finite density, different circle swimmers
will collide, leading to nontrivial emergent behavior that gets
crowded and nontrivial if the area πR2 embraced by a single
swimmer is occupied on average by two or more swimmers. In
particular, at intermediate and high densities, novel emerging
effects are expected.

The model considered here has been studied previously
in two special limits, namely, for vanishing angular velocity
[20,25] and vanishing translational velocity [75]. For vanish-
ing angular velocity, we recover the special case of linear
swimmers that move in straight lines corresponding to the
limiting case R → ∞. Even though the averaged swimming
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direction is constant, it has been shown [20,25] that at finite
density, swirls emerge in the model. The average rotational
sense of the swirls, however, averages to zero due to symmetry.
The complementary case of vanishing translational velocity
[75,76] describes passive rotors. The absence of translational
propulsion leads to a vanishing swimming radius R. These
rotors can be realized by placing passive colloids into circularly
polarized light fields [77–79]. Passive rotors have been shown
to exhibit a T structure of neighboring rotating rods that can
also be viewed as a special kind of vortex array, a singlet
vortex, in the sense that each rotor forms its own vortex and
neighboring vortices possess perpendicular rod orientation.
The compact though dynamic T structure is formed since
mutual collisions are avoided. At high density, the vortex array
structure disappears due to jamming [75], leaving a slowed
rotor fluid as the high-density state.

In our simulation of many circle swimmers, we have the
radius R of a single swimmer’s path as an additional parameter.
First we confirm that the singlet-vortex phase and the slowed
rotor fluid phase that were discovered previously for vanishing
R [75] possess a large stability for finite R. More surprisingly,
we find a different vortex array formation at intermediate
swimmer densities and an intermediate range of radii R. In this
phase, the vortices are composed of circle swimmer pairs that
are oriented antiparallel with respect to each other. Many of
these doublet vortices exhibit strong structural ordering on an
array. We propose a simple theory to predict the onset of circle
swimmer pairing to understand the underlying mechanisms
for vortex array formation. Our vortex array is induced by
steric interactions together with circular self-propulsion and is
therefore different in origin that the hydrodynamically induced
vortices of Refs. [18,80]. The rotation sense of the vortices is
obviously correlated with the sense of rotation of a single
swimmer since the clockwise or counterclockwise symmetry
of rotation is broken in our model. This make our vortex
pairing different from previous explorations of swirling in
linear swimmers at intermediate densities [16,17,20,81,82]. In
principle, our results are verifiable for bacterial and artificial
rodlike circle swimmers.

The paper is organized as follows. In Sec. II we specify
our model for circle-swimming self-propelled rods, the corre-
sponding equations of motion, and the simulation technique.
Simulation results on the nonequilibrium state diagram are
presented and analyzed in Sec. III, while in Sec. IV a
simple theory is proposed to predict the vortex formation.
We conclude in Sec. V with a brief discussion of possible
extensions of the model and highlight opportunities to observe
the predicted behavior in experiment.

II. FRICTIONAL DYNAMICS OF
A SELF-PROPELLED-ROD MODEL

The rodlike circle swimmers in our model are characterized
by a length � and are driven by a constant self-propulsion
force F directed along the main rod axis û. The actual
position of the αth rod (α = 1, . . . ,N) is described by a center
of mass position vector rα and a unit orientational vector
ûα = (cos ϕα, sin ϕα). We do not resolve the details of the
swimming mechanism. The force F is a formal one that results
in some overdamped dynamics in a constant propagation

velocity as in previous models [25,45,83]. Similarly, the
circular movement is implemented using an additional torque
M normal to the plane of motion as described for a single
rod in Ref. [66]. The repulsive rod forces are described by a
Yukawa-segment interaction, which is an established model
for charged rodlike colloids [84,85], as suspensions of the
tobacco-mosaic virus [74,86] and DNA strands [87,88]. In
detail, each rod is discretized into n spherical segments and a
repulsive Yukawa force with characteristic screening length λ

between the segments of different rods is imposed. Thereby
each rod of length � has a defined diameter λ [74]. The
segments are distributed equidistantly along the rod axis with
a fixed distance d = �/[(n + 1)(n − 1)]1/2 � λ.

The total pair potential between a rod pair α and β with
orientational unit vectors {ûα,ûβ} and center of mass distance
�rαβ = rα − rβ is given by

Uαβ = U0

n2

n∑
i=1

n∑
j=1

exp
[−(

r
αβ

ij

/
λ
)]

r
αβ

ij

, (1)

where U0 is an amplitude and

r
αβ

ij = |�rαβ + (li ûα − lj ûβ)| (2)

is the distance between the ith segment of rod α and the j th
segment of rod β, with li ∈ [−(� − λ)/2,(� − λ)/2] denoting
the position of segment i along the symmetry axis of the
rod α (see Fig. 1). We introduce an aspect ratio p = �/λ to
quantify the effective anisotropy of the rod-shaped particles.
The number of segments per rod is defined by n = �9p/8�,
with �·� denoting the nearest integer.

We focus on the overdamped regime in the low-Reynolds-
number limit, which is the relevant one for micro-organisms
and artificial self-propelled colloidal mesogens. The resulting

λ

FIG. 1. (Color online) Sketch of a pair of rodlike circle swimmers
with n = 11 repulsive Yukawa segments and aspect ratio p = �/λ.
Self-propulsion is provided by a constant force F acting along the
main rod axis û. The circular motion is brought about by an additional
torque M perpendicular to the plane of motion. The total rod pair
potential is obtained by a sum over all Yukawa segment pairs with
distance r

αβ

ij and is a function of the center of mass distance vector
�rαβ and orientations (1). The circular swimming path of radius R

of the center of mass coordinates is also indicated.
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equations of motion for the center of mass position rα(t)
and orientation ûα(t) = [cos ϕα(t), sin ϕα(t)] of the circle
swimmer emerge from a balance of the forces and torques
acting on each rod α and are similar to those described in
Ref. [25]:

fT · ∂trα = −∇rα
U + F ûα, (3)

fR · ∂t ûα = −∇ûα
U + M. (4)

Here F is the constant self-motility force acting along the
longitudinal axis of each rod (Fig. 1), U = (1/2)

∑
β,α:β �=α Uαβ

is the total potential energy, ∇û denotes the gradient on the unit
circle, and

fT = f0[f‖ûαûα + f⊥(I − ûαûα)], (5)

fR = f0fRI (6)

are the translational and rotational friction tensors (I is the two-
dimensional unit tensor) with a Stokesian friction coefficient
f0. The dimensionless geometric factors {f‖,f⊥,fR} depend
solely on the aspect ratio p and we adopt the standard
expressions for rodlike macromolecules, as given in Ref. [89],

2π

f||
= ln p − 0.207 + 0.980p−1 − 0.133p−2, (7)

4π

f⊥
= ln p + 0.839 + 0.185p−1 + 0.233p−2, (8)

πp2

3fR
= ln p − 0.662 + 0.917p−1 − 0.050p−2. (9)

The additional torque M induces a circular motion of a single
swimmer with a radius

R = fRF

f||M
(10)

and an angular velocity

ω0 = M

fR
. (11)

Clearly, there is no finite temperature in our model as any
stochastic fluctuations are ignored.

In our simulations, we have adopted characteristic units
such that λ = 1, F = 1, and f0 = 1, which means that distance
is measured in units of λ, velocity in units of F/f0, time in
units of τ0 = λf0/F , and energy in units of Fλ. Upon rescaling
to dimensionless coordinates, four relevant system parameters
remain: the dimensionless Yukawa amplitude Ũ0 = U0/Fλ,
which determines the hardness of the rod interactions relative
to their characteristic propulsion energy, the aspect ratio p, the
reduced radius R/λ, and the packing fraction of the rods. This
fraction is specified in terms of the dimensionless area fraction

η = π

4

N

A
�2, (12)

where N is the total number of rodlike circle swimmers and A

denotes the area of the quadratic simulation box. For steeply
repulsive Yukawa interactions, the general dynamical behavior
resembles that of hard rods and only weakly depends on the
Yukawa amplitude and we set Ũ0 = 250. We further consider
anisotropic rods with fixed aspect ratio p = 10. The remaining
quantities, the reduced swimmer radius R/λ and area fraction

η, constitute the main steering parameters for our investigation.
We simulate the evolution of the many-body self-propelled
rod model as a function of time τ = t/τ0 in a square box with
periodic boundary conditions at packing fractions in the range
0.1 < η < 2.5. The simulations are carried out using a total
number of N = 103 rods. Initial configurations are generated
from a rectangular lattice of aligned rods with û pointing
randomly up or down. The rods are randomly displaced from
the initial lattice such that the starting configuration bears
already some randomness. We have tested different random
starting configurations and confirmed that the steady state
properties do not depend on the starting configuration. We then
relax the system during an time interval of a transitory time
τT = 2000 before statistics are being gathered over an interval
τS = 40 000. We checked that the results do not depend on
τT if τT is chosen larger than 2000. Moreover, we have
done longer exploration runs with τS = 100 000 to confirm
that the steady state averages are reproduced. Finally, we
have checked the system size dependence by systematically
exploring particle numbers in the range of N = 100–1000
particles. The occurrence of the different states is stable.

III. SIMULATION RESULTS

Figure 2(a) shows a state diagram for rodlike circle swim-
mers in the two-dimensional parameter space of swimmer
density η and swimming radius R. Four different states emerge,
for which typical simulation snapshots are shown in Figs. 2(b)–
2(e) (see also Ref. [90]). We discriminate between different
states by suitable order parameters as explained in detail below,
but emphasize here that there are no strict phase transitions
between the different states. Let us first discuss the contents
of Fig. 2 before we characterize the states in more detail.

For low densities there are only very few collisions and
therefore little or no collective motion. Consequently, there is
a dilute state at low density η [see Fig. 2(b)]. Complementarily,
at high density, there is a slowed rotor fluid with no particular
mesostructure [see Fig. 2(e)]. In this state, rotating rods
collide, which slows down their mean angular velocity. More
interestingly, there are intervening phases at intermediate
densities. We find two different vortex array states. The first
consists of singlet vortices such that every vortex comprises a
single particle. This phase has been called the T structure in
earlier investigations for passive particles at vanishing radius
R [75] since it clearly shows a perpendicular orientation of
neighboring rods. We refer to this state here as a singlet-vortex
array phase as every particle rotates around its own such that
any vortex comprises a single particle [see Fig. 2(c)]. The
second phase is a doublet-vortex array such that each vortex
comprises two rods that are oriented in an antiparallel way.
The rod pairing is clearly visible in the snapshot shown in
Fig. 2(d). It is important to note that the doublet-vortex state is
stable only in a finite range of swimming radii λ/2 < R < 7λ.
Its transition density towards the slowed rotor fluid exhibits a
large nonmonotonicity in R, which implies a marked reentrant
behavior of the slowed rotor fluid if R is increased at fixed
density. For the parameter space studied, we never found
vortices with more than two rods.

In more detail, we now define order parameters in order
to distinguish and characterize the four different states.
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FIG. 2. (Color online) (a) Nonequilibrium state diagram of
rodlike circle swimmers in the parameter space spanned by the
swimming radius R and the swimmer density η. Four different states
emerge, which are depicted as dilute for low swimmer densities,
singlet vortex for intermediate densities and low rotation radii, doublet
vortex for higher swimmer densities, and slowed rotor fluid for even
higher densities. (b)–(e) Characteristic simulation snapshots for the
four states are also shown, including (blue) circles to show typical
configurations of the vortex array states.

To analyze the orientation of neighboring rods we define
normalized orientational order parameters

m1 = 〈cos θ (r)〉a, (13)

m2 = 〈cos2 θ (r)〉a, (14)

where 〈· · · 〉a = ∫ a

0 drg(r) · · · / ∫ a

0 drg(r) is a statistical steady
state average. These order parameters correspond to measures
of the polar and nematic order in a neighbor shell of size a.
Here g(r) is the pair correlation function between two rods
(provided their center of mass positions have a distance r) and
θ (r) denotes the angle between their orientations. Moreover,
a = (N/A)−1/2 is the average distance between two rods. The
order parameter m2 was already applied to evaluate passive
rotors [75].
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FIG. 3. (Color online) Orientational order parameters (a) m1 and
(b) m2 for several swimming radii R as a function of swimmer density
η. The horizontal dashed lines represent the criteria for the vortex
states.

In the case of no correlation of neighboring rods m1 = 0 and
m2 = 0.5. Perpendicular orientation is indicated by m1 = 0
and m2 = 0. A perfect parallel orientation leads to m1 = 1
and m2 = 1, while an antiparallel alignment is represented
by m1 = −1 and m2 = 1. Furthermore, we calculate (as a
dynamical diagnostics) the mean angular velocity

〈ω〉 = 1

N

N∑
α=1

ϕ̇α (15)

of the rods.
The dilute state is characterized by almost freely rotating

rods with just a few collisions. We define this state by a
combination of structural and dynamical criteria demanding
that m1 > −0.4, m2 > 0.4, and 〈ω〉 � 0.99ω0 should hold in
the dilute state. Moreover, the singlet-vortex state is defined via
the condition m2 � 0.4, which brings about strong perpendic-
ular orientation of neighboring rods. Conversely, for doublet
vortices we require m1 � −0.4, indicating that neighboring
rods are orientated in an antiparallel way. The slow rotor fluid
state is defined by the combined complementary conditions
m1 > −0.4, m2 > 0.4, and 〈ω〉 < 0.99ω0.

Simulation data for the orientational order parameters m1

and m2 and the mean angular velocity 〈ω〉 are given in Figs. 3
and 4(a), respectively, as a function of swimmer density η for
various swimming radii R. These plots are consistent with the
state diagram shown in Fig. 2(a). In detail, for low densities,

032712-4



VORTEX ARRAYS AS EMERGENT COLLECTIVE . . . PHYSICAL REVIEW E 87, 032712 (2013)

0.4

0.6

0.8

1

0 0.5 1 1.5 2

ω
/
ω

0

η

R/λ = 0
R/λ = 0.5
R/λ = 1
R/λ = 1.5
R/λ = 3
R/λ = 6
R/λ = 10

0.4

0.6

0.8

1

0 2 4 6

ω
/
ω

0

R/λ

η = 1.25

doublet
vortex

slowed rotor fluid

FIG. 4. (Color online) (a) Reduced circular frequency 〈ω〉/ω0

as a function of swimmer density η and different rotation radii R.
(b) Reduced circular frequency 〈ω〉/ω0 as a function of swimmer
radius R for a fixed swimmer density η = 1.25 showing the reentrance
of the slowed rotor fluid. The intermediate doublet-vortex state is
denoted by vertical dashed lines.

clearly the dilute state emerges. For small radii, m2 drops down
to zero for intermediate densities and then increases again.
This demonstrates the occurrence of the singlet-vortex state.
At higher densities there is no indication for the doublet-vortex
state, but the system goes directly into the slowed rotor fluid
state, as indicated by an alignment that leads to the increase
of m2. This is accompanied by a very sharp reduction in the
mean angular velocity as shown in Fig. 4(a).

For R > λ/2, in contrast, there is an overshoot of m2 as
a function of density just after the singlet vortex is stable,
implying a parallel ordering of neighboring rods. This points
to the new state of doublet vortices. This is simultaneously
revealed by a largely negative m1 as indicative for the
antiparallel doublet-vortex state. Again, further increasing of
the density leads to the slowed rotor fluid state where the
swimmers hinder each other in rotating [see again Fig. 4(a)].

Finally, for very large R, the dilute to slowed rotor fluid state
becomes more and more blurred. For R → ∞ the crossover
from the dilute to a swarming state [12,26] is approached
slowly as observed in Ref. [25].

Figure 4(b) shows the mean angular velocity 〈ω〉 now as a
function of the swimming radius R for fixed density η = 1.25.
Clearly 〈ω〉 is nonmonotonic, revealing again the reentrant
transition of the slowed rotor fluid phase with an intermediate
doublet-vortex phase.

FIG. 5. (Color online) Schematic representations of rod-shaped
circle swimmers in the vortex states, showing typical configurations
marked in Figs. 2(b) and 2(c). The singlet-vortex state is illustrated
for (a) a passive rodlike particle and (b) an active swimmer whose
center of mass moves on a circle with radius R, shown here by small
dark (blue) circles. The doublet-vortex state is sketched in (c). In
all figures black dots represent the rotation center of the swimmers,
while the light gray circles indicate the area covered by the circle
swimmers during a full rotation. The lattice constants for all square
lattices are given as well.

As a general final remark the order parameter plots Figs. 3
and 4 reveal that some transitions are pretty sharp (in particular
the transition from the doublet vortex to the slowed rotor fluid
state at low R) and other are rather smooth crossovers whose
location depends a bit on the precise definition of the states (as
for the transition from the doublet vortex to the slowed rotor
fluid state at high R). We emphasize, however, that the global
topology of the state diagram does not change if the transition
criteria as shown by the dashed lines in Fig. 3 are modified.
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IV. SIMPLE THEORY

Let us now present a simple instability theory to predict the
state diagram of rodlike circle swimmers. For a vanishing
swimming radius R, as already denoted in Ref. [75], the
singlet vortices are mostly governed by a situation where
four rodlike circle swimmers on a square lattice rotate with
a relative perpendicular orientation [see again the encircled
region of the snapshot shown in Fig. 2(c)]. For infinitely
thin needles (λ → 0), as sketched in Fig. 5(a), the circles
covered by the needle orientation can overlap if the rotating
motion is performed coherently with a fixed relative phase
shift. The maximal packing fraction that can be reached in
this configuration is when needles of length � are placed on
a square lattice of lattice constant �/

√
2 [see again Fig. 5(a)],

resulting in a threshold packing fraction of

η0 = π

2
. (16)

Rods with an effective finite thickness λ need to be more distant
to avoid overlap upon their coherent rotation, corresponding
to the infinitely thin needles of a larger length � + λ [see again
Fig. 5(a)]. If they perform an additional circling of swimming
radius R [see Fig. 5(b)], this effective length needs to be
augmented by 2R such that the singlet-vortex state should
be stable up to

η1(R) = η0

(
�

� + 2R + λ

)2

. (17)

We now employ a similar argument for the doublet-vortex
state by considering effective composite rods consisting of
a swimmer pair [see Fig. 5(c)]. A suitable cutout from
a simulation snapshot is presented in Fig. 2(d). In the
simulations, the pairs are observed to rotate around their
joint center of mass without exhibiting any circling. The
swimmer pair [see the encircled region of the snapshot shown
in Fig. 2(d)] possesses typically an interrod distance b and is
laterally shifted by an amount of �� [see again Fig. 5(c)].
In general, these two quantities depend on the prescribed
swimming radius R and the prescribed density η. Lacking
any theoretical input for these quantities b and ��, we resort
in our simulation data to determine them and to achieve at
least a consistent theory. In detail, we identify swimmer pairs
by a center of mass distance less than a cutoff rc that we chose
in the considered density range as rc = 8λ. For all identified
pairs, we average their mutual distance b and their lateral shift
��. Results are presented in Fig. 6(a). Interestingly, b and
�� depend strongly on the swimming radius R, but are rather
density independent. In fact, the data obtained for two selected
densities η = 0.75 and 1 almost coincide. Therefore, we skip
the density dependence and consider just b(R) and ��(R) for
which we obtain linear and hyperbolic fits from the simulation
data [see dashed lines in Fig. 6(a)] as

b(R)/λ = 1.73R/λ + 0.78/λ, (18)

��(R)/λ = 4.29/R/λ − 0.93/λ. (19)

After all one can then treat a pair effectively as a rectangular
block of length � + ��(R) and width b(R) + λ. Since the
block now contains two particles, the instability density for
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FIG. 6. (Color online) (a) Spatial extent of the circle swimmer
pairs in the doublet-vortex state as characterized by the width b and
the extended length �� as a function of the swimming radius R

for different densities η = 0.75 and 1. (b) Instability lines for the
singlet and doublet-vortex states as obtained from our analysis. The
simulated state diagram is shown as a reference.

the doublet-vortex state now reads

η2(R) = 2η0

(
�

� + ��(R) + b(R) + λ

)2

. (20)

In Fig. 6(b) both instability lines obtained from either
Eq. (17) or (20) are shown. The simulated state diagram from
Fig. 2(a) is plotted as a reference. Given the simplifications
entering in our instability theory, the transition lines describe
the simulation data reasonably well. Moreover, the reentrance
effect of the slowed rotor fluid is well captured by our
instability analysis such that the topology of the phase diagram
is predicted correctly by the theory.

We finally remark that our instability analysis also sheds
light on the stability of the singlet- and doublet-vortex states
for parameter combinations different from those used in our
simulation study. For example, one important condition is that
the aspect ratio of the swimmers is high since the reference
system in the theory consists of infinitely thin hard needles.
This implies that no multiplet-vortex states are expected for
almost spherical swimmers.

V. CONCLUSION

We have studied the collective dynamical behavior of a
simple two-dimensional model of circle-swimming rigid rods
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by computer simulation. A different vortex array formation
was found where a vortex is composed of a circle swimmer
pair, which we referred to as a doublet-vortex state.

The results obtained in our modeling of circle swimmers
can be verified in experiments of circle swimmers on two-
dimensional substrates. An ideal realization for our model
consists of such colloidal rods that are catalytically driven from
one side such that they perform strong circular swimming.
The swimming radius can in principle be tuned by the lever
arm length of the spot where the catalytical reaction happens.
The same idea can be used for thermally driven rodlike
particles as proposed in Ref. [38]. It is, however, essential
to use slender rodlike particles in order to obtain the singlet-
and doublet-vortex states. As documented by our theoretical
approach, almost spherical particles with a low aspect ratio are
not expected to show these vortex states.

For the future, it would be interesting to explore other
physical shapes of the swimmer such as recently explored
L particles [64] or C particles that have a strong tendency
to form stacks [91]. We expect that the pairing process will
be significantly disturbed for a different particle shape. For
such nonconvex particle shapes, it is possible that multiplet-
vortex states arise, which comprise an even higher number of
swimmers.

Further theoretical efforts should be aimed at expanding the
model and equations of motion step by step by considering
effects that are relevant in experiment such as multibody
hydrodynamic interactions and flexibility of particle shape.
The effect of finite temperature could be incorporated as well
if one wishes to assess the effect of translation and rotational
noise (e.g., tumbling in bacteria) in more detail. In fact,
previous studies [75] have already shown that the results are
stable with respect to noise provided the strength of the noise is
not too large. We have confirmed the stability for some selected
parameters also for the doublet-vortex state. It is also desirable
to explore the model in three spatial dimensions where the
swimming path is a helix rather than a circle [92]. Finally, it
would be challenging to construct microscopic theories that are
capable of predicting the observed emergent states advanced in
this study. Dynamical density functional theory for anisotropic
systems [45,93,94] might provide a promising avenue for this.
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[25] H. H. Wensink and H. Löwen, J. Phys.: Condens. Matter 24,
464130 (2012).
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